DM545/DM871

Linear and Integer Programming

Lecture 7

Revised Simplex Method

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Revised Simplex Method

2. Efficiency Issues

Motivation

Complexity of single pivot operation in standard simplex:
® entering variable O(n)
® |eaving variable O(m)

® updating the tableau O(mn)

Problems with this:

® Time: we are doing operations that are not actually needed
Space: we need to store the whole tableau: O(mn) floating point numbers

® Most problems have sparse matrices (many zeros)
sparse matrices are typically handled efficiently
the standard simplex has the 'Fill in" effect: sparse matrices are lost

® accumulation of Floating Point Errors over the iterations

Outline

1. Revised Simplex Method

Revised Simplex Method

Several ways to improve wrt pitfalls in the previous slide, requires matrix description of the simplex.

d max ¢’ x max{c’x | Ax = b,x > 0}
max J;CJXJ Ax—b
" . x>0
J; ajx; < bj i =1.m A € Rrx(mem)
xi> 0 j=1.n c € R(#m b e R™ x € R™™

At each iteration the simplex moves from a basic feasible solution to another.

For each basic feasible solution:

® B ={1...mj} basis ® xy=20
s N={m+1...m+ n} ® xg >0
® Ag = [a;j...a,) basis matrix

AN - [am+1 e am+n]

Ax = Ayxy + Agxg = b
ABXB =b-— ANXN

Basic feasible solution <= Ag is non-singular

Xg = Aglb — AElANXN

for the objective function:
z=c'x= cExB + C,CXN
Substituting for x5 from above:
z=ch(Az'b — Ag Anxn) + clxy =
=ciAZ'b + (cf — LA An)xn
Collecting together:
Xg = *lb A*IANXN
z= cBA o (cf — e Azt An)xn
-

In tableau form, for a basic feasible solution corresponding to B we have:

We do not need to compute
all elements of A

Example

max X1 + X2 max xi1 + x2
—x1+x <1 —x1 + X2 + x3 =1
X1 <3 X1 + Xa =3
x2 <2 X2 + x5 =2
X1, X2 2 0 X1, X2, X3, X4, X5 2 0
Initial tableau After two iterations

Ix1 x2 x3 x4 x5|—

Basic variables x1, x2, x4. Non basic: x3, x5. From the initial tableau:
-110 10 X1 o

AB: 101 A/\[: OO XB = | X2 XN|:3:|
010 01 X4

g =[110] ¢f=1[00]

® Entering variable:
in std. we look at tableau, in revised we need to compute: C/C — cEA;lAN
1. findy” = cZ;AEI (by solving y" Ag = ¢, the latter can be done more efficiently)
2. calculate ¢/, — yT Ay

Step 1:

-110
vi y2 ys] | 101 =[11 0]
010
-10 1
110 00 1|=[-102
11 -1
Step 2:

10
00 —[-102] |00 =[1 -2
01

(Note that they can be computed individually: ¢; — y"a; > 0)
Let's take the first we encounter x3

T T
y Ag =cp
chE].: T

T T
cy =Yy An

10

Leaving variable
we increase variable by largest feasible amount 6

Rl: x1 —x3+ x5 =1 x1=14x3>0

R2: x5 + 0x3 + x5 = 2 xx=22>0

R3: —x3+x4 — x5 =2 x4 =2—x3>0
xg = x5 — Az Anx . -1
B B B NAN d is the column of A" Ay that corresponds to
xg = xg — df the entering variable, ie, d = AEla where a is the

entering column

3. Find 6 such that xz stays positive:
Find d = Ag'a (by solving Agd = a)

Step 3:
di -10 1| |1 -1 1 -1
b= 00 1| |0 = d=| 0] = xg= (2| —| 0[0#>0
ds 11 -1|10 1 2 1

2—0>0 = 0 <2~ x4 leaves

So far we have done computations, but now we save the pivoting update. The update of Ag is
done by replacing the leaving column by the entering column

X1 — d149 3 -111
XE = | X2 — d249 =12 AB = 100
0 2 010

Many implementations depending on how y" Az = c; and Agd = a are solved. They are in
fact solved from scratch.

many operations saved especially if many variables!

special ways to call the matrix A from memory

better control over numerical issues since Agl can be recomputed.

12

Outline

2. Efficiency Issues

13

Solving the two Systems of Equations

Apx = b solved without computing A"
(costly and likely to introduce numerical inaccuracy)

Recall how the inverse is computed:

For a 2 x 2 matrix

A=

[a b
_cd

For a 3 x 3 matrix

A—

ail
azi

| 831

diz2 ai3
dz2 a3
as2 ass

the matrix inverse is

21 [d
A *|A|{—b

—C

the matrix inverse is

+

Nl

a2
asz

ai2
asz

ai2
a2

_1
ad — bc

az3
as3

ai3
ass3

ai3
as3

2

ari
asi

a1l
asi

a1l
azi

—b
a

az3
ass

ai3
ass

ai3
as3

|

asi
asi

a1
as1

a1l
asi

a2
asz

a2
asz

ai2
a2

14

Eta Factorization of the Basis

Let B := Ag, kth iteration
By be the matrix with col p differing from B, 1
Column p is the a column appearing in B,_;d = a solved at 3)

Hence:
Bk = Br—1Ex
Ej is the eta matrix differing from id. matrix in only one column
-111 —-110] |1 -1
100{=] 101 1 0
010 010 1

No matter how we solve y" B, 1 = ¢ and B,_1d = a, their update always relays on B, = By_1E,
with E, available.
Plus when initial basis by slack variable By = / and By = E1, B, = EyEx - -

By = EiE> ... Ex eta factorization

((((yTEl)Ez)E;;) <)Ek = c;, u'E, = c;, v E; = uT, w'E = vT., yTEl —w’
(E1(E2~~-Ekd)):a, E1u:a, E2V:U, E3W:V, E4d:W

15

Exercise

Solve the systems y' £y FyE3Fy = [1 2 3] and £y EpE3F4d = [1 2 3]7 with

1 30 200 101
E;=1({0050 EE=1(110 Es=|013 Ey =
0 4 1 401 001

= W o

o = O
= O O

16

We use backward transformation and solve the sequence of linear systems:

uE,=[123], v E3=u", wE=v, yTEE=w’

-0.50 0
u’ | 3 10|=1[123]
1 01

Since the eta matrices have always one 1 in two columns then the solution can be read up easily.
From the third column we find u3 = 3. From the second column, we find up, = 2. Substituting in
the first column, we find —0.5u; +3 %2 + 1% 3 = 1, which yields u; = 18. The next syestem is:

101
v |01 3| =][18,2,3]
001

From the first column we get v; = 18, from the second column v, = 2 from the last column
vz = 3/24. The next:

200
0| =[18,2,3/24]
1

w= |11
40

Solving y" By = ¢/, also called backward transformation (BTRAN)

Solving Bid = a also called forward transformation (FTRAN)

E; matrices can be stored by only storing the column and the position

If sparse columns then can be stored in compact mode, ie only nonzero values and their indices

21

More on LP

® Tableau method is unstable: computational errors may accumulate. Revised method has a
natural control mechanism: we can recompute A5" at any time

® Commercial and freeware solvers differ from the way the systems y" Ag = ¢/, and Agd = a are
resolved

23

Efficient Implementations

® Dual simplex with steepest descent (largest increase)

Linear Algebra:

® Dynamic LU-factorization using Markowitz threshold pivoting (Suhl and Suhl, 1990)
® sparse linear systems: Typically these systems take as input a vector with a very small number of

nonzero entries and output a vector with only a few additional nonzeros.

® Presolve, ie problem reductions: removal of redundant constraints, fixed variables, and other
extraneous model elements.

dealing with degeneracy, stalling (long sequences of degenerate pivots), and cycling:

® bound-shifting (Paula Harris, 1974)

® Hybrid Pricing (variable selection): start with partial pricing, then switch to devex (approximate
steepest-edge, Harris, 1974)

A model that might have taken a year to solve 10 years ago can now solve in less than 30
seconds (Bixby, 2002).

24

	Revised Simplex Method
	Efficiency Issues

