DM545/DM871 - Linear and Integer Programming

Exercise 1

Consider the matrices:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & 0 \\
-4 & 6
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & -7 & 2 \\
5 & 3 & 0
\end{array}\right] \quad C=\left[\begin{array}{cc}
4 & 9 \\
-3 & 0 \\
2 & 1
\end{array}\right] \\
D=\left[\begin{array}{ccc}
-2 & 1 & 8 \\
3 & 0 & 2 \\
4 & -6 & 3
\end{array}\right] \quad E=\left[\begin{array}{ccc}
0 & 3 & 0 \\
-5 & 1 & 1 \\
7 & 6 & 2
\end{array}\right]
\end{gathered}
$$

In each part compute the given expression. Where the computation is not possible explain why.

1. $D+E$
2. $D-E$
3. $5 A$
4. $2 B-C$
5. $2(D+5 E)$
6. $\left(C^{T} B\right) A^{T}$
7. $2 \operatorname{tr}(A B)$
8. $\operatorname{det}(E)$

Exercise 2

Consider the following system of linear equations in the variables $x, y, z \in \mathbb{R}$.

$$
\begin{aligned}
-2 y+3 z & =3 \\
3 x+6 y-3 z & =-2 \\
-3 x-8 y+6 z & =5
\end{aligned}
$$

1. Write the augmented matrix of this system.
2. Reduce this matrix to row echelon form by performing a sequence of elementary row operations.
3. Solve the system and write its general solution in parametric form.

Exercise 3

Consider the following matrix

$$
M=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
2 & 2 & 2
\end{array}\right]
$$

1. Find M^{-1} by performing row operations on the matrix $[M \mid I]$.
2. Is it possible to express M as a product of elementary matrices? Explain why or why not.

Exercise 4

1. Given the point $[3,2]$ and the vector $[-1,0]$ find the vector and parametric (Cartesian) equation of the line containing the point and parallel to the vector.
2. Find the vector and parametric (Cartesian) equations of the plane in \mathbb{R}^{3} that passes through the origin and is orthogonal to $v=[3,-1,-6]$.
