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Motivation

Complexity of single pivot operation in standard simplex:
® entering variable O(n)
® |eaving variable O(m)

® updating the tableau O(mn)

Problems with this:

® Time: we are doing operations that are not actually needed
Space: we need to store the whole tableau: O(mn) floating point numbers

® Most problems have sparse matrices (many zeros)
sparse matrices are typically handled efficiently
the standard simplex has the 'Fill in" effect: sparse matrices are lost

® accumulation of Floating Point Errors over the iterations
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Revised Simplex Method

Several ways to improve wrt pitfalls in the previous slide, requires matrix description of the simplex.

d max ¢’ x max{c’x | Ax = b,x > 0}
max J;CJXJ Ax—b
" . x>0
J; ajx; < bj i =1.m A € Rrx(mem)
xi> 0 j=1.n c € R(#m b e R™ x € R™™

At each iteration the simplex moves from a basic feasible solution to another.

For each basic feasible solution:

® B ={1...mj} basis ® xy=20
s N={m+1...m+ n} ® xg >0
® Ag = [a;j...a,) basis matrix

AN - [am+1 e am+n]



Ax = Ayxy + Agxg = b
ABXB =b-— ANXN

Basic feasible solution <= Ag is non-singular

Xg = Aglb — AElANXN



for the objective function:
z=c'x= cExB + C,CXN
Substituting for x5 from above:
z=ch(Az'b — Ag Anxn) + clxy =
=ciAZ'b + (cf — LA An)xn
Collecting together:
Xg = *lb A*IANXN
z= cBA o (cf — e Azt An)xn
-

In tableau form, for a basic feasible solution corresponding to B we have:

We do not need to compute
all elements of A



Example

max X1 + X2 max xi1 + x2
—x1+x <1 —x1 + X2 + x3 =1
X1 <3 X1 + Xa =3
x2 <2 X2 + x5 =2
X1, X2 2 0 X1, X2, X3, X4, X5 2 0
Initial tableau After two iterations

Ix1 x2 x3 x4 x5|—

Basic variables x1, x2, x4. Non basic: x3, x5. From the initial tableau:
-110 10 X1 o

AB: 101 A/\[: OO XB = | X2 XN|:3:|
010 01 X4

g =[110] ¢f=1[00]



® Entering variable:
in std. we look at tableau, in revised we need to compute: C/C — cEA;lAN
1. findy” = cZ;AEI (by solving y" Ag = ¢, the latter can be done more efficiently)
2. calculate ¢/, — yT Ay



Step 1:

-110
vi y2 ys] | 101 =[11 0]
010
-10 1
110 00 1|=[-102
11 -1
Step 2:

10
00 —[-102] |00 =[1 -2
01

(Note that they can be computed individually: ¢; — y"a; > 0)
Let's take the first we encounter x3

T T
y Ag =cp
chE].: T

T T
cy =Yy An
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Leaving variable
we increase variable by largest feasible amount 6

Rl: x1 —x3+ x5 =1 x1=14x3>0

R2: x5 + 0x3 + x5 = 2 xx=22>0

R3: —x3+x4 — x5 =2 x4 =2—x3>0
xg = x5 — Az Anx . -1
B B B NAN d is the column of A" Ay that corresponds to
xg = xg — df the entering variable, ie, d = AEla where a is the

entering column

3. Find 6 such that xz stays positive:
Find d = Ag'a (by solving Agd = a)

Step 3:
di -10 1| |1 -1 1 -1
b= 00 1| |0 = d=| 0] = xg= (2| —| 0[0#>0
ds 11 -1|10 1 2 1

2—0>0 = 0 <2~ x4 leaves



So far we have done computations, but now we save the pivoting update. The update of Ag is
done by replacing the leaving column by the entering column

X1 — d149 3 -111
XE = | X2 — d249 =12 AB = 100
0 2 010

Many implementations depending on how y" Az = c; and Agd = a are solved. They are in
fact solved from scratch.

many operations saved especially if many variables!

special ways to call the matrix A from memory

better control over numerical issues since Agl can be recomputed.
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Solving the two Systems of Equations

Apx = b solved without computing A"
(costly and likely to introduce numerical inaccuracy)

Recall how the inverse is computed:

For a 2 x 2 matrix

A=

[a b
_cd

For a 3 x 3 matrix

A—

ail
azi

| 831

diz2 ai3
dz2 a3
as2 ass

the matrix inverse is

21 [d
A *|A|{—b

—C

the matrix inverse is

+

Nl

a2
asz

ai2
asz

ai2
a2

_1
ad — bc

az3
as3

ai3
ass3

ai3
as3

2

ari
asi

a1l
asi

a1l
azi

—b
a

az3
ass

ai3
ass

ai3
as3

|

asi
asi

a1
as1

a1l
asi

a2
asz

a2
asz

ai2
a2
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Eta Factorization of the Basis

Let B := Ag, kth iteration
By be the matrix with col p differing from B, 1
Column p is the a column appearing in B,_;d = a solved at 3)

Hence:
Bk = Br—1Ex
Ej is the eta matrix differing from id. matrix in only one column
-111 —-110] |1 -1
100{=] 101 1 0
010 010 1

No matter how we solve y" B, 1 = ¢ and B,_1d = a, their update always relays on B, = By_1E,
with E, available.
Plus when initial basis by slack variable By = / and By = E1, B, = EyEx - -

By = EiE> ... Ex eta factorization

((((yTEl)Ez)E;;) < )Ek = c;, u'E, = c;, v E; = uT, w'E = vT., yTEl —w’
(E1(E2~~-Ekd)):a, E1u:a, E2V:U, E3W:V, E4d:W
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Exercise

Solve the systems y' £y FyE3Fy = [1 2 3] and £y EpE3F4d = [1 2 3]7 with

1 30 200 101
E;=1({0050 EE=1(110 Es=|013 Ey =
0 4 1 401 001

= W o

o = O
= O O
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We use backward transformation and solve the sequence of linear systems:

uE,=[123], v E3=u", wE=v, yTEE=w’

-0.50 0
u’ | 3 10|=1[123]
1 01

Since the eta matrices have always one 1 in two columns then the solution can be read up easily.
From the third column we find u3 = 3. From the second column, we find up, = 2. Substituting in
the first column, we find —0.5u; +3 %2 + 1% 3 = 1, which yields u; = 18. The next syestem is:

101
v |01 3| =][18,2,3]
001

From the first column we get v; = 18, from the second column v, = 2 from the last column
vz = 3/24. The next:

200
0| =[18,2,3/24]
1

w= |11
40



Solving y" By = ¢/, also called backward transformation (BTRAN)

Solving Bid = a also called forward transformation (FTRAN)

E; matrices can be stored by only storing the column and the position

If sparse columns then can be stored in compact mode, ie only nonzero values and their indices
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More on LP

® Tableau method is unstable: computational errors may accumulate. Revised method has a
natural control mechanism: we can recompute A5" at any time

® Commercial and freeware solvers differ from the way the systems y" Ag = ¢/, and Agd = a are
resolved
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Efficient Implementations

® Dual simplex with steepest descent (largest increase)

Linear Algebra:

® Dynamic LU-factorization using Markowitz threshold pivoting (Suhl and Suhl, 1990)
® sparse linear systems: Typically these systems take as input a vector with a very small number of

nonzero entries and output a vector with only a few additional nonzeros.

® Presolve, ie problem reductions: removal of redundant constraints, fixed variables, and other
extraneous model elements.

dealing with degeneracy, stalling (long sequences of degenerate pivots), and cycling:

® bound-shifting (Paula Harris, 1974)

® Hybrid Pricing (variable selection): start with partial pricing, then switch to devex (approximate
steepest-edge, Harris, 1974)

A model that might have taken a year to solve 10 years ago can now solve in less than 30
seconds (Bixby, 2002).
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