DM545/DM871

Linear and Integer Programming

Lecture 13
Branch and Bound

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Branch and Bound

Outline

1. Branch and Bound

Branch and Bound

Outline

1. Branch and Bound

Branch and Bound Branch and Bound

® Consider the problem z = max{c'x:x € S}

® Divide and conquer: let S = 5; U ... U S, be a decomposition of S into smaller sets, and let
k

zK = max{c"x:x € S} for k =1,... K. Then z = max, z
For instance if S C {0,1}® the enumeration tree is:

Branch and Bound

Bounding

Let's consider a maximization problem

® Let Z° be an upper bound on z* (dual bound)

Let z“ be a lower bound on z* (primal bound)
o (25 < k< 7h)
® 7 — max, 2" is a lower bound on z

k

® 7 — max, z" is an upper bound on z

Pruning (Fathoming)

Branch and Bound

25
20
pruned by optimality

IN NI
Il

Z =26
z=21
pruned by bounding

z=26
z=14
pruned by infeasibility

Branch and Bound

Pruning

() 237

z=13

e e nothing to prune

LP Based Branch & Bound: Example Branch and Bound

max xi + 2x» X2
x1 + 4X2 S 8
4X1 + X2 S 8

S0
x1, X2 > 0, integer x1+4x =8

X1
© X1 +2X2 =1

4X1 + X2 = 8
® Solve LP
I I x1 1 x21=x31x41-z1bI
|
| I 11 41 11 01 018/
| I 41 11 ol 11 o018/
I e |
I 11 21 0l 01l 1101
| | x1 | x2 | x3 | x4 | -z | b |
[P — Fomm - [SRR R [S |
| I°=I-II’ | 0l 15/4 1 11 -1/41 01 61
| II°=1/41I | 1 11/4 | ol /4 | o1l 21
| [[. [R S |
| III°=III-II> | O | 7/4 | O | -1/41 0| -2 |

10

Branch and Bound

® continuing

be more than 2 +14/5 =4.8

x =1 =1
| Ixt | x2 1 x3 |x4 | -z |5 | 2 +3/5 6
[o fommmmm Fommmtmm oo | X1 = 8/5
| I°=4/151 | 0] 1] 4/15 | -1/15 | 0 | 24/15 | The optlmal Solution WI“ not
| I1°=II-1/41’ | 11 01| -1/15 | 4/156 | 0O | 24/15 |

+ + + + +

| | | | |

G ~x1 +4x2 =8
@ X1
© \v/(1+2X2:1

4X1 +X2:8

11

Branch and Bound

® |et's consider first the left branch:

1 1
I 0w w 1w
1 N
! NN L
! ¢ S N

Q1 H NN
]]
| 1

w1 HOoOO IO

Mo '
| |

—_ - — — — =
1 1
1 0 1
1 AW 1w
1 NN

< R A

Moo 1o
]]
1 0 1w
1 w1
1 =N N
™o N~
Moot oo
| |

N1 O-HO IO

[!

| |
— I HOH 1O
Mo 1

| |

—_ ——— =
1 1
1 1
| |

[
2
=)
[
g —~
c e =)
P g o .
L c Q I
= 5°
© S 4 o
[\l
o 91919 Egls
>0 —— n —
[_—
S50 1w &
= o -« S =
® " Q19 a €
———————
1w WW W
T H A
NN o
N 1ot 1 N
NN
] 1
—t——— =
—t——— =
w1 HOoOO I O
Mo '
] 1
—t ===t =
[T 1
I A AW W
NN SN
AN ™
LI R - U R |
! !
—t ===t =
1 0 I
w1
AN N
MmN N
[T I L I |
] 1
—t——— =
N1 OHO I O
Mo '
] 1
—t ===t =
H 1 o0 1O
Mo)
] 1
—_. ——— -
]]
[] !
I 1
1o !
[]
o 1
[} !
o~]
[] !
1 1

101 7/4

1ol 1
111 -90/20

| bl -z
11 -16/4 101 9/4
0| -1/4

011
01 -9/4

| x4 | x5

o1l -1/4

1 | 15/60
010

0 | -37/60 |

0
0|
1

| x1 | x2 | %3
0

e e bbb
|
|
|

ey Sy S S S S S —————

II-1/41 |
|

II°=
III°

12

Branch and Bound

® Let's branch again

X2

\‘T X1 +4x0 =8

> X1

o \v/<1+2><2:1
4X1 +X2:8

We have three open problems. Which one we choose next?
Let's take A.

13

Branch and Bound

1 1
1 [
! NN [
N 1 NN o
[N - S R |
1 !
|4||||4|
—t ———— 4 —
1 1
© 1 1
Mo !

1 !
|4||||%|
1 < 1

1 N [
I w0~ [
w1 — 1o
M 1O o=
1 1
|4||||4|
¥ 1 OHO0OO I O
Mo !
1 1
|4||||%|
! [
I o I ©
1 <+ © (NS
Il NS [
™o — 0 [
M 1O 1 =O 1
1 1
|4||||4|
NI HOHO I O
Mo 1
1 1
|4||||%|
- 1 OO O I O
Mo I
1 1
—_ ——— — =
1 1
1 1
| |

| x6 | b | -z

| x4 | x5
o1l 1/4 I 01 -1/4
|
|
o1l -37/60 1 0| -9/4

0
0
0
1

| x1 | x2 | x3
0

continuing we find:

0
2

X1
Xy =
OPT =4

14

The final tree:

The optimal solution is 4.

Branch and Bound

15

Pruning

Pruning:

1. by optimality: zX = max{c”x : x € §¥}

2. by bound 7K <z
Example:

3. by infeasibility S* = ()

Branch and Bound

16

Branch and Bound

B&B Components

Bounding:
1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4, Duality

Branching:

S1=Sn{x:x<[x]}
S» = SN {x:x>[x]}

thus the current optimum is not feasible in S; and in S,.
Which variable to choose?
Eg: Most fractional variable arg maxjcc min{f;,1 — f;}

Choosing Node for Examination from the list of active (or open):
® Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just
adding a new constraint)
® Best Bound First: (eg. largest upper: z° = max, z
or largest lower - to die fast)
® Mixed strategies 17

k

Branch and Bound

Reoptimizing: dual simplex
Updating the Incumbent: when new best feasible solution is found:

z = max{z, 4}

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

18

Initialization
Initial problem S with
reformulation P on list

Incumbent =™ void

Call primal heuristic
1If solution @' of value z*
z=2z" 1

==

List
Empty?

[

Remove problem S from list
with formulation P*

and dual bound Z°

—

If Z° < Z, prune by bound

IN

Solve LP relaxation over P*
Dual bound Z" = LP value
2'(LP)=LP solution

I

If P* is empty, prunc by infeasibility

In

If Z° < Z. prune by bound

In

If =*(LP) integer, update primal bound
Z =7Z" and incumbent =z'(LP)
Prune by optimality

i

In

Retumn two subproblems S} and S}

with jons P} and P}
and upper bounds 7'

STOP

Incumbent optin

[Wolsey, 2021]

Lazy strategy: pruning, calculation,
branching, queue insertion; open no-
des are stored with the bound of their
father

Branch-and-Bound Algorithm ;

1.

12.
13.

14,

begin

zopr = heuristic solution mluo (pomhl» +00);

solve the continuous relaxation min{c”x : Ax = b, x > 0}, and let

x* be the optimal solution found;

LB[1] :=c"x"
if (x" integer) and (¢”x" < zopr) then
begin
Xopr = X' z0PT = CTX‘
end ;
if LB[1] < zopr then
begin
choose the fractional branching variable zj, ;
vbranch(1] = h; value[l] = z;,
Q
end ;
while Q # 0 do /+ process the active open nodesx/
begin

choose a node t € Q, and set Q := Q\ {t} ;
h = vbranch[f); val := valuelt] ;
for child =1 to 2 do /* generate the children of node ¢ */
begin
m:=m+1;:
if child =1
then parent[m)
else parent[m] :
define problem PL,, associated with node m
(constraints of PL; plus 2, < [val| if child = 1,
or 2y, > [vall if child = 2) ;

solve problem PL,,, and let x* be the optimal solution found ;

LB[m] = cTx";
if (x* integer) and (c"x* < zopr) then
begin /* update the optimal solution */
XopT :=X"; Z0PT * I'x
Q=Q\{j€Q : LB[j] > zorr}
end ;
if LB[m] < zopr then
begin
choose the fractional branching variable . ;
h[m)] == k; value[m) -
=QU{m}

[Fischetti, 2019]

Eager strategy: branching, calcula-
tion, pruning, queue insertion; open
nodes are stored with their own bo-
unds

Branch and Bound

Enhancements

® Preprocessor: constraint/problem/structure specific
tightening bounds
redundant constraints
variable fixing: eg: max{c’x : Ax < b,| <x < u}
fix x; = I;if ¢; < 0 and a;; > 0 for all /
fix x; = uj if ¢; >0 and a; <0 for all /

® User defined branching priorities: establish the next variable to branch (not in gurobi)

® Special ordered sets SOS (or generalized upper bound GUB)
K
ij =1 x;j € {0,1}
j=1

instead of: 5o = SN {x:x;=0}and S =SN{x:x =1}
{x:x; = 0} leaves k — 1 possibilities
{x: x; = 1} leaves only 1 possibility
hence tree unbalanced
here: Sy =SN{x:x; =0,i=1.r}and S, =SN{x:x; =0,i =r+1,.. k},
r= min{t : Zf:l)<j),< > %} 21

Branch and Bound

e Cutoff value: a user-defined primal bound to pass to the system.

® Simplex strategies: simplex is good for reoptimizing but for large models interior points
methods may work best.

® Strong branching: extra work to decide more accurately on which variable to branch:

1. choose a set C of fractional variables
2. reoptimize for each of them (in case for limited iterations)
3. ?j,?j (dual bound of down and up branch)

e : =4 ST
=a ax{z7,z;
J rgminm x{z;,z; }

ie, choose variable with most change in objective function, ie, largest decrease of dual
bound, eg, largest decrease of UB for max problem

22

Branch and Bound

There are four common reasons because integer programs can require a significant amount of
solution time:

1. There is lack of node throughput due to troublesome linear programming node solves.
2. There is lack of progress in the best integer solution, i.e., the primal bound.
3. There is lack of progress in the best dual bound.

4. There is insufficient node throughput due to numerical instability in the problem data or
excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

_|Primal bound — Dual bound|

-1
Primal bound + ¢ 00

gap

23

Branch and Bound

® heuristics for finding feasible solutions (generally NP-complete problem)

® find better lower bounds if they are weak: addition of cuts, stronger formulation, branch and
cut

® Branch and cut: a B&B algorithm with cut generation at all nodes of the tree. (instead of
reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally
Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the
node

24

Relative Optimality Gap

In CPLEX:

_ |best dual bound — best integer|
B |best integer + 1011

In SCIP and MIPLIB standard:

o pb — db
8P = inf{|z],z € [db, pb]}

100 for a minimization problem

(if pb > 0 and db > 0 then %)

if db = pb =0 then gap =0

if no feasible sol found or db < 0 < pb then the gap is not computed.

Branch and Bound

25

Branch and Bound

Last standard avoids problem of non decreasing gap if we go through zero

3186 2520 -666.6217 4096 956.6330 -667.2010 1313338 169.74Y%
3226 2560 -666.6205 4097 956.6330 -667.2010 1323797 169.74}
3266 2600 -666.6201 4095 956.6330 -667.2010 1335602 169.74Y%
Elapsed real time = 2801.61 sec. (tree size = 77.54 MB, solutions = 2)
* 3324+ 2656 -125.5775 -667.2010 1363079 431.31%
3334 2668 -666.5811 4052 -125.5775 -667.2010 1370748 431.31%
3380 2714 -666.5799 4017 -125.5775 -667.2010 1388391 431.31%

3422 2756 -666.5791 4011 -125.5775 -667.2010 1403440 431.31%

Branch and Bound

MILP Solvers Breakthroughs

We have seen Fractional Gomory cuts.
The introduction of Mixed Integer Gomory cuts in CPLEX was the major breakthrough of CPLEX 6.5 and
produced the version-to-version speed-up given by the blue bars in the chart below

MIP Performance Improvements

1991-2010

1 100000

8 10000

6 1000

Cumulative Speedup

4 100

Version-to-Version Speedup

1221 213 34 45 5.6 665 657 718 B9 9-10 1011 11-G3D

CPLEX to Gurobi Version-to-Version Pairs

(source: R. Bixby. Mixed-Integer Programming: It works better than you may think. 2010. Slides on the net)
27

Speedup over the past 25 years:

Hardware 2000 times
Software 2000 000 times

Branch and Bound

28

Advanced Techniques

We did not treat:

® LP: Dantzig Wolfe decomposition

LP: Column generation

LP: Delayed column generation

IP: Branch and Price

LP: Benders decompositions

® LP: Lagrangian relaxation

They are topics of DM872.

Branch and Bound

29

Branch and Bound

In the Exercises

Solve linear programming problems with:

® Simple method tool https://www.zweigmedia.com/simplex/simplex.php
® glpk https://dm871.github.io/notes/glpk.html
® |n Python: scipy.optimize.linprog

® |n Python: gurobipy or pyomo

30

https://www.zweigmedia.com/simplex/simplex.php
https://dm871.github.io/notes/glpk.html

Summary

1. Branch and Bound

Branch and Bound

31

	Branch and Bound

