DM545/DM871
Linear and Integer Programming

Lecture 3
 The Simplex Method

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Outline

\author{

1. Simplex Method
}

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

A Numerical Example

$$
\begin{aligned}
\max \sum_{j=1}^{n} c_{j} x_{j} & \\
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i}, \quad i=1, \ldots, m \\
x_{j} & \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
\max \mathbf{c}^{T} \mathbf{x} & \\
A \mathbf{x} & \leq \mathbf{b} \\
\mathbf{x} & \geq \mathbf{0}
\end{aligned}
$$

$\max 6 x_{1}+8 x_{2}$

$$
5 x_{1}+10 x_{2} \leq 60
$$

$$
4 x_{1}+4 x_{2} \leq 40
$$

$$
x_{1}, x_{2} \geq 0
$$

$$
\max \left[\begin{array}{ll}
6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
5 & 10 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{l}
60 \\
40
\end{array}\right]
$$

$$
x_{1}, x_{2} \geq 0
$$

Outline

1. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Standard Form

Every LP problem can be converted in the standard form:

$$
\begin{aligned}
\max \mathbf{c}^{T} \mathbf{x} & \\
A \mathbf{x} & \leq \mathbf{b} \\
\mathbf{x} & \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\mathbf{c} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}
$$

and then be put in equational standard form:

```
\(\max \mathbf{c}^{\top} \mathbf{x}\)
        \(A \mathbf{x}=\mathbf{b}\)
        \(x \geq 0\)
\(\mathbf{x} \in \mathbb{R}^{n}, \mathbf{c} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}\)
```

- if equations, then put two constraints, $\mathrm{a} x \leq b$ and $\mathbf{a} x \geq b$
- if $\mathbf{a} x \geq b$ then $-\mathbf{a} x \leq-b$
- if $\min \mathbf{c}^{T} \mathbf{x}$ then $\max \left(-\mathbf{c}^{T} \mathbf{x}\right)$

1. " $=$ " constraints
2. $x \geq 0$ nonnegativity constraints
3. $(b \geq 0)$
4. \max

Transformation to Std Form

Every LP problem can be transformed in eq. std. form

1. introduce slack variables (or surplus)

$$
\begin{aligned}
& 5 x_{1}+10 x_{2}+x_{3}=60 \\
& 4 x_{1}+4 x_{2}+x_{4}=40
\end{aligned}
$$

2. if $x_{1} \gtreqless 0$ then $\begin{aligned} & x_{1}= \\ & x_{1}^{\prime} \geq 0 \\ & x_{1}^{\prime \prime}\end{aligned}$

$$
x_{1}^{\prime \prime} \geq 0
$$

3. $(b \geq 0)$
4. $\min c^{T} x \equiv \max \left(-c^{T} x\right)$

LP in $m \times n$ converted into LP with at most $(m+2 n)$ variables and m equations (n \# original variables, m \# constraints)

Geometry of LP in Eq. Std. Form

$$
\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}
$$

From linear algebra:

- the set of solutions of $A \mathbf{x}=\mathbf{b}$ is an affine space (hyperplane not passing through the origin).
- $\mathrm{x} \geq 0$ nonegative orthant (octant in \mathbb{R}^{3}) In \mathbb{R}^{3} :

- $A \mathbf{x}=\mathbf{b}$ is a system of equations that we can solve by Gaussian elimination
- Elementary row operations of $[A \mid \mathbf{b}]$ do not affect set of feasible solutions
- multiplying all entries in some row of $[A \mid \mathbf{b}]$ by a nonzero real number λ
- replacing the i th row of $[A \mid b]$ by the sum of the i th row and j th row for some $i \neq j$
- Let n^{\prime} be the number of vars in eq. std. form.
we assume $n^{\prime} \geq m$ and $\operatorname{rank}([A \mid \mathbf{b}])=\operatorname{rank}(A)=m$
ie, rows of A are linearly independent otherwise, remove linear dependent rows

Outline

1. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Basic Feasible Solutions

Basic feasible solutions are the vertices of the feasible region:

More formally:
Let $B=\{1 \ldots m\}, N=\left\{m+1 \ldots n+m=n^{\prime}\right\}$ be subsets partitioning the columns of A : A_{B} be made of columns of A indexed by B :

Definition
$\mathbf{x} \in \mathbb{R}^{n}$ is a basic feasible solution of the linear program $\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$ for an index set B if:

- $x_{j}=0 \forall j \notin B$
- the square matrix A_{B} is nonsingular, ie, all columns indexed by B are lin. indep.
- $\mathrm{x}_{B}=A_{B}^{-1} \mathbf{b}$ is nonnegative, ie, $\mathrm{x}_{B} \geq 0$ (feasibility)

We call x_{j} for $j \in B$ basic variables and remaining variables nonbasic variables.
Theorem
A basic feasible solution is uniquely determined by the set B.
Proof:

$$
\begin{aligned}
A \mathbf{x}= & A_{B} \mathbf{x}_{B}+A_{N} \mathbf{x}_{N}=b \\
& \mathbf{x}_{B}+A_{B}^{-1} A_{N} \mathbf{x}_{N}=A_{B}^{-1} b \\
& \mathbf{x}_{B}=A_{B}^{-1} b
\end{aligned}
$$

$$
A_{B} \text { is nonsingular hence one solution }
$$

Note: we call B a (feasible) basis

Extreme points and basic feasible solutions are geometric and algebraic manifestations of the same concept:

Theorem
Let P be a (convex) polyhedron from LP in eq. std. form. For a point $v \in P$ the following are equivalent:
(i) v is an extreme point (vertex) of P
(ii) v is a basic feasible solution of $L P$

Proof: see text book [MG] sec. 4.4.
Theorem
Let $L P=\max \left\{\mathbf{c}^{\top} \mathbf{x} \mid A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$ be feasible and bounded, then the optimal solution is a basic feasible solution.

Proof. consequence of previous theorem and fundamental theorem of linear programming

Note, a similar theorem is valid for arbitrary linear programs (not in eq. form)
Definition
A basic feasible solution of a linear program with n variables is a feasible solution for which some n linearly independent constraints hold with equality.

However, an optimal solution does not need to be basic:

$$
\max x_{1}+x_{2} \text { subject to } x_{1}+x_{2} \leq 1
$$

- Idea for solution method:
- examine all basic solutions.
- There are finitely many: $\binom{m+n}{m}$.
- However, if $n=m$ then $\binom{2 m}{m} \approx 4^{m}$.

Outline

1. Simplex Method

Standard Form
Basic Feasible Solutions

Algorithm

Tableaux and Dictionaries

Simplex Method

$$
\begin{aligned}
& \max \quad z=\left[\begin{array}{ll}
6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& {\left[\begin{array}{llll}
5 & 10 & 1 & 0 \\
4 & 4 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] }=\left[\begin{array}{l}
60 \\
40
\end{array}\right] \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Canonical eq. std. form: one decision variable is isolated in each constraint with coefficient 1 and does not appear in the other constraints nor in the obj. func. and b terms are positive

It gives immediately a basic feasible solution:

$$
x_{1}=0, x_{2}=0, x_{3}=60, x_{4}=40
$$

Is it optimal? Look at signs in $z \rightsquigarrow$ if positive then an increase would improve.

Let's try to increase a promising variable, ie, x_{1}, one with positive coefficient in z

$$
\begin{aligned}
& 5 x_{1}+x_{3}=60 \\
& x_{1}=\frac{60}{5}-\frac{x_{3}}{5} \\
& x_{3}=60-5 x_{1} \geq 0
\end{aligned}
$$

$$
\text { If } x_{1}>12 \text { then } x_{3}<0
$$

$$
\begin{aligned}
& 4 x_{1}+x_{4}=40 \\
& x_{1}=\frac{40}{4}-\frac{x_{4}}{4} \\
& x_{4}=40-4 x_{1} \geq 0
\end{aligned}
$$

If $x_{1}>10$ then $x_{4}<0$
we can take the minimum of the two $\rightsquigarrow x_{1}$ increased to 10

x_{4} exits the basis and x_{1} enters

Simplex Tableau

First simplex tableau:

$$
\begin{aligned}
& \begin{array}{c:cccc}
& x_{1} & x_{2} & x_{3} & x_{4}
\end{array}-z \quad b \\
& x_{4}: \begin{array}{lllllll}
4 & 4 & 0 & 1 & 0 & 40 \\
\hdashline 6 & 8 & 0 & 0 & 1 & 0
\end{array}
\end{aligned}
$$

we want to reach this new tableau

$$
\begin{array}{l:lll}
& x_{1} & x_{2} & x_{3}
\end{array} x_{4}-z \quad b
$$

Pivot operation:

1. Choose pivot:
column: one s with positive coefficient in obj. func.
row: ratio between coefficient b and pivot column: choose the one with smallest ratio:

$$
\theta=\min _{i}\left\{\frac{b_{i}}{a_{i s}}: a_{i s}>0\right\}, \quad \begin{aligned}
& \theta \text { increase value } \\
& \text { of entering var. }
\end{aligned}
$$

2. elementary row operations to update the tableau

- x_{4} leaves the basis, x_{1} enters the basis
- Divide pivot row by pivot
- Send to zero the coefficient in the pivot column of the first row
- Send to zero the coefficient of the pivot column in the third (cost) row

From the last row we read: $2 x_{2}-3 / 2 x_{4}-z=-60$, that is: $z=60+2 x_{2}-3 / 2 x_{4}$. Since x_{2} and x_{4} are nonbasic we have $z=60$ and $x_{1}=10, x_{2}=0, x_{3}=10, x_{4}=0$.

- Done? No! Let x_{2} enter the basis

Definition (Reduced costs)
We call reduced costs the coefficients in the objective function of the nonbasic variables, \bar{c}_{N}

Proposition (Optimality Condition)

The basic feasible solution is optimal when the reduced costs in the corresponding simplex tableau are nonpositive, ie, such that:

$$
\bar{c}_{N} \leq 0
$$

Proof: Let z_{0} be the obj value when $\bar{c}_{N} \leq 0$. For any other feasible solution \tilde{x} we have:

$$
\tilde{\mathbf{x}}_{N} \geq 0 \quad \text { and } \quad \mathbf{c}^{T} \tilde{\mathbf{x}}=z_{0}+\overline{\mathbf{c}}_{N}^{T} \tilde{\mathbf{x}}_{N} \leq z_{0}
$$

Graphical Representation

Outline

1. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Tableaux and Dictionaries

$$
\begin{aligned}
\max \sum_{j=1}^{n} c_{j} x_{j} & \\
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i}, \quad i=1, \ldots, m \\
x_{j} & \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
& x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, m \\
& z=\sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

Tableau

$$
\left[\begin{array}{c:c:c:c}
1 & \bar{A}_{N} & 0 & \bar{b} \\
\hdashline 0 & \overline{\bar{c}}_{N} & 1 & -\bar{d}
\end{array}\right]
$$

Dictionary

$$
\begin{aligned}
& x_{r}=\bar{b}_{r}-\sum_{s \notin B} \bar{a}_{r s} x_{s}, \quad r \in B \\
& z=\bar{d}+\sum_{s \notin B} \bar{c}_{s} x_{s}
\end{aligned}
$$

pivot operations in dictionary form:
choose col s with r.c. >0
choose row with $\min \left\{-\bar{b}_{i} / \bar{a}_{i s} \mid a_{i s}<0, i=1, \ldots, m\right\}$ update: express entering variable and substitute in other rows

Example

$$
\begin{array}{rlll}
\max 6 x_{1}+8 x_{2} \\
5 x_{1}+10 x_{2} & \leq & 60 \\
4 x_{1}+4 x_{2} & \leq 40 \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

$$
\begin{aligned}
& x_{3}=60-5 x_{1}-10 x_{2} \\
& x_{4}=40-4 x_{1}-4 x_{2} \\
& -z=+6 x_{1}+8 x_{2}
\end{aligned}
$$

After 2 iterations:

$$
\begin{aligned}
& x_{1}: \begin{array}{llll}
1 & 0 & -1 / 5 & 1 / 2 \\
0 & 0 & 8 \\
\hdashline & -2 / 5 & -1 & -64
\end{array} \\
& x_{2}=2-1 / 5 x_{3}+1 / 4 x_{4}
\end{aligned}
$$

Summary

1. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

