
DM877

Constraint Programming

Compendium
Basic Concepts in Algorithmics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

2

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

3

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

4

Graphs

Graphs are combinatorial structures useful to model several applications

Terminology:

I G = (V,E), E ⊆ V × V , vertices, edges, n = |V |,m = |E|, undirected
graphs, subgraph, induced subgraph

I e = (u, v) ∈ E, e incident on u and v; u, v adjacent, edge weight or cost
I particular cases often omitted: self-loops, multiple parallel edges
I degree, δ, ∆, outdegree, indegree
I path P =< v0, v1, . . . , vk >, (v0, v1) ∈ E, . . . , (vk−1, vk) ∈ E,
< v0, v1 > has length 2, < v0, v1, v2, v0 > cycle, walk, path

I arcs, directed acyclic graph
I digraph strongly connected (∀u, v ∃(uv)-path), strongly connected

components
I G is a tree (=⇒ ∃ path between any two vertices) ⇐⇒ G is connected

and has n− 1 edges ⇐⇒ G is connected and contains no cycles.
I parent, children, sibling, height, depth

5

Representing Graphs

Operations:

I Access associated information (NodeArray, EdgeArray, Hashes)
I Navigation: access outgoing edges
I Edge queries: given u and v is there an edge?
I Update: add remove edges, vertices

Data Structures:

I Edge sequences

I Adjacency arrays

I Adjacency lists

I Adjacency matrix

How to choose?

I it depends on the graphs and the
application

I if time and space not crucial no need to
customize the structures

I use interfaces that make easy to change
the data structure

I libraries offer different choices (Boost,
lemon, Java jdsl.graph)

6

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

7

Motivations

Questions:

1. How good is the algorithm designed?
2. How hard, computationally, is a given a problem to solve

using the most efficient algorithm for that problem?

1. Asymptotic notation, running time bounds
Approximation theory

2. Complexity theory

8

Asymptotic notation

n ∈ N problem instance size; π ∈ Πn instance π belonging to class Πn

max time worst case T (n) = max{T (π) : π ∈ Πn}
average time average case T (n) = 1

|Πn|{
∑
π T (π) : π ∈ Πn}

min time best case T (n) = min{T (π) : π ∈ Πn}

Growth rate or asymptotic analysis

f(n) and g(n) same growth rate if c ≤ f(n)
g(n) ≤ d for n large

f(n) grows faster than g(n) if f(n) ≥ c · g(n) for all c and n large

big O O(f) = {g(n) : ∃c > 0,∀n > n0 : g(n) ≤ c · f(n)}
big omega Ω(f) = {g(n) : ∃c > 0,∀n > n0 : g(n) ≥ c · f(n)}
theta Θ(f) = O(f) ∩ Ω(f)

(little o o(f) = {g : g grows strictly more slowly than f})

9

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

10

Machine model

For asymptotic analysis we use RAM machine

I sequential, single processor unit
I all memory access take same amount of time

It is an abstraction from machine architecture: it ignores caches, memories
hierarchies, parallel processing (SIMD, multi-threading), etc.

Total execution of a program = total number of instructions executed

We are not interested in constant and lower order terms

11

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

12

Pseudo-code

We express algorithms in natural language and mathematical notation, and in
pseudo-code, which is an abstraction from programming languages C, C++,
Java, etc.

(In implementation you can choose your favorite language)

Programs must be correct.
Certifying algorithm: computes a certificate for a post condition (without
increasing asymptotic running time)

13

Good Algorithms

We say that an algorithm A is

Efficient = good = polynomial time = polytime
iff

there exists polynomial p(n) such that T (A) = O(p(n))

There are problems for which no polytime algorithm is known.

Complexity theory classifies problems

14

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

16

Complexity Classes
[Garey and Johnson, 1979]

Consider a Decision Search Problem Π:

I Π is in P if ∃ algorithm A that finds a solution in polynomial time.

I Π is in NP if ∃ verification algorithm A that verifies whether a binary
certificate is a solution to the problem in polynomial time.

I a search problem Π′ is (polynomially) reducible to Π (Π′ −→ Π) if there
exists an algorithm A that solves Π′ by using a hypothetical subroutine
S for Π and except for S everything runs in polynomial time.

I Π is NP -complete if
1. it is in NP

2. there exists some NP-complete problem Π′ that reduces to Π (Π′ −→ Π)

I If Π satisfies property 2, but not necessarily property 1, we say that it is
NP -hard:

17

I NP : Class of problems that can be solved in polynomial time by a
non-deterministic machine.
Note: non-deterministic 6= randomized;
non-deterministic machines are idealized models of computation that
have the ability to make perfect guesses.

I NP -complete: Among the most difficult problems in NP ; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

I NP -hard: At least as difficult as the most difficult problems in NP , but
possibly not in NP -complete (i.e., may have even worse complexity than
NP -complete problems).

18

NP-Completeness Proofs

19

Many combinatorial problems are hard
but some problems can be solved efficiently
I Longest path problem is NP -hard

but not shortest path problem

I SAT for 3-CNF is NP -complete
but not 2-CNF (linear time algorithm)

I Hamiltonian path is NP -complete
but not the Eulerian path problem

I TSP on Euclidean instances is NP -hard
but not where all vertices lie on a circle.

20

An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/~viggo/problemlist/compendium.html

21

http://www.nada.kth.se/~viggo/problemlist/compendium.html

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

22

Theoretical Analysis

I Worst-case analysis (runtime and quality):
worst performance of algorithms over all possible instances

I Probabilistic analysis (runtime):
average-case performance over a given probability distribution of
instances

I Average-case (runtime):
overall possible instances for randomized algorithms

I Asymptotic convergence results (quality)

I Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

I Domination

I Algorithm invariance

23

Approximation Algorithms

Definition: Approximation Algorithms

An algorithm A is said to be a δ-approximation algorithm if it runs in
polynomial time and for every problem instance π with optimal solution value
OPT (π)

minimization: A(π)
OPT (π) ≤ δ δ ≥ 1

maximization: A(π)
OPT (π) ≥ δ δ ≤ 1

(δ is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)

24

Approximation Algorithms

Definition: Polynomial approximation scheme

A family of approximation algorithms for a problem Π, {Aε}ε, is called a
polynomial approximation scheme (PAS), if algorithm Aε is a
(1 + ε)-approximation algorithm and its running time is polynomial in the size
of the input for each fixed ε

Definition: Fully polynomial approximation scheme

A family of approximation algorithms for a problem Π, {Aε}ε, is called a fully
polynomial approximation scheme (FPAS), if algorithm Aε is a
(1 + ε)-approximation algorithm and its running time is polynomial in the size
of the input and 1/ε

25

Useful Graph Algorithms

I Breadth first, depth first search, traversal

I Transitive closure

I Topological sorting

I (Strongly) connected components

I Shortest Path

I Minimum Spanning Tree

I Matching

26

Randomized Algorithms

Most often algorithms are randomized. Why?

I possibility of gains from re-runs

I adversary argument

I structural simplicity for comparable average performance,

I speed up,

I avoiding loops in the search

I ...

27

Randomized Algorithms

Definition: Randomized Algorithms

Their running time depends on the random choices made.
Hence, the running time is a random variable.

Las Vegas algorithm: it always gives the correct result but in random runtime
(with finite expected value).

Monte Carlo algorithm: the result is not guaranteed correct. Typically halted
due to bouned resources.

28

	Basic Concepts from Previous Courses
	Graphs
	Notation and runtime
	Machine model
	Pseudo-code
	Computational Complexity
	Analysis of Algorithms

