DM545/DM871 Linear and Integer Programming

> Lecture 6 More on Duality

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Derivation Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Summary

- Derivation:
 - 1. economic interpretation
 - 2. bounding
 - 3. multipliers
 - 4. recipe
 - 5. Lagrangian
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation

Outline

1. Derivation

Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Outline

1. Derivation Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Lagrangian Duality

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then, search for the strongest bounds.

 $\begin{array}{l} \min 13x_1 + 6x_2 + 4x_3 + 12x_4 \\ 2x_1 + 3x_2 + 4x_3 + 5x_4 = 7 \\ 3x_1 + 2x_3 + 4x_4 = 2 \\ x_1, x_2, x_3, x_4 \ge 0 \end{array}$

We wish to reduce to a problem easier to solve, ie:

$$\min c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \\ x_1, x_2, \ldots, x_n \ge 0$$

solvable by inspection: if c < 0 then $x = +\infty$, if $c \ge 0$ then x = 0. measure of violation of the constraints:

$$7 - (2x_1 + 3x_2 + 4x_3 + 5x_4) 2 - (3x_1 + + 2x_3 + 4x_4)$$

We relax these measures in obj. function with Lagrangian multipliers y_1 , y_2 . We obtain a family of problems:

$$PR(y_1, y_2) = \min_{x_1, x_2, x_3, x_4 \ge 0} \begin{cases} 13x_1 + 6x_2 + 4x_3 + 12x_4 \\ +y_1(7 - 2x_1 - 3x_2 - 4x_3 - 5x_4) \\ +y_2(2 - 3x_1 - 2x_3 - 4x_4) \end{cases}$$

1. for all $y_1, y_2 \in \mathbb{R}$: opt $(PR(y_1, y_2)) \le opt(P)$ 2. max_{y1, y2} $\in \mathbb{R}$ {opt $(PR(y_1, y_2))$ } $\le opt(P)$

PR is easy to solve.

(It can be also seen as a proof of the weak duality theorem)

$$PR(y_1, y_2) = \min_{\substack{x_1, x_2, x_3, x_4 \ge 0 \\ x_1, x_2, x_3, x_4 \ge 0}} \begin{cases} (13 - 2y_2 - 3y_2) x_1 \\ + (6 - 3y_1) x_2 \\ + (4 - 2y_2) x_3 \\ + (12 - 5y_1 - 4y_2) x_4 \\ + 7y_1 + 2y_2 \end{cases}$$

if coeff. of x is <0 then bound is $-\infty$ then LB is useless

$$\begin{array}{l} (13 - 2y_2 - 3y_2) \geq 0 \\ (6 - 3y_1 \quad) \geq 0 \\ (4 \quad -2y_2) \geq 0 \\ (12 - 5y_1 - 4y_2) \geq 0 \end{array}$$

If they all hold then we are left with $7y_1 + 2y_2$ because all go to 0.

$$\max 7y_1 + 2y_2 2y_2 + 3y_2 \le 13 3y_1 \le 6 + 2y_2 \le 4 5y_1 + 4y_2 \le 12$$

General Formulation

$$\begin{array}{ll} \min & z = \mathbf{c}^T \mathbf{x} & \mathbf{c} \in \mathbb{R}^n \\ & A \mathbf{x} = \mathbf{b} & A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m \\ & \mathbf{x} \geq \mathbf{0} & \mathbf{x} \in \mathbb{R}^n \end{array}$$

$$\max_{\mathbf{y}\in\mathbb{R}^{m}} \{\min_{\mathbf{x}\in\mathbb{R}^{n}_{+}} \{\mathbf{c}^{T}\mathbf{x} + \mathbf{y}^{T}(\mathbf{b} - A\mathbf{x})\}\}$$
$$\max_{\mathbf{y}\in\mathbb{R}^{m}} \{\min_{\mathbf{x}\in\mathbb{R}^{n}_{+}} \{(\mathbf{c}^{T} - \mathbf{y}^{T}A)\mathbf{x} + \mathbf{y}^{T}\mathbf{b}\}\}$$

$$\max \begin{array}{c} \mathbf{b}^{\mathsf{T}} \mathbf{y} \\ A^{\mathsf{T}} \mathbf{y} \\ \mathbf{y} \in \mathbb{R}^{m} \end{array} \leq \mathbf{c}$$

Outline

1. Derivation Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Dual Simplex

• Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableau:

 $\max\{c^{T}x \mid Ax \le b, x \ge 0\} = \min\{b^{T}y \mid A^{T}y \ge c^{T}, y \ge 0\}$ = $-\max\{-b^{T}y \mid -A^{T}x \le -c^{T}, y \ge 0\}$

• We obtain a new algorithm for the primal problem: the dual simplex It corresponds to the primal simplex applied to the dual

Primal simplex on primal problem:

1. pivot > 0

2. col c_j with wrong sign

3. row: min
$$\left\{ \frac{b_i}{a_{ij}} : a_{ij} > 0, i = 1, ..., m \right\}$$

Dual simplex on primal problem:

1. pivot < 0

2. row $b_i < 0$ (condition of feasibility)

3. col: min $\left\{ \left| \frac{c_j}{a_{ij}} \right| : a_{ij} < 0, j = 1, 2, .., n + m \right\}$ (least worsening solution)

Dual Simplex

1. (primal) simplex on primal problem (the one studied so far)

2. Now: dual simplex on primal problem \equiv primal simplex on dual problem (implemented as dual simplex, understood as primal simplex on dual problem)

Uses of 1.:

- The dual simplex can work better than the primal in some cases. Eg. since running time in practice between 2*m* and 3*m*, then if *m* = 99 and *n* = 9 then better the dual
- Infeasible start Dual based Phase I algorithm (Dual-primal algorithm)

Dual Simplex for Phase I

Primal:

• Initial tableau

| x1 | x2 | w1 | w2 | w3 | -z | b -2 0 1 0 1 0 1 -8 3 1 0 | 0 | 1 1 0 0 0 0 0 1 1 0 1

infeasible start

• x_1 enters, w_2 leaves

Dual:

$$\begin{array}{ll} \text{in} & 4y_1-8y_2-7y_3\\ -2y_1-2y_2-y_3\geq -1\\ -y_1+4y_2+3y_3\geq -1\\ & y_1,y_2,y_3\geq \end{array}$$

- Initial tableau (min $by \equiv -\max by$)

feasible start (thanks to $-x_1 - x_2$)

• y₂ enters, z₁ leaves

m

• x_1 enters, w_2 leaves

1	L	x1	L	x2	L	w1	I	w2	L	wЗ	L	-z	I	ъI
	-+-		+-		+-		+-		+-		+-		+-	
1	L	0	L	-5	L	1	I	-1	L	0	L	0	I	12
1	L	1	L	-2	L	0	I	-0.5	L	0	L	0	I	4
1	L	0	L	1	L	0	I	-0.5	L	1	L	0	I	-3
	-+-		+-		+-		+-		+-		+-		+-	
1	I.	0	L	-3	L	0	T	-0.5	L	0	T	1	T	4

• w_2 enters, w_3 leaves (note that we kept $c_i < 0$, • y_3 enters, y_2 leaves ie, optimality)

I.	Т	x1	I	x2	L	w1	١	w2	I	wЗ	L	-z	١	b	L.
	-+-		+		+-		+-		+		+-		+-		1
1	L	0	L	-7	L	1	L	0	L	-2	L	0	L	18	L
I.	Ι	1	Т	-3	L	0	L	0	Т	-1	L	0	L	7	I.
I.	Ι	0	L	-2	L	0	L	1	L	-2	L	0	L	6	L
	-+-		+		+-		+-		+		+-		+-		1
1	1	0	L	-4	L	0	L	0	L	-1	L	1	L	7	L

• y_2 enters, z_1 leaves

1	1	y1	I	y2	I	уЗ	I	z1	T	z2	I	-p	I	b	I
	-+-		+		+		+		+		+		+		-I
1	1	1	1	1	1	0.5	T	0.5	Т	0	1	0	T	0.5	I
1	1	5	1	0	1	-1	T	2	Т	1	1	0	T	3	I
	-+-		+		+		+		+		+		+		I.
1	1	-4	I	0	I	3	I	-12	I	0	I	1	١	-4	I

I	1	y1	1	у2	I	yЗ	I	z1	L	z2	I	-p	L	b	I
I	+		-+		-+		+		+-		+		+		I
I	1	2	I	2	I	1	L	1	L	0	L	0	L	1	I
I	1	7	1	2	I	0	L	3	L	1	L	0	L	3	I
I	+		-+		-+		+		+-		+		+		I
I	1	-18	I	-6	I	0	L	-7	T	0	L	1	L	-7	I

Summary

• Derivation:

- 1. bounding
- 2. multipliers
- 3. recipe
- 4. Lagrangian
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation

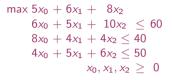
Outline

1. Derivation Lagrangian Duality

2. Dual Simplex

3. Sensitivity Analysis

Economic Interpretation



final tableau:

<i>x</i> 0	x1	x2	s1	<i>s</i> 2 <i>s</i> 3	-z b
	0	1		0	5/2
	1	0		0	7
	0	0		1	2
-1/5	0	0	-1/5	0^{-1}	-62

- Which are the values of variables, the reduced costs, the shadow prices (or marginal prices), the values of dual variables?
- If one slack variable > 0 then overcapacity: $s_2 = 2$ then the second constraint is not tight
- How many products can be produced at most? at most *m*
- How much more expensive a product not selected should be? look at reduced costs: c_j + πa_j > 0
- What is the value of extra capacity of manpower? In +1 out +1/5

Economic Interpretation

Game: Suppose two economic operators:

- P owns the factory and produces goods
- D is in the market buying and selling raw material and resources
- D asks P to close and sell him all resources
- P considers if the offer is convenient
- D wants to spend least possible
- *y* are prices that D offers for the resources
- $\sum y_i b_i$ is the amount D has to pay to have all resources of P
- $\sum y_i a_{ij} \ge c_j$ total value to make j > price per unit of product
- P either sells all resources $\sum y_i a_{ij}$ or produces product $j(c_j)$
- without \geq there would not be negotiation because P would be better off producing and selling
- at optimality the situation is indifferent (strong th.)
- resource 2 that was not totally utilized in the primal has been given value 0 in the dual. (complementary slackness th.) Plausible, since we do not use all the resource, likely to place not so much value on it.
- ▶ for product 0 $\sum y_i a_{ij} > c_j$ hence not profitable producing it. (complementary slackness th.)

Sensitivity Analysis aka Postoptimality Analysis

Instead of solving each modified problem from scratch, exploit results obtained from solving the original problem.

$$\max\{\mathbf{c}^{\mathsf{T}}\mathbf{x} \mid A\mathbf{x} = \mathbf{b}, \mathbf{l} \le \mathbf{x} \le \mathbf{u}\}$$
(*)

- (I) changes to coefficients of objective function: $\max{\{\tilde{c}^T x \mid Ax = b, l \le x \le u\}}$ (primal) x^{*} of (*) remains feasible hence we can restart the simplex from x^{*}
- (II) changes to RHS terms: $\max{\{\mathbf{c}^T \mathbf{x} \mid A\mathbf{x} = \tilde{\mathbf{b}}, \mathbf{l} \le \mathbf{x} \le \mathbf{u}\}}$ (dual) \mathbf{x}^* optimal feasible solution of (*) basic sol $\bar{\mathbf{x}}$ of (II): $\bar{\mathbf{x}}_N = \mathbf{x}_N^*$, $A_B \bar{\mathbf{x}}_B = \tilde{\mathbf{b}} - A_N \bar{\mathbf{x}}_N$ $\bar{\mathbf{x}}$ is dual feasible and we can start the dual simplex from there. If $\tilde{\mathbf{b}}$ differs from **b** only slightly it may be we are already optimal.

(III) introduce a new variable:

$$\begin{array}{ll} \max & \displaystyle \sum_{j=1}^{6} c_{j} x_{j} \\ & \displaystyle \sum_{j=1}^{6} a_{ij} x_{j} = b_{i}, \ i = 1, \ldots, 3 \\ & \displaystyle l_{j} \leq x_{j} \leq u_{j}, \ j = 1, \ldots, 6 \\ & \displaystyle [x_{1}^{*}, \ldots, x_{6}^{*}] \ \text{feasible} \end{array}$$

(IV) introduce a new constraint:

$$\sum_{j=1}^{6} a_{4j} x_j = b_4$$
$$\sum_{j=1}^{6} a_{5j} x_j = b_5$$
$$l_j \le x_j \le u_j \qquad \qquad j = 7,8$$

$$\begin{array}{ll} \max & \sum_{j=1}^{7} c_{j} x_{j} \\ & \sum_{j=1}^{7} a_{ij} x_{j} = b_{i}, \ i = 1, \dots, 3 \\ & l_{j} \leq x_{j} \leq u_{j}, \ j = 1, \dots, 7 \\ & [x_{1}^{*}, \dots, x_{6}^{*}, 0] \ \text{feasible} \end{array}$$

m

(dual)

(primal)

 $[x_{1}^{*}, \dots, x_{6}^{*}] \text{ optimal}$ $[x_{1}^{*}, \dots, x_{6}^{*}, x_{7}^{*}, x_{8}^{*}] \text{ feasible}$ $x_{7}^{*} = b_{4} - \sum_{j=1}^{6} a_{4j} x_{j}^{*}$ $x_{8}^{*} = b_{5} - \sum_{j=1}^{6} a_{5j} x_{j}^{*}$

Examples

(I) Variation of reduced costs:

 $\begin{array}{rrrr} \max \, 6x_1 \, + \, 8x_2 \\ 5x_1 \, + \, 10x_2 \, \leq \, 60 \\ 4x_1 \, + \, 4x_2 \, \, \leq \, 40 \\ x_1, x_2 \, \geq \, 0 \end{array}$

The last tableau gives the possibility to estimate the effect of variations

For a variable in basis the perturbation goes unchanged in the red. costs. Eg:

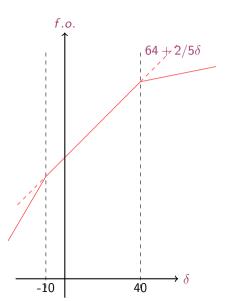
$$\max{(6+\delta)x_1 + 8x_2} \implies \bar{c}_1 = 1(6+\delta) - \frac{2}{5} \cdot 5 - 1 \cdot 4 = \delta$$

then need to bring in canonical form and hence δ changes the obj value. For a variable not in basis, if it changes the sign of the reduced cost \implies worth bringing in basis \implies the δ term propagates to other columns

(II) Changes in RHS terms

(It would be more convenient to augment the second. But let's take $\epsilon = 0$.) If $60 + \delta \Longrightarrow$ all RHS terms change and we must check feasibility Which are the multipliers for the first row? $k_1 = \frac{1}{5}, k_2 = -\frac{1}{4}, k_3 = 0$ I: $1/5(60 + \delta) - 1/4 \cdot 40 + 0 \cdot 0 = 12 + \delta/5 - 10 = 2 + \delta/5$ II: $-1/5(60 + \delta) + 1/2 \cdot 40 + 0 \cdot 0 = -60/5 + 20 - \delta/5 = 8 - 1/5\delta$ Risk that RHS becomes negative Eg: if $\delta = -10 \Longrightarrow$ tableau stays optimal but not feasible \Longrightarrow apply dual simplex

Graphical Representation



(III) Add a variable

$$\begin{array}{rl} \max 5x_0 + 6x_1 + 8x_2 \\ 6x_0 + 5x_1 + 10x_2 \leq 60 \\ 8x_0 + 4x_1 + 4x_2 \leq 40 \\ x_0, x_1, x_2 \geq 0 \end{array}$$

Reduced cost of x_0 ? $c_j + \sum \pi_i a_{ij} = +1 \cdot 5 - \frac{2}{5} \cdot 6 + (-1)8 = -\frac{27}{5}$

To make worth entering in basis:

- increase its cost
- decrease the technological coefficient in constraint II: $5 2/5 \cdot 6 a_{20} > 0$

(IV) Add a constraint

 $\begin{array}{rrrr} \max \, 6x_1 + \, 8x_2 \\ 5x_1 + 10x_2 \leq 60 \\ 4x_1 + \, 4x_2 \, \leq 40 \\ 5x_1 + \, 6x_2 \, \leq 50 \\ x_1, x_2 \geq \, 0 \end{array}$

Final tableau not in canonical form, need to iterate with dual simplex

(V) change in a technological coefficient:

- first effect on its column
- then look at c
- finally look at **b**

Relevance of Sensistivity Analysis

- The dominant application of LP is mixed integer linear programming.
- In this context it is extremely important being able to begin with a model instantiated in one form followed by a sequence of problem modifications
 - row and column additions and deletions,
 - variable fixings

interspersed with resolves

Summary

- Derivation:
 - 1. economic interpretation
 - 2. bounding
 - 3. multipliers
 - 4. recipe
 - 5. Lagrangian
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation