DM545/DM871
Linear and Integer Programming

Lecture 10
 IP Modeling Formulations, Relaxations

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Relaxations

Outline

1. Relaxations

Optimality and Relaxation

$$
z=\max \left\{c(\mathbf{x}): \mathbf{x} \in X \subseteq \mathbb{Z}^{n}\right\}
$$

How can we prove that x^{*} is optimal?
\bar{z} is UB
\underline{z} is LB
stop when $\bar{z}-\underline{z} \leq \epsilon$

- Primal bounds (here lower bounds): every feasible solution gives a primal bound may be easy or hard to find, heuristics
- Dual bounds (here upper bounds): Relaxations

Optimality gap (SCIP):

- If primal and dual bound have opposite signs, the gap is "Infinity".
- If primal and dual bound have the same sign, the gap is

$$
\frac{|p b-d b|}{\min (|p b|,|d b|) \mid} \quad \text { decreases monotonously during the solving process. }
$$

Proposition

$$
\begin{aligned}
(R P) z^{R} & =\max \left\{f(\mathbf{x}): \mathbf{x} \in T \subseteq \mathbb{R}^{n}\right\} \text { is a relaxation of } \\
(I P) z & =\max \left\{c(\mathbf{x}): \mathbf{x} \in X \subseteq \mathbb{R}^{n}\right\} \text { if : }
\end{aligned}
$$

(i) $X \subseteq T$ or
(ii) $f(\mathbf{x}) \geq c(\mathbf{x}) \forall \mathbf{x} \in X$

In other terms:

$$
\max _{\mathbf{x} \in T} f(\mathbf{x}) \geq\left\{\begin{array}{l}
\max _{\mathbf{x} \in T} c(\mathbf{x}) \\
\max _{\mathbf{x} \in X} f(\mathbf{x})
\end{array}\right\} \geq \max _{\mathbf{x} \in X} c(\mathbf{x})
$$

- T: candidate solutions;
- $X \subseteq T$ feasible solutions;
- $f(\mathbf{x}) \geq c(\mathbf{x})$

Relaxations

How to construct relaxations?

1. $I P: \max \left\{\mathbf{c}^{T} \mathbf{x}: \mathbf{x} \in P \cap \mathbb{Z}^{n}\right\}, P=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}\right\}$
$L P: \max \left\{\mathbf{c}^{\top} \mathbf{x}: \mathbf{x} \in P\right\}$
Better formulations give better bounds ($P_{1} \subseteq P_{2}$)
Proposition
(i) If a relaxation LP is infeasible, the original problem IP is infeasible.
(ii) Let \mathbf{x}^{*} be optimal solution for LP. If $\mathrm{x}^{*} \in X$ and $f\left(\mathbf{x}^{*}\right)=c\left(\mathbf{x}^{*}\right)$ then x^{*} is optimal for IP.
2. Combinatorial relaxations to easy problems that can be solved rapidly Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
3. Lagrangian relaxation

$$
\begin{array}{lr}
I P: & z=\max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in X \subseteq \mathbb{Z}^{n}\right\} \\
L R: & z(\mathbf{u})=\max \left\{\mathbf{c}^{T} \mathbf{x}+\mathbf{u}(\mathbf{b}-A \mathbf{x}): \mathbf{x} \in X\right\}
\end{array}
$$

$$
z(\mathbf{u}) \geq z \quad \forall \mathbf{u} \geq \mathbf{0}
$$

4. Duality:

Definition
Two problems:

$$
z=\max \{c(\mathbf{x}): \mathbf{x} \in X\} \quad w=\min \{w(\mathbf{u}): \mathbf{u} \in U\}
$$

form a weak-dual pair if $c(\mathbf{x}) \leq w(\mathbf{u})$ for all $\mathbf{x} \in X$ and all $\mathbf{u} \in U$. When $z=w$ they form a strong-dual pair

Proposition

$$
\begin{aligned}
& z=\max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_{+}^{n}\right\} \text { and } w^{L P}=\min \left\{\mathbf{u}^{T} \mathbf{b}: A^{T} \mathbf{u} \geq \mathbf{c}, \mathbf{u} \in \mathbb{R}_{+}^{m}\right\} \\
& \text { (ie, dual of linear relaxation) form a weak-dual pair. }
\end{aligned}
$$

Proposition
Let IP and D be weak-dual pair:
(i) If D is unbounded, then IP is infeasible
(ii) If $\mathbf{x}^{*} \in X$ and $\mathbf{u}^{*} \in U$ satisfy $c\left(\mathbf{x}^{*}\right)=w\left(\mathbf{u}^{*}\right)$ then \mathbf{x}^{*} is optimal for IP and \mathbf{u}^{*} is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation to have a bound, any feasible dual solution gives a bound.

Examples

Weak pairs:
Matching: $\quad z=\max \left\{\mathbf{1}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{1}, \mathbf{x} \in \mathbb{Z}_{+}^{m}\right\}$
V. Covering: $\quad w=\min \left\{\mathbf{1}^{\top} \mathbf{y}: A^{\top} y \geq \mathbf{1}, \mathbf{y} \in \mathbb{Z}_{+}^{n}\right\}$

Proof: consider LP relaxations, then $z \leq z^{L P}=w^{L P} \leq w$. (strong when graphs are bipartite)

Weak pairs:
S. Packing: $\quad z=\max \left\{\mathbf{1}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{1}, \mathbf{x} \in \mathbb{Z}_{+}^{n}\right\}$
S. Covering: $w=\min \left\{\mathbf{1}^{T} \mathbf{y}: A^{T} \mathbf{y} \geq \mathbf{1}, \mathbf{y} \in \mathbb{Z}_{+}^{m}\right\}$

