
DM545/DM871

Linear and Integer Programming

Lecture 13

Branch and Bound

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Branch and BoundOutline

1. Branch and Bound

2

Branch and BoundOutline

1. Branch and Bound

5

Branch and BoundBranch and Bound

• Consider the problem z = max{cT x : x ∈ S}

• Divide and conquer: let S = S1 ∪ . . . ∪ Sk be a decomposition of S into smaller sets, and let
zk = max{cT x : x ∈ Sk} for k = 1, . . . ,K . Then z = maxk z

k

For instance if S ⊆ {0, 1}3 the enumeration tree is:

S

S0

S00

S000

x3 = 0

S001

x2 = 0

S01

S010 S011

x1 = 0

S1

S10

S100 S101

S11

S110 S111

x1 = 1

6

Branch and BoundBounding

Let's consider a maximization problem

• Let zk be an upper bound on zk (dual bound)

• Let zk be a lower bound on zk (primal bound)

• (zk ≤ zk ≤ zk)

• z = maxk z
k is a lower bound on z

• z = maxk z
k is an upper bound on z

7

Branch and Bound

Pruning (Fathoming)

27

13

20

20

25

15

z = 25
z = 20
pruned by optimality

27

13

20

18

26

21

z = 26
z = 21
pruned by bounding

27

13

26

14 infeas.

z = 26
z = 14
pruned by infeasibility

8

Branch and BoundPruning

40

−∞

24

13

37

−∞

z = 37
z = 13
nothing to prune

9

Branch and BoundLP Based Branch & Bound: Example

max x1 + 2x2
x1 + 4x2 ≤ 8
4x1 + x2 ≤ 8

x1, x2 ≥ 0, integer
x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x1

x2

• Solve LP
| | x1 | x2 | x3 | x4 | -z | b |

|---+----+----+----+----+----+---|

| | 1 | 4 | 1 | 0 | 0 | 8 |

| | 4 | 1 | 0 | 1 | 0 | 8 |

|---+----+----+----+----+----+---|

| | 1 | 2 | 0 | 0 | 1 | 0 |

| | x1 | x2 | x3 | x4 | -z | b |

|--------------+----+------+----+------+----+----|

| I'=I-II' | 0 | 15/4 | 1 | -1/4 | 0 | 6 |

| II'=1/4II | 1 | 1/4 | 0 | 1/4 | 0 | 2 |

|--------------+----+------+----+------+----+----|

| III'=III-II' | 0 | 7/4 | 0 | -1/4 | 0 | -2 |

10

Branch and Bound

• continuing

| | x1 | x2 | x3 | x4 | -z | b |

|----------------+----+----+-------+-------+----+---------|

| I'=4/15I | 0 | 1 | 4/15 | -1/15 | 0 | 24/15 |

| II'=II-1/4I' | 1 | 0 | -1/15 | 4/15 | 0 | 24/15 |

|----------------+----+----+-------+-------+----+---------|

| III'=III-7/4I' | 0 | 0 | -7/15 | -3/5 | 1 | -2-14/5 |

x2 = 1 + 3/5 = 1.6
x1 = 8/5
The optimal solution will not
be more than 2 + 14/5 = 4.8

• Both variables are fractional, we pick one of the two:

4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x1 = 1
x2

x1

11

Branch and Bound

• Let's consider �rst the left branch:
| | x1 | x2 | x3 | x4 | x5 | -z | b |

|---+----+----+-------+-------+----+----+-------|

| | 1 | 0 | 0 | 0 | 1 | 0 | 1 |

| | 0 | 1 | 4/15 | -1/15 | 0 | 0 | 24/15 |

| | 1 | 0 | -1/15 | 4/15 | 0 | 0 | 24/15 |

|---+----+----+-------+-------+----+----+-------|

| | 0 | 0 | -7/15 | -3/5 | 0 | 1 | -24/5 |

| | x1 | x2 | x3 | x4 | x5 | b | -z |

|----------+----+----+-------+-------+----+---+-------|

| I'=I-III | 0 | 0 | 1/15 | -4/15 | 1 | 0 | -9/15 |

| | 0 | 1 | 4/15 | -1/15 | 0 | 0 | 24/15 |

| | 1 | 0 | -1/15 | 4/15 | 0 | 0 | 24/15 |

|----------+----+----+-------+-------+----+---+-------|

| | 0 | 0 | -7/15 | -3/5 | 0 | 1 | -24/5 |

| | x1 | x2 | x3 | x4 | x5 | b | -z |

|-------------+----+----+--------+----+-------+---+--------|

| I'=-15/4I | 0 | 0 | -1/4 | 1 | -15/4 | 0 | 9/4 |

| II'=II-1/4I | 0 | 1 | 15/60 | 0 | -1/4 | 0 | 7/4 |

| III'=III+I | 1 | 0 | 0 | 0 | 1 | 0 | 1 |

|-------------+----+----+--------+----+-------+---+--------|

| | 0 | 0 | -37/60 | 0 | -9/4 | 1 | -90/20 |

always a b term negative
after branching:
b1 = bb̄3c
b̄1 = bb̄3c − b3 < 0

Dual simplex:
minj{| cjaij | : aij < 0}

12

Branch and Bound

• Let's branch again

4.8

4.5

B

x2 ≤ 1

A

x2 ≥ 2

x1 ≤ 1

C

x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1

We have three open problems. Which one we choose next?
Let's take A.

13

Branch and Bound

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |

|---+----+----+--------+----+-------+----+---+------|

| | 0 | -1 | 0 | 0 | 0 | 1 | 0 | -2 |

| | 0 | 0 | -1/4 | 1 | -15/4 | | 0 | 9/4 |

| | 0 | 1 | 15/60 | 0 | -1/4 | | 0 | 7/4 |

| | 1 | 0 | 0 | 0 | 1 | | 0 | 1 |

|---+----+----+--------+----+-------+----+---+------|

| | 0 | 0 | -37/60 | 0 | -9/4 | | 1 | -9/2 |

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |

|-------+----+----+--------+----+-------+----+---+------|

| III+I | 0 | 0 | 1/4 | 0 | -1/4 | 1 | 0 | -1/4 |

| | 0 | 0 | -1/4 | 1 | -15/4 | | 0 | 9/4 |

| | 0 | 1 | 15/60 | 0 | -1/4 | | 0 | 7/4 |

| | 1 | 0 | 0 | 0 | 1 | | 0 | 1 |

|-------+----+----+--------+----+-------+----+---+------|

| | 0 | 0 | -37/60 | 0 | -9/4 | | 1 | -9/2 |

continuing we �nd:
x1 = 0
x2 = 2
OPT = 4

14

Branch and Bound

The �nal tree:

4.8
−∞

4.5
−∞

3

3

x1=1
x2=1

x2 ≤ 1

4

4

x1=0
x2=2

x2 ≥ 2

x2 ≤ 1

2

2

x1=2
x2=0

x1 ≥ 2

The optimal solution is 4.

15

Branch and BoundPruning

Pruning:

1. by optimality: zk = max{cT x : x ∈ Sk}

2. by bound zk ≤ z
Example:

5.8
−∞

4.5
−∞

4

4

2.3
−∞

3. by infeasibility Sk = ∅

16

Branch and BoundB&B Components

Bounding:

1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

S1 = S ∩ {x : xj ≤ bx̄jc}
S2 = S ∩ {x : xj ≥ dx̄je}

thus the current optimum is not feasible in S1 and in S2.
Which variable to choose?
Eg: Most fractional variable arg maxj∈C min{fj , 1− fj}
Choosing Node for Examination from the list of active (or open):
• Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just
adding a new constraint)

• Best Bound First: (eg. largest upper: z s = maxk z
k

or largest lower - to die fast)
• Mixed strategies 17

Branch and Bound

Reoptimizing: dual simplex

Updating the Incumbent: when new best feasible solution is found:

z = max{z , 4}

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

18

[Wolsey, 2021]
Lazy strategy: pruning, calculation,
branching, queue insertion; open no-
des are stored with the bound of their
father

[Fischetti, 2019]
Eager strategy: branching, calcula-
tion, pruning, queue insertion; open
nodes are stored with their own bo-
unds

Branch and BoundEnhancements

• Preprocessor: constraint/problem/structure speci�c
tightening bounds
redundant constraints
variable �xing: eg: max{cT x : Ax ≤ b, l ≤ x ≤ u}

�x xj = lj if cj < 0 and aij > 0 for all i
�x xj = uj if cj > 0 and aij < 0 for all i

• User de�ned branching priorities: establish the next variable to branch (not in gurobi)

• Special ordered sets SOS (or generalized upper bound GUB)

k∑
j=1

xj = 1 xj ∈ {0, 1}

instead of: S0 = S ∩ {x : xj = 0} and S1 = S ∩ {x : xj = 1}
{x : xj = 0} leaves k − 1 possibilities
{x : xj = 1} leaves only 1 possibility
hence tree unbalanced

here: S1 = S ∩ {x : xji = 0, i = 1..r} and S2 = S ∩ {x : xji = 0, i = r + 1, .., k},
r = min{t :

∑t
i=1 x

∗
ji
≥ 1

2
}

21

Branch and Bound

• Cuto� value: a user-de�ned primal bound to pass to the system.

• Simplex strategies: simplex is good for reoptimizing but for large models interior points
methods may work best.

• Strong branching: extra work to decide more accurately on which variable to branch:

1. choose a set C of fractional variables
2. reoptimize for each of them (in case for limited iterations)

3. z↓j , z
↑
j (dual bound of down and up branch)

j∗ = arg min
j∈C

max{z↓j , z
↑
j }

ie, choose variable with most change in objective function, ie, largest decrease of dual
bound, eg, largest decrease of UB for max problem

22

Branch and Bound

There are four common reasons because integer programs can require a signi�cant amount of
solution time:

1. There is lack of node throughput due to troublesome linear programming node solves.

2. There is lack of progress in the best integer solution, i.e., the primal bound.

3. There is lack of progress in the best dual bound.

4. There is insu�cient node throughput due to numerical instability in the problem data or
excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

gap =
|Primal bound− Dual bound|

Primal bound + ε
· 100

23

Branch and Bound

• heuristics for �nding feasible solutions (generally NP-complete problem)

• �nd better lower bounds if they are weak: addition of cuts, stronger formulation, branch and
cut

• Branch and cut: a B&B algorithm with cut generation at all nodes of the tree. (instead of
reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally
Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the
node

24

Branch and BoundRelative Optimality Gap

In CPLEX:

gap =
|best dual bound− best integer|

|best integer + 10−11|

In SCIP and MIPLIB standard:

gap =
pb − db

inf{|z |, z ∈ [db, pb]}
· 100 for a minimization problem

(if pb ≥ 0 and db ≥ 0 then pb−db
db)

if db = pb = 0 then gap = 0
if no feasible sol found or db ≤ 0 ≤ pb then the gap is not computed.

25

Branch and Bound

Last standard avoids problem of non decreasing gap if we go through zero

3186 2520 -666.6217 4096 956.6330 -667.2010 1313338 169.74%

3226 2560 -666.6205 4097 956.6330 -667.2010 1323797 169.74%

3266 2600 -666.6201 4095 956.6330 -667.2010 1335602 169.74%

Elapsed real time = 2801.61 sec. (tree size = 77.54 MB, solutions = 2)

* 3324+ 2656 -125.5775 -667.2010 1363079 431.31%

3334 2668 -666.5811 4052 -125.5775 -667.2010 1370748 431.31%

3380 2714 -666.5799 4017 -125.5775 -667.2010 1388391 431.31%

3422 2756 -666.5791 4011 -125.5775 -667.2010 1403440 431.31%

26

Branch and BoundMILP Solvers Breakthroughs

We have seen Fractional Gomory cuts.
The introduction of Mixed Integer Gomory cuts in CPLEX was the major breakthrough of CPLEX 6.5 and
produced the version-to-version speed-up given by the blue bars in the chart below

(source: R. Bixby. Mixed-Integer Programming: It works better than you may think. 2010. Slides on the net)
27

Branch and Bound

Speedup over the past 25 years:

Hardware 2 000 times
Software 2 000 000 times

28

Branch and BoundAdvanced Techniques

We did not treat:

• LP: Dantzig Wolfe decomposition

• LP: Column generation

• LP: Delayed column generation

• IP: Branch and Price

• LP: Benders decompositions

• LP: Lagrangian relaxation

They are topics of DM872.

29

Branch and BoundIn the Exercises

Solve linear programming problems with:

• Simple method tool https://www.zweigmedia.com/simplex/simplex.php

• glpk https://dm871.github.io/notes/glpk.html

• In Python: scipy.optimize.linprog

• In Python: gurobipy or pyomo

30

https://www.zweigmedia.com/simplex/simplex.php
https://dm871.github.io/notes/glpk.html

Branch and BoundSummary

1. Branch and Bound

31

	Branch and Bound

