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Cutting Plane Algorithms

Valid Inequalities

• IP: z = max{cT x : x ∈ X}, X = {x : Ax ≤ b, x ∈ Zn
+}

• Proposition: conv(X ) = {x : Ãx ≤ b̃, x ≥ 0} is a polyhedron

• LP: z = max{cT x : Ãx ≤ b̃, x ≥ 0} would be the best formulation

• ãx ≤ b̃ facet de�ning inequalities

• Key idea: try to approximate the best formulation.

De�nition (Valid inequalities)

ax ≤ b is a valid inequality for X ⊆ Rn if ax ≤ b ∀x ∈ X

Which are useful inequalities? and how can we �nd them? How can we use them?
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Cutting Plane Algorithms

Example: Pre-processing

• X = {(x , y) : x ≤ 999y ; 0 ≤ x ≤ 5, y ∈ B1}

x ≤ 5y

• X = {x ∈ Z4
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}

2x1 + 2x2 + x3 + x4 ≥
13

11
x1 +

20

11
x2 + x3 +

6

11
x4 ≥

72

11
= 6 +

6

11

2x1 + 2x2 + x3 + x4 ≥ 7

• Capacitated facility location:∑
i∈M

xij ≤ bjyj ∀j ∈ N xij ≤ bjyj∑
j∈N

xij = ai ∀i ∈ M xij ≤ ai

xij ≥ 0, yj ∈ Bn xij ≤ min{ai , bj}yj
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Cutting Plane Algorithms

Converting Weak to Strong MIP Formulations

Strong formulations ≡ better, tighter formulations

Detection possible from the log output of a solver.

Possible actions:

1. Add cuts to existing models

• Combining constraints
• Using a graph representation (clique cuts)
• Using a disjunctive approach

2. (Change the model)

3. (Change the algorithm, eg, column generation)

(Lazy) constraints 6= cuts

 Many found automatically by
the solver in pre-solver phase
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Cutting Plane Algorithms

Add cuts to the existing model

maximize x1 + x2 + x3

subject to x1 + x2 ≤ 1

x2 + x3 ≤ 1

x1 + x3 ≤ 1

xi ∈ {0, 1} i = 1, 2, 3

Combine and round constraints:

2x1 + 2x2 + 2x3 ≤ 3

x1 + x2 + x3 ≤
3

2

x1 + x2 + x3 ≤ 1

Create a con�ict graph; at most one binary in a
clique can be 1

x1 x2

x3

x1 + x2 + x3 ≤ 1
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Cutting Plane Algorithms

Chvátal-Gomory cuts

• X ∈ P ∩ Zn
+, P = {x ∈ Rn

+ : Ax ≤ b}, A ∈ Rm×n

• u ∈ Rm
+, {a1, a2, . . . an} columns of A

CG procedure to construct valid inequalities

1)
n∑

j=1

uTajxj ≤ uTb valid: u ≥ 0

2)
n∑

j=1

buTajcxj ≤ uTb valid: x ≥ 0 and
∑
buTajcxj ≤

∑
uTajxj

3)
n∑

j=1

buTajcxj ≤ buTbc valid for X since x ∈ Zn

Theorem

by applying this CG procedure a �nite number of times every valid inequality for X can be obtained

However not all the constraints generated by u ∈ Rm
+ are tightenings.
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Cutting Plane Algorithms

Cutting Plane Algorithms

• X ∈ P ∩ Zn
+

• a family of valid inequalities F : aT x ≤ b, (a, b) ∈ F for X

• we do not �nd them all a priori, only interested in those close to optimum

Cutting Plane Algorithm

Init.: t = 0,P0 = P

Iter. t: Solve z̄ t = max{cT x : x ∈ P t}
let xt be an optimal solution
if xt ∈ Zn stop, xt is opt to the IP
if xt 6∈ Zn solve separation problem for xt and F
if (at , bt) is found with atxt > bt that cuts o� x t

P t+1 = P ∩ {x : aix ≤ bi , i = 1, . . . , t}

else stop (P t is in any case an improved formulation)
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Cutting Plane Algorithms

Gomory's fractional cutting plane algorithm

Cutting plane algorithm + Chvátal-Gomory cuts

• max{cT x : Ax = b, x ≥ 0, x ∈ Zn}
• Solve LPR to optimality I ĀN = A−1B AN 0 b̄

c̄B c̄N(≤ 0) 1 −d̄


xBu = b̄u −

∑
j∈N

āujxj , u = 1..m

z = d̄ +
∑
j∈N

c̄jxj

• If basic optimal solution to LPR is not integer then ∃ some row u: b̄u 6∈ Z1.
The Chvatál-Gomory cut applied to this row is:

xBu +
∑
j∈N

bāujcxj ≤ bb̄uc

(Bu is the index in the basis B corresponding to the row u) (cntd)
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Cutting Plane Algorithms

• Eliminating xBu = b̄u −
∑
j∈N

āujxj in the CG cut we obtain:

∑
j∈N

(āuj − bāujc︸ ︷︷ ︸
0≤fuj<1

)xj ≥ b̄u − bb̄uc︸ ︷︷ ︸
0<fu<1∑

j∈N

fujxj ≥ fu

fu > 0 or else u would not be row of fractional solution. It implies that x∗ in which x∗N = 0 is
cut out!

(theoretically it terminates after a �nite number of iterations, but in practice not successful.)
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Cutting Plane Algorithms

Example

max x1 + 4x2
x1 + 6x2 ≤ 18
x1 ≤ 3

x1, x2 ≥ 0
x1, x2integer x1 + 6x2 = 18

x1 + 4x2 = 2

x1 = 3

x1

x2

| | x1 | x2 | x3 | x4 | -z | b |

|---+----+----+----+----+----+----|

| | 1 | 6 | 1 | 0 | 0 | 18 |

| | 1 | 0 | 0 | 1 | 0 | 3 |

|---+----+----+----+----+----+----|

| | 1 | 4 | 0 | 0 | 1 | 0 |

| | x1 | x2 | x3 | x4 | -z | b |

|---+----+----+------+------+----+------|

| | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |

| | 1 | 0 | 0 | 1 | 0 | 3 |

|---+----+----+------+------+----+------|

| | 0 | 0 | -2/3 | -1/3 | 1 | -13 |

x2 = 5/2, x1 = 3
Optimum, not integer
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Cutting Plane Algorithms

• We take the �rst row: | | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |

• CG cut
∑

j∈N fujxj ≥ fu  1
6
x3 + 5

6
x4 ≥ 1

2

• Let's verify that it is a CG cut:

1/6 (x1 + 6x2 ≤ 18)
5/6 (x1 ≤ 3)

x1 + x2 ≤ 3 + 5/2 = 5.5

since x1, x2 are integer x1 + x2 ≤ 5. And it leaves out x∗.

• Let's see how it looks in the space of the original variables: from the �rst tableau:

x3 = 18− 6x2 − x1
x4 = 3− x1

1

6
(18− 6x2 − x1) +

5

6
(3− x1) ≥ 1

2
 x1 + x2 ≤ 5
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Cutting Plane Algorithms

• Graphically:

x1 + 4x2 = 2

x1 + x2 = 5

x1 + 6x2 = 18

x1 = 3

x1

x2

• Let's continue:

| | x1 | x2 | x3 | x4 | x5 | -z | b |

|---+----+----+------+------+----+----+------|

| | 0 | 0 | -1/6 | -5/6 | 1 | 0 | -1/2 |

| | 0 | 1 | 1/6 | -1/6 | 0 | 0 | 5/2 |

| | 1 | 0 | 0 | 1 | 0 | 0 | 3 |

|---+----+----+------+------+----+----+------|

| | 0 | 0 | -2/3 | -1/3 | 0 | 1 | -13 |

We need to apply dual-simplex
(will always be the case, why?)

ratio rule: min{| cj
aij
| : aij < 0}
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Cutting Plane Algorithms

• After the dual simplex iteration:

| | x1 | x2 | x3 | x4 | x5 | -z | b |

|---+----+----+------+----+------+----+-------|

| | 0 | 0 | 1/5 | 1 | -6/5 | 0 | 3/5 |

| | 0 | 1 | 1/5 | 0 | -1/5 | 0 | 13/5 |

| | 1 | 0 | -1/5 | 0 | 6/5 | 0 | 12/5 |

|---+----+----+------+----+------+----+-------|

| | 0 | 0 | -3/5 | 0 | -2/5 | 1 | -64/5 |

We can choose any of the three rows.

Let's take the third: CG cut:
4

5
x3 +

1

5
x5 ≥ 2

5

• In the space of the original variables:

4(18− x1 − 6x2) + (5− x1 − x2) ≥ 2

x1 + 5x2 ≤ 15

x1

x2

• ...
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