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Motivation

Complexity of single pivot operation in standard simplex:
® entering variable O(n)
® |eaving variable O(m)

® updating the tableau O(mn)

Problems with this:

® Time: we are doing operations that are not actually needed
Space: we need to store the whole tableau: O(mn) floating point numbers

® Most problems have sparse matrices (many zeros)
sparse matrices are typically handled efficiently
the standard simplex has the 'Fill in" effect: sparse matrices are lost

® accumulation of Floating Point Errors over the iterations
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Revised Simplex Method

Revised Simplex Method Eifciency erues

Several ways to improve wrt pitfalls in the previous slide, requires matrix description of the simplex.

n T T
. max ¢ x max{c'x | Ax =b,x > 0}
max J;CJXJ A= b
« . x>0
_/; ajjXj <bii=1.m Ac Rmx(n+m)
xi> 0 j=1.n c e ROmM b e R™ x € R™M

At each iteration the simplex moves from a basic feasible solution to another.

For each basic feasible solution:

® B ={1...mj} basis ® xy =0
s N={m+1...m+n} ® x5 >0
[ ]

Ap = [a1...an] basis matrix

AN — [am+]_ . .am+,,]
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Ax = Ayxy + Agxg = b
ABXB =b-— ANXN

Basic feasible solution <= Apg is non-singular

Xg = AElb — AEIANXN



for the objective function:
z=c'x= cExB + C,7V—XN
Substituting for xg from above:
zZ = CE(AElb — AElANXN) + C/7\[—XN =
= chAZMD + (cf — LA An)xn
Collecting together:
Xg = Aglb — AEIANXN
z=chAg"b+ (cf — L Ag'An)xn
—
A
In tableau form, for a basic feasible solution corresponding to B we have:

We do not need to compute
all elements of A
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max X1 + x2 max Xxi1 + x2
—x1+x2 <1 —x1 + X2 + x3 =1
X1 <3 X1 + xa =3
x2 <2 X2 + x5 =2
X1./X220 X1,X2,X3,X4,X520
Initial tableau After two iterations

I x1 x21x3 x4 x5|— Ix1 x2 x3 x4 x5|—

-1 1,1 0 0] 10 -1 0 1,
1 00 1 o 1 0 0 1!
0 110 0 1! 0 0 1 1 —1!
e —— = e — — — — — — d_-4d_d b + =

Basic variables xi, x5, x4. Non basic: x3, x5. From the initial tableau:

-110 10 x1 ,
Ag=1 101 Ayv=100| xg=|x XNL(?'}
010 01 X2 5

g =[110] ¢y =100
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¢ Entering variable:
in std. we Iook at tableau, in revised we need to compute: ¢/, — cLAZ Ay
1. findy" = cB Ag! (by solving yT Ag = cZ, the latter can be done more efficiently)
2. calculate ¢/, —y " Ay
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Step 1:
-110
vi 2 y3] | 1 01| =[110] y Ag=c}
010
-10 1
11000 1{=[-10 2 chAG =y
11 -1
Step 2:
10
[00]-[-102]|00]=[1 -2 cn —y An
01

(Note that they can be computed individually: ¢; —ya; > 0)
Let's take the first we encounter x3
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Leaving variable

we increase variable by largest feasible amount ¢

R1: X17X3+X5:1
R2: xo + 0x3 + x5 = 2
R3: —x3+x3 — x5 =2

Xg = XE — AEIANXN

xg = xg —df

3. Find 0 such that xp stays positive:
Find d = Az'a (by solving Agd = a)

Step 3:

2—0>0 = 0 <2~ x4 leaves

X1:1+X320
X2:220
X4 =2—x3>0

d is the column of AZ'Ay that corresponds to
the entering variable, ie, d = Agla where a is the
entering column

-1 1 -1
0| = xg=|2|—| 0[68>0
1 2 1



Revised Simplex Method

So far we have done computations, but now we save the pivoting update. The update of Ag is
done by replacing the leaving column by the entering column

X]_*dl() 3 -111
X‘.;: X27d2€ =12 AB: 100
0 2 010

Many implementations depending on how y" Ag = ¢ and Agd = a are solved. They are in
fact solved from scratch.

many operations saved especially if many variables!
special ways to call the matrix A from memory

better control over numerical issues since Az* can be recomputed.
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Outline

2. Efficiency Issues

Revised Simplex Method
Efficiency lIssues
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Revised Simplex Method

Solving the two Systems of Equations Efficiency lsues

Apx = b solved without computing A"
(costly and likely to introduce numerical inaccuracy)

Recall how the inverse is computed:

For a 2 x 2 matrix the matrix inverse is
r T
A= |? b Al 1 d —c| _ 1 d —b
lc d |Al |=b a ad —bc |—c a
For a 3 x 3 matrix the matrix inverse is
r - T
di1 412 ai3 + d22 a3 dz1 a3 + dz1 a2
A= |az ax az as2 ass as1 ass a1 as2
1831 d32 as33
o R B CIERE y|om a3 |an A
|A| asz ass asi ass as1 as
di2 ai3 di1 ai3 di1 a2
+ — +
L a2 a3 d21 a3 az1 a| |




Revised Simplex Method

Eta Factorization of the Basis Effciency lasues

Let B := Ag, kth iteration
By be the matrix with col p differing from B, 1
Column p is the a column appearing in B_1d = a solved at 3)

Hence:
Bk = Br_1Ex
Ej is the eta matrix differing from id. matrix in only one column
-111 -110| |1 -1
100{=] 101 1 0
010 010 1

No matter how we solve y" B, ; = ¢/, and B, _;d = a, their update always relays on B, = B, 1 Ej
with E, available.
Plus when initial basis by slack variable By = / and By = E;, By = E1E5 - - -

By = EiE> ... Ex eta factorization

((y"E)E)Es) - )Ex = cf, VEB=c, vViBE=u ,wE=v,y Ei=w"
(E1(E2-~~Ekd)):a, E1U:a, E2V:U., E3W:V, E4d:W
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Exercise

Solve the systems y' £, o F3E4 = [1 2 3] and £y £, E3E4d = [1 2 3]7 with

E =

1 30
0050
0 41

E =

B =N
o~ O
==

Es =

O O =
O = O
e

Ey =

Revised Simplex Method
Efficiency lIssues

= W o
O = O
= O O
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We use backward transformation and solve the sequence of linear systems:
ulE, = [123], viEE=u", wWEk=vl, yTE=w"
—0500
I3 10
1 01

Since the eta matrices have always one 1 in two columns then the solution can be read up easily.
From the third column we find u3 = 3. From the second column, we find u, = 2. Substituting in
the first column, we find —0.5u; + 3 %2 + 1% 3 = 1, which yields u; = 18. The next syestem is:

101
01 3| =[18,23]
001

u =[1,2,3]

VT

1
0
From the first column we get v; = 18, from the second column v, = 2 from the last column
vz = 3/24. The next:

200
0| = [18,2,3/24]
1

w =

11
40
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Solving y " B, = ¢/ also called backward transformation (BTRAN)

Solving Bid = a also called forward transformation (FTRAN)

E; matrices can be stored by only storing the column and the position

If sparse columns then can be stored in compact mode, ie only nonzero values and their indices
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M Ore On L P Efficiency lIssues

® Tableau method is unstable: computational errors may accumulate. Revised method has a
natural control mechanism: we can recompute A5' at any time

® Commercial and freeware solvers differ from the way the systems y" Az = ¢/ and Agd = a are
resolved
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Efficient Implementations Eficiency lssves

Dual simplex with steepest descent (largest increase)
Linear Algebra:

® Dynamic LU-factorization using Markowitz threshold pivoting (Suhl and Suhl, 1990)
® sparse linear systems: Typically these systems take as input a vector with a very small number of

nonzero entries and output a vector with only a few additional nonzeros.

Presolve, ie problem reductions: removal of redundant constraints, fixed variables, and other
extraneous model elements.

dealing with degeneracy, stalling (long sequences of degenerate pivots), and cycling:

® bound-shifting (Paula Harris, 1974)
® Hybrid Pricing (variable selection): start with partial pricing, then switch to devex (approximate

steepest-edge, Harris, 1974)

A model that might have taken a year to solve 10 years ago can now solve in less than 30
seconds (Bixby, 2002).
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