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Cutting Plane Algorithms

Valid Inequalities

® IP: z=max{c"x:x€ X}, X ={x: Ax<b,x€Z}

® Proposition: conv(X) = {x : Ax < b.x > 0} is a polyhedron

LP: z = max{c'x: Ax < B,x > 0} would be the best formulation

e 3x < b facet defining inequalities

Key idea: try to approximate the best formulation.

Definition (Valid inequalities)
ax < b is a valid inequality for X CR" if ax < bVx € X

Which are useful inequalities? and how can we find them? How can we use them?



Example: Pre-processing

* X ={(x,y) :x<999y; 0<x<5 yeB'}

x < 5y
o XZ{XEZi 1 13x3 + 20xp + 11x3 + 6x4 > 72}

2x1 + 2% + x3 + x 13X+20X—|—X+£X
R R R TR R TR T

2x1 +2x0 +x3+ x4 > 7

e (Capacitated facility location:

> xj< by VjeN
ieM
Y xj=a VieM
JjeN

xj >0, y€B" xij < min{a;, b;}y;

6
6+ﬁ

Xij < bjy;

Xjj < a;
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Cutting Plane Algorithms

Converting Weak to Strong MIP Formulations
Strong formulations = better, tighter formulations
Detection possible from the log output of a solver.

Possible actions:

1. Add cuts to existing models
~» Many found automatically by

® Combining constraints '
the solver in pre-solver phase

® Using a graph representation (clique cuts)
® Using a disjunctive approach
2. (Change the model)

3. (Change the algorithm, eg, column generation)

(Lazy) constraints # cuts



Cutting Plane Algorithms

Add cuts to the existing model

maximize x; + X» + X3
subject to x; +x <1
x2+x3 <1
x1+x3<1
x; € {0,1} i=1,2,3

Create a conflict graph; at most one binary in a

Combine and round constraints:
clique can be 1

2x1 +2x0 +2x3 < 3

; )
Xt +x <3 '

x1+x+x3<1

x1+x+x3<1



Cutting Plane Algorithms

Chvatal-Gomory cuts

e XecPnZi, P={xeR}:Ax<b}, AecR™"
® ucRY, {a1,a2,...a,} columns of A

CG procedure to construct valid inequalities

1) ZuTajxj <u'b valid: u>0
j=1
2) ZLuTaijj <u'b valid: x > 0 and ZLuTajjxj§ZuTajxj
j=1
3) ZLuTaijj < |u'b] valid for X since x € Z"
j=1
Theorem
by applying this CG procedure a finite number of times every valid inequality for X can be obtainedJ

However not all the constraints generated by u € R are tightenings.
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Cutting Plane Algorithms

e XePnu
® a family of valid inequalities 7 : a’x < b, (a, b) € F for X

® we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm
Init.. t=0,P° =P
Iter. t: Solve zt = max{cx:x € Pt}

let x* be an optimal solution

if xt € Z" stop, x' is opt to the IP

if x* ¢ Z" solve separation problem for x* and F
if (af, b') is found with a’x" > b that cuts off x*

PHl = Pn{x:alx< b i=1,...,t}

else stop (P' is in any case an improved formulation)



Cutting Plane Algorithms

Gomory’s fractional cutting plane algorithm

Cutting plane algorithm + Chvatal-Gomory cuts
® max{c’x:Ax=b,x > 0,x € Z"}

® Solve LPR to optimality

e If basic optimal solution to LPR is not integer then 3 some row wu: b, & 7.
The Chvatal-Gomory cut applied to this row is:

xg, + ZL‘?UJ’JXJ' < | by

JjeN
(B, is the index in the basis B corresponding to the row v) (cntd)
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Cutting Plane Algorithms

® Eliminating xg, = b, — > 3,;x; in the CG cut we obtain:
JEN

> (35— 134])% = by — |bu]

JEN o<hi<1 0<f,<1

Z fquj > fu

jeN
fy > 0 or else u would not be row of fractional solution. It implies that x* in which x3, = 0 is
cut out!

(theoretically it terminates after a finite number of iterations, but in practice not successful.)
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Cutting Plane Algorithms

Example

X2

max x1 + 4xo

e}
— o
Il Il
o o
X <X
© <
+ +
o .Imu 10
X X
o o
!
o \\|®
/
o) o O\O o
/
o o O\O ! o
o OM o o
——
L 1 om 1O
[ 1
1 ]
—d—— i
[oe) mu quOml
— ™M O 5 —t =i
VIVIALG wio-io
c
N N .= | 1
X N —t == 4=
6 LX m I HO 1O
+ X o M “
X R
=
XX nﬂmeomnx
—4—— =
-
Mol ]
1 ]
R A
1 ]
1 1
1 1

=
()
a0
[
=
on c
=
2
—
X
o E
=~ 3
5m
=
2p
X O
Q 1 wom 1 m
(IS [
[T [
[ I
1 |
N 1 OO I —
D I
1 |
1 © 1 m
(IS [
< 10— [
Moot
1 |
—_ . —— =
1 1
1 [
1 © (IS
Mo [
M 1O 1
1 |
NI HO 1O
I 1
1 |
-l O 1O
Kol 1
] ]
_F — — + —
1 1
1 1
| |

12



Cutting Plane Algorithms

We take the first row: | | ol 11 1/6 | -1/6 1 O | 15/6 |

CG cut ZjEN fquj > f, ~ %X3 + gX4 > %

Let's verify that it is a CG cut:

1/6 (X1 + 6X2 S 18)
5/6 (X1 §3)
X1 + Xo §3+5/2:55

since x1, xo are integer x; + x» < 5. And it leaves out x*.

Let's see how it looks in the space of the original variables: from the first tableau:

X3:1876X27X1
X4:37X1

~ x1+x <5

N =

1 5
6(18 —6X2 _Xl) + 6(3—X1) Z
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® Graphically:

® |et's continue:

—_t ——_ — + —

-1/6 1 -5/6 | 1
1/6 | -1/6 1 ©
0 I 1 )
—————— oo [
-2/31-1/31 0

X2

Cutting Plane Algorithms

o o o

XP —o3
o o

OX]O+ 6xo = 18

xp+x2 =5

= X1
l\ ‘O X10+ dxy = 2

We need to apply dual-simplex
(will always be the case, why?)

ratio rule: min{| | : a; < 0}
i
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o After the dual simplex iteration:

| x1 | x2 | x3 | x4 | x5 | -z | b |
L S R, B ot |
| ol ol | 11 -6/61 0O 3/6 [
| ol 1115 | 01l -1/51 0| 13/6 |
| 11 ol -1/61 o0146/6 | 01 12/56 |
L S B, B L |
| ol O0o1-351 01-2/611 11| -64/5 |

® |n the space of the original variables:

418 —x3 —6x2) + (5 —x1 —x0) > 2
x1 +5x <15

Cutting Plane Algorithms

We can choose any of the three rows.

Let's take the third: CG cut:
ng + éxs > %
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