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Dual Problem

Dual variables y in one-to-one correspondence with the constraints:

Primal problem: Dual Problem:
max z=c'x min w=b'y
Ax <b ATy >c
x>0 y>0



Bounding approach

z¥ =max 4x; + xo + 3x3
X1 + 4xo <1
3X1 + X + X3 S 3
x1,X%2,x3 > 0

a feasible solution is a lower bound but how good?
By tentatives:

(x1,%2,x3) = (1,0,0) ~ z* > 4
(x1,x2,x3) = (0,0,3) ~ z* > 9

What about upper bounds?
2-( x1 +4x ) <2-1

+3-(3X1+ Xo + X3) <3-3
4x1 +x0+3x3 < 1lxg +11lx +3x3 < 11

cx < y T Ax <y'b

Hence z* < 11. Is this the best upper bound we can find?



multipliers y1, y» > 0 that preserve sign of inequality
yi-(x1 +4x ) < n(1)
Yo ( 3X1 + X + X3) S y2(3)
(y1 +3y2)x1 + (4y1 + y2)x2 + yox3 < y1 + 3y

Coefficients

yi +3y >4
dyn+ yo 21
Y2 >3

z="4x3+ x4+ 3x3 < (y1 + 3y2)x1 + (4y1 + y2)x2 + yax3 < y1 + 3y» then to attain the best upper
bound:

min y; + 3y»
y1 +3y2 >4
4y1 + y2 > 1
y2 >3
y1,y2 >0



Multipliers Approach

T ail 312 --- a1p!d1,n41 An42 - Amin 01Dy

Tm amlamg...ammamm+1amm+2...amm+n®whn

——————————— H—m ot e LT 2 T
Tmt1 | C1 C ... G0 0O O ... 0 0
Working columnwise, since at optimum ¢, <0 forall k =1,....n+ m:
main +  meaxn ...+ Tmami + Tmiic < 0
_Ma . Mdx ...t Tmdmn + Tmiicp <0
T1a1,n+1, T232 041y -+-  Tmdm,n+l <0
M81ntm; _ T232.n4ms - Tmdmanim
mbi  + b +  Tmbm
(since from the last row z = —7b and we want to maximize z then we would min(—mb) or

equivalently max7b)



max mib1 + mobs ...+ Tmbm

miai + meazr ... + Tmam <
T1din + M2a2n ... + Tmamn <
T, T2y e e Tm <

max —yib1 + —y2b2 ...+ —Ymbnm
—Yy1311 + —yead21 ...+ —Ymam

—Yyidin + —Yye2azp ... + —Ymamn
Y1, Y2, T Ym

min w=b'y
ATy >c
y>0
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Example

max 6x; + 8x»
5x1 + 10x> < 60
4X1 + 4X2 S 40
X1, X2 Z 0

571 + 4m 4+ 6m3 <0
107wy + 47 + 813 <0
1my + Omp + 03 <0
Omy 4+ 1m 4+ 0m3 <0
Oy + Omp +1m3 =1
607, + 40m,

yn=-m12>0
Yo=-—m >0



Duality Recipe

Primal linear program

Dual linear program

|
Variables ' T1,X9,...,Tp
Matrix ' A
Right-hand side ' b
Objective function ' maxc’x

Constraints ith constraint has
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y; > 0
y; <0
yieR

jth constraint has
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Symmetry

The dual of the dual is the primal:
Primal problem:

max z=-c'x
Ax < b
x>0

Let's put the dual in the standard form
Dual problem:

min b’y = —max—b'y
—ATy < —c
y =20

Dual Problem:
min w=»b"y
ATy >c
y=>0

Dual of Dual:

—min —c'x
—-Ax > —b

x > 0

12



Weak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

(P) max{c"x | Ax < b,x > 0}
(D) min{bTy | ATy > ¢,y > 0}

for any feasible solution x of (P) and any feasible solution 'y of (D):

c'x< bTy

Proof:

From (D) ¢; < >°7, y;a; ¥j and from (P) 307, ajx; < b; Vi

( <
From (D) y; > 0 and from (P) x; > 0

j=1 j=1 i=1 \ j=1

n n m m n m
cixj < Z (Zy,-a,;) Xj = Z <Z aiji) yi < Zbi)/i
FS\H : —



Strong Duality Theorem

Due to Von Neumann and Dantzig 1947 and Gale, Kuhn and Tucker 1951.

Theorem (Strong Duality Theorem)
Given:

(P) max{c"x | Ax < b,x >0}
(D) min{b"y | ATy > c,y >0}

exactly one of the following occurs:
. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4

. (P) has feasible solution, then let an optimal be: x* = [x;
(D) has feasible solution, then let an optimal be: y* = [y;

~

CTX* _ bTy*
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Proof:

® all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D)

are ruled out by weak duality theorem.

® we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas

Lemma and convex polyhedral analysis)

® The last row of the final tableau will give us

n+m n

m
z=27"+ E Cuxx = 2" + E GiXj + E Cn+iXn+i
k=1 =1 i=1

= z" + Cgxg + Cnuxn

In addition, z* = Y77 ; ¢x;" because optimal value

J
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® | et's verify the claim:
We substitute in (*): i) z = Y7, ¢jx;; ii) Coi = —y; and i) x4 = by — > ayx; for

i=1,2,...,m (n+ i are the sfack variables) !
n n m n
D=2y G- v | bi— ) apx
j=1 j=1 i=1 j=1
m n m
= (z* - Zy,—*b,-) + Z (5, + Za,w,—*) X
i—1 j=1 i=1
This must hold for every (x1, x2, ..., x,) hence:
m
z* = Z by’ — y* satisfies c'x* = b y*
i=1

m
G=G+> ay . i=12....n
i=1
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Since ¢, <0 forevery k =1.2,....n+ m:

m
G <0~ G =D ¥ia <0~
i=1
Cnti <0~ yi = —=Cnyi >0,

= y" is also dual feasible solution

m

*
E Yiaij =2
i=1
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Complementary Slackness Theorem

Theorem (Complementary Slackness)

A feasible solution x* for (P)
A feasible solution y* for (D)
Necessary and sufficient conditions for optimality of both:

m
<Cj2y’.*aij> XJ*ZO? Jj=1....n
i=1

If x; # 0 then 5"y a; = ¢; (no surplus)
/ny,-*a,-j > G then xj* =0

Proof: In scalars
Zf=c'x* <y'Ax* <bTy* =w* - E
- - Y=Y viay) x =0
. — P ~—
Hence from strong duality theorem: N SR

<0
o' —y*Ax* =0 Hence each term must be =0



Proof in scalar form:

m
X < <Z a,-jy,-*> xi j=1,2,...,n from feasibility in D
i=1

n
Za,-jxj* yi <by’ i=12,...,m from feasibility in P
j=1

Summing in j and in /:

n n m m n m
E X < § § aijy; | X = § ajx; | yi < § biy;
j=1 j=1 \i=1 i=1 \ j=1 i=1

For the strong duality theorem the left hand side is equal to the right hand side and hence all
inequalities become equalities.

n

m
Y= yiay) xf =0
j=1 i=1 \2/0"

<0
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Duality - Summary

® Derivation:

Economic interpretation

Bounding Approach

Multiplier Approach

Recipe

Lagrangian Multipliers Approach (next time)

® Theory:

Symmetry
Weak Duality Theorem
Strong Duality Theorem

Complementary Slackness Theorem
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