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A Numerical Example

n
max > ¢xj

Jj=1
n
Yoajxp <bj,i=1,...,m
j=1
xp >0, j=1,...,n
max ¢’ x
Ax < b
x >0

x€R"ceR"AcR™" becR™

max 6x; + 8x»

5X1 + 1OX2 S 60
dx1 + 4x < 40
x1,x2 > 0

max [6 8] [)X(j

A =

X1, X2

Simplex Method
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Simplex Method

Standard Form

Every LP problem can be converted in the standard form:

max c’x e if equations, then put two constraints,
Ax < b ax < band ax > b
n
x €R ® if ax > bthen —ax < —b
ceR"AER™" beR™ e if minc’x then — max(—c’x)

and then be put in equational standard form:

max C;i b 1. “=" constraints
x>0 2. x > 0 nonnegativity constraints
B 3. (b >0)
xeR"ceR"Ac R™" beR™ 4 max




Simplex Method

Transformation to Std Form

Every LP problem can be transformed in eq. std. form
1. introduce slack variables (or surplus)

5X1 + ].0X2 + X3 = 60
4X1 + 4X2 + X3 = 40

x1=x —x{
2. ifx1§Othen x; >0

1

x; >0

3. (b>0)

T T

4. minc’'x = —max(—c'x)

LP in m x n converted into LP with at most (m + 2n) variables and m equations (n # original
variables, m # constraints)



Geometry of LP in Eq. Std. Form Simplex Mthed

From linear algebra:

max{c”x | Ax = b,x > 0} ® the set of solutions of Ax = b is an affine
space (hyperplane not passing through the
origin).

® x > 0 nonegative orthant (octant in R?)
In R3:

. The set of all solutions of Ax = b

z3 /\ (a plane)

) The set of all feasible solutions

(a triangle)




Simplex Method

® Ax = b is a system of equations that we can solve by Gaussian elimination

® Elementary row operations of [A | b} do not affect set of feasible solutions

® multiplying all entries in some row of [A | b} by a nonzero real number A
® replacing the ith row of [A | b] by the sum of the ith row and jth row for some i # j

® et n’ be the number of vars in eq. std. form.
we assume n’ > m and rank([A | b]) = rank(A) = m

ie, rows of A are linearly independent
otherwise, remove linear dependent rows
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Simplex Method

Basic Feasible Solutions

Basic feasible solutions are the vertices of the feasible region:

More formally:
Let B={1...m}, N={m+1...n+ m=n'} be subsets partitioning the columns of A: Ag be

made of columns of A indexed by B:
Definition
x € R" is a basic feasible solution of the linear program max{c’x | Ax = b,x > 0} for an index set
B if:
© X =0V ¢B
® the square matrix Ag is nonsingular, ie, all columns indexed by B are lin. indep.

® xg = Aglb is nonnegative, ie, xg > 0 (feasibility)
12




Simplex Method

We call x; for j € B basic variables and remaining variables nonbasic variables.

Theorem

A basic feasible solution is uniquely determined by the set B.

Proof:
Ax =Apxg + Ayxy = b
xg + Azt Anxy = Ag'b

Xg = Aglb Ag is nonsingular hence one solution

Note: we call B a (feasible) basis
Definition

A basic feasible solution of a linear program with n variables is a feasible solution for which some n
linearly independent constraints hold with equality.
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Simplex Method

Extreme points and basic feasible solutions are geometric and algebraic manifestations of the same
concept:

Theorem

Let P be a (convex) polyhedron from LP in eq. std. form. For a point v € P the following are
equivalent:

(i) v is an extreme point (vertex) of P
(ii) v is a basic feasible solution of LP

Proof: see text book [MG] sec. 4.4.
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Simplex Method

Theorem

Let LP = max{c”x | Ax=b,x > 0} be feasible and bounded,
then an optimal solution is a basic feasible solution.

Proof. consequence of previous theorem and fundamental theorem of linear programming

A similar theorem is valid for arbitrary linear programs (not in eq. form)

However, an optimal solution does not need to be basic:

max x; + x> subject to x; +x <1
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Idea for solution method:

examine all basic solutions.

m-+n
m

There are finitely many: (

However, if n = m then (2,;”)

).

~
~

4m.

Simplex Method
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Simplex Method

max z = [6 8] {Xl}

X2
X1
510 10] [x| _ [60
4 4 01| |x3| |40
X4

X1, X2, X3, Xa >0

It gives immediately a basic feasible solution:

X1:0,X2:0,X3:60,X4:40

Simplex Method

Canonical eq. std. form: one decision
variable is isolated in each constraint
with coefficient 1 and does not appear
in the other constraints nor in the

obj. func. and b terms are positive

Is it optimal? Look at signs in z ~ if positive then an increase would improve.
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Let's try to increase a promising variable, ie, x;, one with positive coefficient in z

5x1 + x3 = 60
N
x3 =60—-5x3 >0

If x; > 12 then x3 <0

4X1 + Xq = 40

=8y
X3 =40—4x; >0

If x1 > 10 then x4 < 0

we can take the minimum of the two ~~ x; increased to 10
x1 enters the basis and x; leaves it.

X3
X1
5x1 + x3 = 60

X4
X1
4x; + x4 = 40



Dictionary Form

Hence, we increase x; to 10 and consequently set x; = 0
That is, x; enters the basis and x; leaves it.

max 6x; + 8x»
5X1 + 10X2 + X3

4X]_ + 4X2
x1,x > 0
X3 = 60 — 5X1

+ Xg =

60
40

Simplex Method

X3 = 10 — 5X2 + 5/4X4

z =60 4+ 2x; — 6/4x,

20



Simplex Method

Simplex Tableau

First simplex tableau: we want to reach this new tableau
_xuxx3x =z b % X3 xa —z b
X3:51010 0 60 X3:0?17 0 7
x4 4 01 0 40 xil 7207 07

16 8 00 1 O 10 7?07?17

Pivot operation:

1. Choose pivot:
column: one s with positive coefficient in obj. func.
row: ratio between coefficient b and pivot column: choose the one with smallest

ratio:

} 0 increase value

b;
Gmin{:a,-5>0 .
' of entering var.

i djs

2. elementary row operations to update the tableau



® x, leaves the basis, x; enters the basis
® Divide pivot row by pivot
® Send to zero the coefficient in the pivot column of the first row
® Send to zero the coefficient of the pivot column in the third (cost) row

| Il x1 | x2 | x3 | x4 | -z| bl
| s f S S F R |
| I’=I-5II’ Il ol 51 11 -5/41 01 101
| II°=I1/4 I 11 11 o0l 1/4 | o1 101
|- [ R e S — et |
| III°=III-6II° | 0| 2| O | -6/4 | 1| -60 |

From the last row we read: 2x, — 3/2x; — z = —60, that is: z = 60 + 2x; — 3/2x.
Since x> and x; are nonbasic we have z = 60 and x; = 10,x, = 0,x3 = 10, x4 = 0.

® Done? No! Let x» enter the basis

| | x1 | x2 | x3 | x4 | -z | b |
[P — oot oo [ SR SR, |
| I°=1/5 ol 111/5 | -1/41 01 2 |
| I1°=II-1° | 11 o1l -1/611/2 | 0 8 |
| [ R oo [ S . |
| IIT°=111-21° | 0| O] -2/51 -1 | 1| -64 |



Simplex Method

Definition (Reduced costs)

We call reduced costs the coefficients in the objective function of the nonbasic variables, ¢y

Proposition (Optimality Condition)

The basic feasible solution is optimal when the reduced costs in the corresponding simplex tableau
are nonpositive, ie, such that:

cn <0

Proof: Let zy be the obj value when ¢y < 0.
For any other feasible solution X we have:

gv>0 and c'x=z +clxn < 2
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Graphical Representation

X2

N

/

Simplex Method

X2
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Simplex Method

Tableaux and Dictionaries

n

max CiXj n .
J;JJ Xnpi = bi— Y ajx;, i=1,....m
n Jj=1
Sagxg <bj,i=1....m n
=1 usJ z = Z C_I)<j
x; >0, j=1...,n J=1
Tableau Dictionary
i _ } A xr=b,— Y 3sx, reB
I+ Ay 101 b ~ sZB
: : : z=d+ Z CsXs
Tl E I Z

pivot operations in dictionary form:

choose col s with r.c. >0

choose row with min{—B,-/a‘,-s |ais <0,i=1,...,m}

update: express entering variable and substitute in other rows
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Example

max 6x; + 8x»

5X1 + 10X2 S 60
dx; + 4xo < 40
x1,x > 0

Simplex Method

X2 = 2 — 1/5X3 + 1/4)(4
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