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Theory:
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Derivation
Dual Simplex

Lagrangian Duality Sensitiiy Analyse

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one
that provides information in terms of bounds. Then, search for the strongest bounds.

min 13x; + 6xy + 4x3 +12xy
2X1 + 3X2 + 4X3 + 5X4 =7
3X1 + + 2X3 + 4X4 =2
X1,X2,X3,%X3 > 0

We wish to reduce to a problem easier to solve, ie:
min c1x3 + GXo + ... +CpXn

solvable by inspection: if ¢ < 0 then x = +o0, if ¢ > 0 then x = 0.
measure of violation of the constraints:

17— (2X1 + 3x0 + 4x3 + 5X4)
2 — (3X1 + + 2X3 + 4X4)
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Derivation
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We relax these measures in obj. function with Lagrangian multipliers y1, y».
We obtain a family of problems:

13x1 + 6x0 + 4x3 + 12Xy
PR(y1,y2) = min - +y1(7T— 2x1 — 3% — 4x3 — 5xq)
s 2a=D |y (2— 3x — 2x3 — 4xq)

1. for all y1,y> € R : opt(PR(y1,y2)) < opt(P)
2. maxy, y,er{0Pt(PR(y1, y2))} < opt(P)

PR is easy to solve.
(It can be also seen as a proof of the weak duality theorem)

12



(13 — 2y2 — 3y2) X1
+ (6 —3n ) Xo
PR(yl,yQ) = min -0 + (4 — 4)/1 — 2y2) X3
X1,X2,X3,Xa
et = +(12—5y1—4y2)X4
+ Ty1 + 2y

if coeff. of x is < 0 then bound is —co then LB is useless
(I3 -2y, —3y») >0
(6 —3n ) >0
(4 — 4_)/1 — 2_)/2) Z O
(12 — 5y; — 4y,) >0
If they all hold then we are left with 7y; + 2y, because all go to 0.
max 7y; + 2y»

2y5 + 3y» <13
3n < 6
dy; +2y, < 4
S5y1 + 4y, <12

Derivation
Dual Simplex
Sensitivity Analysis
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General Formulation

min z=c'x ceR"
Ax=b AecR™" beR™
x>0 x € R”

max{min{c"x+y" (b — Ax)}}

yER™ "x€R

. T T T
max{min{(c’' —y'A b
max{min{(c” —y Ax+y'b}}
max bTy

ATy <c

y € R”

Derivation
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Dual Simplex

Dual Simplex

® Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what
happens in the primal tableau:
max{c'x | Ax < b,x >0} =min{b"y | ATy > y >0}
= —max{-b"y | -ATy < —c',y >0}

® \We obtain a new algorithm for the primal problem: the dual simplex
It corresponds to the primal simplex applied to the dual

Primal simplex on primal problem: Dual simplex on primal problem:

1. pivot >0 1. pivot <0

2. row b; <0

2. col ¢ with wrong sign (condition of feasibility)

. b; .
. row: 2L aj =1 . .
3. row mln{aU 2j >0, ' ,m} 3. col: m|n{‘%‘:a,-j<0~J:1,27...,n+m}
ij
(least worsening solution)
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. Dual Simplex
Dual Simplex y

1. (primal) simplex on primal problem (the one studied so far)

2. Now: dual simplex on primal problem = primal simplex on dual problem
(implemented as dual simplex, understood as primal simplex on dual problem)

Uses of 1.:

® The dual simplex can work better than the primal in some cases.

Eg. since running time in practice between 2m and 3m, then if m = 99 and n = 9 then better
the dual

® Infeasible start
Dual based Phase | algorithm (Dual-primal algorithm)

17



Dual Simplex for Phase |

Example
Primal: Dual:
max —xi1 — X2 min  4y1 — 8y> — Ty3
*2)(1 — X2 S 4 *2)/1 — 2)/2 — y3 2 —1
“2x + 4xp < -8 —y1 +4y2 +3y3 > —1
—x1 + 3x < =7 yi,y2,y3 > 0
x1,x2 > 0
® |nitial tableau ® |nitial tableau (min by = — max —by)
| | x1 | x2 | wl | w2 | w3 | -z] bl | Iyt 1l g2l y3lzt|=z2]-plb]
[ T Tarr RS upupu Sagupu | [ T UpEpR g S |
| | -21-11 11 01l ol o1l 41 | I 2101 21 11 11 0l ol1]
I -21 41 01 1] 01l ol -81 I 111 -41-31 01 1| olu1]
I -1 1 31 0ol ol 1] ol -71 R e
R e B TR I 1 -41 81 71 0ol ol 1]0]
| |l -11-1t1 0ol o1l Ol 11 01

infeasible start feasible start (thanks to —x; — x2)

® x; enters, w» leaves ® y, enters, z; leaves



Dual Simplex

® , enters, z; leaves

® x; enters, w» leaves
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® 1, enters, ws leaves

1 1
Q 1 Hm o~
1 [
1 1
[P e e
(] 1
| i
N 1O | O
N 1 1
| i
R R I
N [
| i
m 1 HO O
o 1
] !
N I NN ©
[ [
] !
= 1NN~
> (]
1 [
| i
—_ . —— =
1 1
| 1
| |
~
>
||||||| B
' ' =
©lo~o I~ ©
| i E
O IR R -
N 1 OO0 O I
o 1 o
! ! -
I N R
™M LN AN N
w..,_,___.,,_,_ o
i i \
nw_001_0 .
1 1 -
i 1 ©
At TT TV T R
- I HO O I O a
= 1 [}
+ B
1 1 [
NN~ =
[ S R B R
i 1
ey
Slonoio £
- - 1
Mo 1 +
! ]
— _—— — [
+ =8
1 1 o
| | =
||||||| ~

20



Summary

Derivation:

1. bounding
2. multipliers
3. recipe

4. Lagrangian

Theory:
® Symmetry
Weak duality theorem
Strong duality theorem
Complementary slackness theorem

Dual Simplex

Sensitivity Analysis, Economic interpretation

Dual Simplex
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Derivation

. . Dual Simplex
Economic Interpretation Sensitivity Analysis
max 5xp + 6x1 + 8x2
6x0 + 5x1 + 10x2 < 60
8x0 + 4x1 + 4x2 < 40
4xo + 5x1 + 6x2 < 50
Xo,X1,x2 > 0
final tableau:
x0 x1x2 sl s2s3 —z b

01 0 5/2
10 0 7
00 1 2
—-1/50 0 -1/50 -1  —62

Which values have the variables, the reduced costs, the shadow prices (or marginal prices), the
dual variables?

® |f one slack variable > 0 then overcapacity: s, = 2 then the second constraint is not tight
How many products can be produced at most? at most m

How much more expensive a product not selected should be?

look at reduced costs: ¢; + 7a; >0

What is the value of extra capacity of manpower? In +1 out +1/5



Economic Interpretation Samsitiey Analysi

Game: Suppose two economic operators:

® P owns the factory and produces goods

® D is in the market buying and selling raw material and resources

® D asks P to close and sell him/her all resources

® P considers if the offer is convenient

® D wants to spend least possible

® y are prices that D offers for the resources

® % y;b; is the amount D has to pay to have all resources of P

® > yjaj > ¢ total value to make j > price per unit of product

® P either sells all resources ) y;aj; or produces product j (c;)

® without > there would not be negotiation because P would be better off producing and selling

> at optimality the situation is indifferent (strong th.)

» resource 2 that was not totally utilized in the primal has been given value 0 in the dual.
(complementary slackness th.) Plausible, since we do not use all the resource, likely to place
not so much value on it.

» for product 0 )" yja; > ¢; hence not profitable producing it. (complementary slackness th.)
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Sensitivity Analysis
aka Postoptimality Analysis

Sensitivity Analysis

Instead of solving each modified problem from scratch, exploit results obtained from solving the
original problem.

max{c"x | Ax =b,| <x < u} (*)

(1) changes to coefficients of objective function: max{¢"x | Ax = b,| < x < u} (primal)
x* of (*) remains feasible hence we can restart the simplex from x*

(1) changes to RHS terms: max{c’x | Ax = b,1 < x < u} (dual)
x* optimal feasible solution of (*)
basic sol X of (I1): Xy = X}, AgXs = b — Ayxy
% is dual feasible and we can start the dual simplex from there. If b differs from b only slightly
it may be we are already optimal.
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(1) introduce a new variable: (primal)

6 7
max E GiXj max E G Xj
j=1 =1

6 7
Zaijszbivi:]-v“w:% Zaijxj:bi, I':l,...73
Jj=1 j=1
IJSXJSUJ?J:1776 IJSXJSUJ'J:]wv?
[x1,...,xs] feasible [x1,...,xs,0] feasible
(IV) introduce a new constraint: (dual)
6 . . .
X1 ,...,Xg | optimal
Za4j>g:b4 . [1* *’ 6*] P .
- [x{,...,xs,X7,xg] feasible

6 6
* *
E asjXj = b5 X7 = b4 — E a4ij
j=1 Jj=1

< x <u i =17,8 °
> XS U J ) ngbszaijj*
j=1
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Exa m p I es se.:.i:ivit;’ Znalylis
(1) Variation of reduced costs:

max 6x; + 8xp ‘
5x; + 10x; < 60 X1 X2 X3 Xa —Z b
4x1 + 4x <40
x,x>0 ST

16 8 00 1 0
The last tableau gives the possibility to
- e _paxe X3 Xa —z b
estimate the effect of variations %01 i/5 Z1/470 2
x'10-1/51/2 0 8

e A

100 -2/5 -1 1 —64
For a variable in basis the perturbation goes unchanged in the red. costs. Eg:
2
max (6 +0)x1 +8xx = & =1(6+9) — 5 5—-1-4=9$

then need to bring in canonical form and hence 0 changes the obj value.
For a variable not in basis, if it changes the sign of the reduced cost = worth bringing in basis
—the § term propagates to other columns
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(1) Changes in RHS terms

‘
IX1 X2 X3 X4 —2 b

x3/5101 0 0 60+6
x4 401 0 40+e

x2 0 1 1/5 —1/4 0 2+ 1/56 — 1/4e
x,1 0-1/51/2 0 8-1/50+1/2%

1070 -2/5 —1 1 —64—2/55—¢

(It would be more convenient to augment the second. But let’s take ¢ = 0.)

If 60 + 0 =—all RHS terms change and we must check feasibility

Which are the multipliers for the first row?k; = %, ko = —%f, ks3=0
I:1/5(60+6)—-1/4-40+0-0=124+6/5—-10=2+4/5

II: —1/5(60+46)+1/2-404+0-0=—-60/5+20—4§/5=8—1/5

Risk that RHS becomes negative

Eg: if § = —10 —-tableau stays optimal but not feasible —-apply dual simplex
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Graphical Representation Samsitiey Analysi

29



Derivation
Dual Simplex
Sensitivity Analysis

(111) Add a variable

max 5xg + 6x3 + 8xo
6x9 + 5x1 + 10x, < 60
8X0 + 4X1 + 4X2 S 40
X0, X1, X2 2 0

Reduced cost of xo? ¢; + > ma; = +1-5— 2 -6+ (-1)8 =%

To make worth entering in basis:
® increase its cost

® decrease the technological coefficient in constraint Il: 5 —2/5-6 — ayg > 0
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(IV) Add a constraint

max 6x; + 8x»
5x1 + 10x2 < 60
4X1 + 4X2 S 40
5X1 + 6X2 S 50
X1, X2 Z 0

Final tableau not in canonical form, need to iterate with dual simplex

X1 Xo X3 X4 Xs —2z b

sz671"1757ti/74""07"2h
xi110-1/5 12 0 8
100 5/5 6/4 10 -2

"T002/5 -1 0 1 —64
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(V) change in a technological coefficient:

X1 X2 X3Xs —z b

xs'4 4 01 0 40

® first effect on its column
® then look at ¢

o finally look at b

1 X1 Xo X3 xa —z b



Relevance of Sensistivity Analysis Sensitvity Analyss

® The dominant application of LP is mixed integer linear programming.

® |n this context it is extremely important being able to begin with a model instantiated in one
form followed by a sequence of problem modifications
® row and column additions and deletions,
® variable fixings

interspersed with resolves
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