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1. Integer Programming



Discrete Optimization

e Often we need to deal with integral inseparable quantities
® Sometimes rounding can go

® QOther times rounding not feasible: eg, presence of a bus on a line is 0.3...



Integer Linear Programming

Linear Objective
Linear Constraints

but! integer variables

max ¢’ x
Ax <b
x>0

max ¢’ x
Ax <b
x>0
x integer

Linear Programming Integer (Linear) Programming

(LP)

max f(x)

g(x) <b
x>0

(ILP)

Non-linear Programming (NLP)

The world is not linear: "OR is the art and
science of obtaining bad answers to questions to
which otherwise worse answers would be given"

max c’x + h'y

Ax + Gy <b
max ¢’ x x>0
Ax < b y>0

x € {0,1}" y integer

Binary Integer Program  Mixed Integer (Linear)
(BIP) Programming (MILP)
0/1 Integer Programming



Recall:

® 7 set of integers
e 77 set of positive integer
® 74 set of nonnegative integers ({0} UZ™")

® Nj set of natural numbers, ie, nonnegative integers {0,1,2,3,4,...}



Rounding

3x1 — 2x2 + 4
max 100x; + 64x,
50x; + 31x, < 250 ° °
31 — 2x9 > —4 ° ° Note: rounding
X1,Xo € Zg ° ° does not help in the
: : example above!
LP optimum (376,/193,950,/193) o o

IP optimum (5,0)

X1

x1 + 0.64xy — 4\\ 50x1 + 31x2 — 250
~ feasible region convex but not continuous: Now the optimum can be on the border (vertices)
but also internal.

Possible way: solve the relaxed problem.
® |f solution is integer, done.
® |f solution is rational (never irrational) try rounding to the nearest integers (but may exit
feasibility region)
if in R? then 22 possible roundings (up or down)
if in R” then 2" possible roundings (up or down)



Cutting Planes

max x; + 4xo
X1 + 6X2 S 18
X1 S 3
X1, X2 2 0
X1, Xp integers

o o o
X1TI3O
o o

= x1 + 6x2 = 18
o] o]

o o o X1 4 X2 =25

> X1
\X1-|-4X2:2
o o o o o




Branch and Bound

max xi + 2x»
x1 +4x <8
4X1 + X2 S 8
x1,Xp > 0, integer

X1 —|—4X2:8

o

o

> X1
X1 +2xp =1
dx; +x0 =8
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X1+4X2:8

X1
o X1 +2x =1
dx; +x0 =8

X1 +4X2:8

o

X1

o
[

X1 +2x =1
dx; +x0 =8
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x1+4x2 =8

> X1
X1 +2x =1
=38
4X1+X2—

x1+4x2 =8

X1
X1 +2X2:1
=8
4x1 + x2 =

12
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2. Modeling
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Mathematical Programming: Modeling

Find out exactly what the decision maker needs to know:

® which investment?
® which product mix?

® which job j should a person i do?

Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding
to the needs and Known Parameters corresponding to given data.

Formulate Objective Function computing the benefit/cost

Formulate mathematical Constraints indicating the interplay between the different variables.

14



How to “build’ a constraint

® Formulate relationship between the variables in plain words
® Then formulate your sentences using logical connectives and, or, not, implies

® Finally convert the logical statement to a mathematical constraint.

Example

® “The power plant must not work in both of two neighbouring time periods”

on/off is modelled using binary integer variables
o x,=1lorx =0

® x; = 1 implies = x;,1 =0

® x;+x41 <1

15
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2. Modeling
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The Assignment Problem

Problem

Common application: Assignees are being assigned to perform tasks.

Suppose we have n persons and n jobs
Each person has a certain proficiency at each job.

Formulate a mathematical model that can be used to find an assignment that maximizes the total
proficiency.

17



The Assignment Problem

Model

Decision Variables:
{1 if person i is assigned job j
X,'J' =

0 otherwise,

Objective Function:

n n
maX E E ,{),'J'X,'j

i=1 j=1

where pj; is person i's proficiency at job j

fori,j=1,2,...,n

18



The Assignment Problem

Model

Constraints:
Each person is assigned one job:

n
E xjj =1 for all i
j=1

e.g. for person 1 we get xi1 + x1o +x33 + -+ x1, = 1

Each job is assigned to one person:

n
Zx,-j =1 forall j
i=1

e.g. for job 1 we get xq1 + x01 + x31 + -+ x50 = 1

19
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2. Modeling

Knapsack Problem
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The Knapsack Problem

Problem ..

Input: Given a set of n items, each with a value v; and weight w; (i =1,...,n)

Task: determine the numbers of each item to include in a collection so that the total weight is less
than a given limit, W, and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at least one of any item and that ), w; > W, formulate a mathematical
model to determine which items give the largest value.

Model used, eg, in capital budgeting, project selection, etc.

21



The Knapsack Problem

Decision Variables:

{1 if item i is taken
X; = for

0 otherwise,

Objective Function:

n

maxXx E Vi X

i=1

Constraints:
Knapsack capacity restriction:

n
Z Wi X S W
i=1

i=1,2...

,n

22
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2. Modeling
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Set Covering

Problem

Given: a set of regions, a set of possible construction locations for emergency centers, regions that
can be served in less than 8 minutes, cost of installing an emergency center in each location.

Task: decide where to install a set of emergency centers such that the total cost is minimized and
all regions are safely served

As a COP: M = {1,..., m} regions, N ={1,...,n} centers, S; C M regions serviced by
Jj € Nin 8 min.
min 3> o) U S=M
jeT | jeT
regions: M = {1,...,5}
centers: N = {1,...,6}

cost of centers: ¢; =1 Vj=1,...,6
coverages: 51 = (1,2), 5, = (1,3,5), 55 = (2,4,5), 52 = (3), 55 = (1), Se = (4,5)

24



Example

® regions: M = {1,...,5}
centers: N = {1,...,6}
cost of centers: ¢; =1 Vj=1,...,6
coverages: 51 = (1,2), 5, = (1,3,5),5; = (2,4,5), 52 = (3), S5 = (1), Sg = (4,5)

coo ==X
coroo MW

R w N =
OO OO




As a BIP:

Variables:
x € B", x; = 1 if center j is selected, 0 otherwise

Objective:
n
min Z G X;
j=1

Constraints:

® incidence matrix: aj = {

n
XA =1

26



Set covering
cover each of M at least once

1. min, >
2. all RHS terms are 1

3. all matrix elements are 1

min ¢ x
Ax>1
x € B"”

Generalization: RHS > 1
Application examples:

Set packing
cover as many of M without
overlap

1. max, <

2. all RHS terms are 1

3. all matrix elements are 1
max ¢’ x

Ax <1
x € B”

® Aircrew scheduling: M: legs to cover, N: rosters

® Vehicle routing: M: customers, N: routes

Set partitioning
cover exactly once each element
of M

1. max or min, =
2. all RHS terms are 1

3. all matrix elements are 1

max ¢’ x
Ax =1
x e B"
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A good written example of how to present a model:

2.1. Notation

Let N be the set of operational flight legs and K the set
of aircraft types. Denote by n* the number of available
aircraft of type k € K. Define ¥, indexed by p, as the
set of feasible schedules for aircraft of type k € K and
let index p = 0 denote the empty schedule for an aircraft.
Next associate with each schedule p € Q* the value c}
denoting the anticipated profit if this schedule is as-
signed to an aircraft of type k € K and a, a binary con-
stant equal to 1 if this schedule covers flight leg i € N
and 0 otherwise. Furthermore, let S be the set of stations
and S* ¢ S the subset having the facilities to serve air-
craft of type k € K. Then, define of, and d%, to equal to
1 if schedule p, p € ©*, starts and ends respectively at
station s, s € S¥, and 0 otherwise.

Denote by 65, p € Q"\{0}, k € K, the binary decision
variable which takes the value 1 if schedule p is assigned
to an aircraft of type k, and 0 otherwise. Finally, let 65,
k € K, be a nonnegative integer variable which gives the
number of unused aircraft of type k.

2.2. Formulation

3@, —0k)0i=0 VkeK VseS, (3

peat
S 6i=n VkeK, @
pent
0i=0 VkeK Vpeq (5)
0% integer Vk € K, Vp € Q. (6)

The objective function (1) states that we wish to max-
imize the total anticipated profit. Constraints (2) require
that each operational flight leg be covered exactly once.
Constraints (3) correspond to the flow conservation
constraints at the beginning and the end of the day at
each station and for each aircraft type. Constraints (4)
limit the number of aircraft of type k € K that can be
used to the number available. Finally, constraints (5)
and (6) state that the decision variables are nonnegative
integers. This model is a Set Partitioning problem with
additional constraints.

Using these definitions, the DARSP can be formulated [from G. Desaulniers, J. Desrosiers, Y. Dumal M.M. Solomon and F.
as: Soumis. Daily Aircraft Routing and Sch duli Sci 1997,
43(6), 841-855]

Maximize Y, Y, ckéf (1)
keK pent

subject to:
Y Y aifj=1 VieN, (2)

kek peat
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3. More on Modeling
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Matching

Definition (Matching Theory Terminology)
Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M
Perfect (matching): if M covers each vertex in G
Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

max > WeXe
vev

> x. <1 Vv eV

ecE:vee

xe € {0,1} Ve € E

Special case: bipartite matching = assignment problems

33



Vertex Cover

Select a subset S C V such that each edge has at least one end vertex in S.

min > x,

veVv
Xy +x,>1 Yu,ve V,uv e E
x, € {0,1} Vv e V
Approximation algorithm: set S derived from the LP solution in this way:
Sip={veV:x5>1/2}
(it is a cover since x; + x;; > 1 implies x > 1/2 or x; > 1/2)
Proposition

The LP rounding approximation algorithm gives a 2-approximation: |S;p| < 2|Sopr]|
(at most as bad as twice the optimal solution)

Proof: Let x be opt to IP. Then > x} < > X,.
Stpl =25, 1< 22,0y 2% since x; > 1/2 for each v € S/p
StPl <23 ,cy Xy <22 ey Xv = 2[Sopr|
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Maximum Independent Set

Find the largest subset S C V such that the induced graph has no edges

max > Xy
veV
x, +x, <1 Yu,ve V,uv € E

x, = {0,1} Vv e V
Optimal sol of LP relaxation sets x, = 1/2 for all variables and has value |V/|/2.
What is the value of an optimal IP solution of a complete graph?

LP relaxation gives an O(n)-approximation (almost useless)
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Traveling Salesman Problem

® Find the cheapest movement for a drilling, welding, drawing, soldering arm as, for example, in
a printed circuit board manufacturing process or car manufacturing process

® 1 locations, ¢ cost of travel

Variables:

1
X,'j: O

Objective:

n n
E E C,'J'X,'J'

i=1 j=1

36



Constraints:
[ ]
Zx,-jzl Vi=1,...,n
J#i
d x=1 Vji=1,....n
ititj

® cut set constraints

YN x>1 VSCN,S#0

i€s jgs

® subtour elimination constraints

S xS -1 VSCcN,2<|S|<n-1

i€eS jes

37
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Modeling Tricks

Objective function and/or constraints do not appear to be linear?
® Absolute values
® Minimize the largest function value
® Maximize the smallest function value
® Constraints include variable division

® Constraints are either/or

A variable must take one of several candidate values



Modeling: Absolute Values

min 3" [£(x)]
i=1

min Y. z

s.t. zi > fi(x) i=1.n
zi > —fi(x)i=1..
zie R i=1..n
x € R

n additional variables and 2n additional
constraints.

2n additional variables and n additional
constraints.

40



Modeling: Minimax
Minimize the largest of a number of function values:
min  max{f(x),..., f(x)}

® Introduce an auxiliary variable z:

min z

41



Modeling: Divisions

Constraints include variable division:
® Constraint of the form

ax + azy + azz
dix + doy + dzz

® Rearrange:
ar X + azy + asz S b(dlx + dzy —+ d3Z)

which gives:

(31 — bdl)X =+ (az — bdz)y + (33 — bd3)Z S 0

42



Modeling: “Either/Or Constraints”

In conventional mathematical models, the solution must satisfy all constraints.
Suppose that your constraints are “either/or":

aixy + axo S bl or
dix1 + doxo < by

Introduce new variable y € {0,1} and a large number M:

aix1 + axxo < by + My if y = 0 then this is active
dixy + doxo < by + M(1—y) if y = 1 then this is active

43



Modeling: “Either/Or Constraints”

Binary integer programming allows to model alternative choices:

® Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP.
introduce y auxiliary binary variable and M a big number:

Ax < b+ My if y = 0 then this is active
A'x < b+ M(1—y) if y = 1 then this is active

a4



Modeling: “Either/Or Constraints”

Generally:
ayixy + apxo + a13x3 + ...+ aymxm < dp

a21X1 + aXo 4+ a23X3 + ... + AomXm < da

amixy +anaxe +anzxs + ...+ anmXm < dy

Exactly K of the N constraints must be satisfied.
Introduce binary variables y1, >, ..., yy and a large number M

ayxy +apxo +aizxg + ...+ amxm < dp + My,
a01X1 + a2oXo 4 a23X3 + ... + AomXm < da + My

am1X1 + anaxe + anzxz + ... + anmXm < dy + Myy

ity +..yn=N—-K

K of the y-variables are 0, so K constraints must be satisfied

45



Modeling: “Either/Or Constraints”

n
At least h < k of > ajx; < b;, i =1,.... k must be satisfied
j=1
introduce y;, i = 1, ..., k auxiliary binary variables

n
Zaijxj < bi + My;

j=1
Yvi<k—h

46



Modeling: “Possible Constraints Values’

A constraint must take on one of /N given values:

aixXy + axxp +azxz + ...+ amxm = dl or
a1xy + axxo +azxz + ...+ amxm = dy Or

aixy + asxo +azxz+ ...+ amxm = d[\/

Introduce binary variables y1, v, ..., yy:

arxy + axxo +az3xz + ...+ amXm = diy1 + days + ... dnyn

yity+..yvn=1

47
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