
ROAR-NET API Specification

About ROAR-NET API

The ROAR-NET API defines a framework for black-box optimisation problem modelling. It is based
on abstractions aimed at unifying black-box optimisation problems, and on a clear separation
between problem modelling and randomised optimisation algorithms. The resulting
standardisation of black-box problem modelling leads to the following advantages:

• Different optimisation algorithms can operate on the same problem model, e.g., branch-and-
bound and local-search.

• Different optimisation problems (or models) can be solved by the same algorithms.

Conceptualisation

The goal of this specification is to define a minimal, programming-language agnostic, interface to the
optimisation problems that a wide variety of Randomised Optimisation Algorithms (ROAs) can use
to solve these problems. In doing this, the specification should facilitate modelling of real life problems
that can be solved by a wide range of algorithms and make it possible to easily benchmark problem
models and ROAs.

The specification defines the types and operations that have to be implemented when modelling an
optimisation problem in order to allow supported ROAs to function.

The API specification has the following design principles:

• it is agnostic of the programming language.
• it is agnostic of the programming paradigm.
• requires implementations of the API to only store problem-specific information. They must

be completely free of any information about the optimisation algorithm to be used.

Supported features

The API supports a broad range of problems and Randomised Optimisation Algorithms (ROAs). The
current version of the specification covers, but is not limited to, the following classes of single-
objective optimisation problems:

• combinatorial problems
• discrete problems

Furthermore, it considers the following main algorithmic approaches:

• Constructive search: solutions are constructed iteratively. For example, by adding a
component, or assigning the value of a decision variable, on each iteration.

◦ Example of algorithms include, backtracking, branch-and-bound, greedy algorithms, and

http://localhost:3000/print.html#roar-net-api-specification
http://localhost:3000/print.html#roar-net-api-specification
http://localhost:3000/print.html#about-roar-net-api
http://localhost:3000/print.html#about-roar-net-api
http://localhost:3000/print.html#conceptualisation
http://localhost:3000/print.html#conceptualisation
http://localhost:3000/print.html#supported-features
http://localhost:3000/print.html#supported-features

GRASP.
◦ Some of these algorithms may provide guarantees on the quality of the solution.

• Local search: solutions are found by modifying feasible solutions. For example, by exchanging
some components of the solution, or changing the value of a decision variable.

◦ Examples of algorithms include, first and best improvement local search, iterated local
search, and simulated annealing.

◦ These algorithms typically do not provide a guarantee on the quality of the solution found
but are usually able to find good approximations in a reasonable amount of time.

Extensions to multiple objectives, uncertainty settings, and support for further algorithms are
currently under discussion on the Github repository, where everyone is welcome to contribute and
propose new ideas.

Acknowledgement

This specification is based upon work from COST Action Randomised Optimisation Algorithms
Research Network (ROAR-NET), CA22137, supported by COST (European Cooperation in Science and
Technology).

COST (European Cooperation in Science and Technology) is a funding agency for research and
innovation networks. Our Actions help connect research initiatives across Europe and enable scientists
to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.

https://github.com/roar-net/roar-net-api-specification
https://github.com/roar-net/roar-net-api-specification
http://localhost:3000/print.html#acknowledgement
http://localhost:3000/print.html#acknowledgement
https://www.roar-net.eu/
https://www.roar-net.eu/
https://www.roar-net.eu/
https://www.roar-net.eu/
https://www.cost.eu/
https://www.cost.eu/

Background

Optimisation problem

Formally, we consider a (minimisation) problem in the form

The set is the set of feasible solutions, which is a subset of the decision space, . The mapping
 is an objective function that associates to each solution a real value in the

objective space, .

In this case, the objective space is totally ordered, and the minimum is given by all solutions
such that holds for all . Such a solution is called an optimal solution.
Maximisation problems, in which we are searching for the feasible solutions whose value is the
maximum in the objective space, can be reduced to minimisation problems as

.

In this specification, optimisation problems are specified by means of a Problem type.

Search space

The representation and the exploration of the search space of a problem implementing the API rely
on how solutions are characterised, how they are generated, and on how they are evaluated.

Candidate solutions

We assume that the details regarding the components of the solution are not exposed, nor the details
of how to create or modify a solution. Instead, the API provides abstract operations that allow to
generate and modify solutions in a black-box manner, and that is common to all algorithmic
approaches covered.

The API relies on the observation that:

• constructive search algorithms work by starting from an initial state and sequentially applying
actions or changes to it to attain new states until a goal is reached.

• local search algorithms work by maintaining a set of states, and iterating through states that can
be reached by applying (small) changes to the stored states.

In both cases, such states represent candidate solutions. The changes that allow to modify a solution
 to obtain another solution is called a move, in which case is called a neighbour of .

A candidate solution is an element of the decision space, , but not necessarily an element of the
set of feasible solutions. Such solution can violate constraints or satisfy other constraints that are
known to be necessary for optimal solutions. A candidate solution in ROAs can be:

• a partial solution, which may not contain yet all components of a feasible solution.

min{f(x) ∣ x ∈ F}

F S

f : S → R s ∈ S

R

∈ Fx∗

f() ≤ f(x)x∗ x ∈ F x∗

max{f(s) ∣ s ∈ F} = − min{−f(s) ∣ s ∈ F}

s s′ s′ s

s ∈ S

http://localhost:3000/print.html#background
http://localhost:3000/print.html#background
http://localhost:3000/print.html#optimisation-problem
http://localhost:3000/print.html#optimisation-problem
http://localhost:3000/print.html#search-space
http://localhost:3000/print.html#search-space
http://localhost:3000/print.html#candidate-solutions
http://localhost:3000/print.html#candidate-solutions

• a complete solution, which contains all components but may violate problem constraints and
may not be optimal.

In this specification, solutions are specified by means of a Solution type.

Neighbourhoods

We assume that the exploration of the search space relies on the concept of neighbourhood structure,
which has a central role in ROAs. A neighbourhood structure is given by the definition of a
neighbouring relation between solutions. That is, is a Boolean, whose value depends on
whether can be obtained from by means of the application of a small change operator, called
move. The set of solutions that can be reached in this way from forms the neighbourhood set of

, . Neighbourhood structures can be defined for both complete and partial solutions.

In this specification, the neighbourhood structure is specified by means of a Move type and a
Neighbourhood type, this latter implementing the generation of moves.

Solution evaluation

The specification provides operations to query the feasibility and the objective value of candidate
solutions. We do not assume to have available a mathematical description of nor , that is, we
assume a black box scenario. Even if a mathematical description of the decision space is known, we
assume that the feasibility and the objective value of candidate solutions are assessed in an oracle
manner, that is, without exposing how these assessments have been computed; e.g., the feasibility
and the objective value of candidate solutions could be assessed by executing a computationally costly
simulation, but this information is not shared. However, when present, mathematical descriptions can
be exploited to improve the implementation of the specification.

In ROA, the objective function is frequently replaced by an evaluation function , which is also a
mapping of the decision space to a set of real numbers . The evaluation function can account for
the objective function but also for penalties due to the violation of the problem constraints.

N(s,)s′

s′ s

s′ s

s N(s) ⊆ S

F f

g

S R

http://localhost:3000/print.html#neighbourhoods
http://localhost:3000/print.html#neighbourhoods
http://localhost:3000/print.html#solution-evaluation
http://localhost:3000/print.html#solution-evaluation

Types
The types to be defined by the user in this specification are:

• Problem
• Solution
• Move
• Neighbourhood

http://localhost:3000/print.html#types
http://localhost:3000/print.html#types

Problem

Signature

Description

The type Problem specifies the data structure to represent the particular instance of the problem to
solve. An instance of a problem is the definition of the data related to the specific example of the
abstract problem to solve. Data can be numerical or categorical values and specify, for example, the
size of solutions, the presence or not of particular constraints, the values of coefficients in
mathematical constraints or objectives.

Use cases

In the travelling salesman problem, Problem is a data structure containing at least the number of
nodes to visit and the matrix of distances between the nodes. If the instance is geographical then the
distance matrix can be replaced by the GPS coordinates of the nodes and by the formula to calculate
the distance (Euclidean, haversine).

If the problem is finding the inputs to a simulator that yield the desired results then the instance may
be the number of parameters input to the simulator and their domain. If these parameters are
conditioned over other parameters then the values of the conditioning parameters must be defined in
Problem .

See also

Solution, Neighbourhood, empty_solution, random_solution, construction_neighbourhood,
destruction_neighbourhood, local_neighbourhood.

Problem

http://localhost:3000/print.html#problem
http://localhost:3000/print.html#problem
http://localhost:3000/print.html#signature
http://localhost:3000/print.html#signature
http://localhost:3000/print.html#description
http://localhost:3000/print.html#description
http://localhost:3000/print.html#use-cases
http://localhost:3000/print.html#use-cases
http://localhost:3000/print.html#see-also
http://localhost:3000/print.html#see-also
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/operations/empty_solution.html
http://localhost:3000/operations/empty_solution.html
http://localhost:3000/operations/random_solution.html
http://localhost:3000/operations/random_solution.html
http://localhost:3000/operations/construction_neighbourhood.html
http://localhost:3000/operations/construction_neighbourhood.html
http://localhost:3000/operations/destruction_neighbourhood.html
http://localhost:3000/operations/destruction_neighbourhood.html
http://localhost:3000/operations/local_neighbourhood.html
http://localhost:3000/operations/local_neighbourhood.html

Candidate Solution

Signature

Description

The type Solution is a data structure defining a particular candidate solution. Therefore, Solution is
an expression of the decision space. In case of combinatorial optimisation, Solution can be a
particular combinatorial structure.

Solution instances are always associated to a problem instance, hence they have a reference to one
such an instance. Additionally, associated to a Solution instance there is its evaluation value, that we
assume to be of float type.

Candidate solutions define the elementary decisions (or components) from the decision space. For
example, in a problem that asks to determine the value of a set of decision variables taken from their
domains an elementary decision is the value assigned to a single variable. Candidate solutions can be
restricted to be complete, in that all its elementary decisions are defined. Alternatively, they can be
allowed to include partial solutions where only a subset of components is defined. This distinction is
not always relevant. For some problems where it makes sense for candidate solutions to be defined as
sets the number of components is not known a priori. Sets can also be represented by indicator
vectors in which case the distinction is again relevant but the vector representation might not be
convenient for the specific problem.

Instances of Solution must be candidate solutions but do not need to be feasible. For example, for a
local search that works on complete solutions, these solutions do not need to satisfy all constraints of
the problem but they do satisfy the requirement that all decisions are defined, even if they may break
some other problem constraints. On the other hand, partial solutions would not be valid instances of
Solution in that they do not satisfy the internal requirement of candidate solutions.

Candidate solutions can be direct or indirect representations of solutions. Indirect solution
representations can be used when we can identify a smaller decision space, such that for a given
member of this space a best corresponding solution for the original space can be derived in
polynomial time. A somehow related distinction is done in evolutionary algorithms between genotype
and phenotype. In this case, candidate solutions represent commonly genotypes.

Note, particular information used by the optimisation algorithm - tabu lists, pheromone matrix, etc -
must be stored on the algorithm's side.

However, Solution may contain auxiliary data structures to facilitate calculations, for example, of
increments.

Solution

http://localhost:3000/print.html#candidate-solution
http://localhost:3000/print.html#candidate-solution
http://localhost:3000/print.html#signature-1
http://localhost:3000/print.html#signature-1
http://localhost:3000/print.html#description-1
http://localhost:3000/print.html#description-1

Use cases

All algorithms need to be able to define, take as input and return as output instances of type
Solution . Moreover, they need to be able to modify them via neighbourhoods and their moves.

See also

Problem, Neighbourhood, Move, empty_solution, random_solution, copy_solution, lower_bound,
objective_value, moves, apply_move.

http://localhost:3000/print.html#use-cases-1
http://localhost:3000/print.html#use-cases-1
http://localhost:3000/print.html#see-also-1
http://localhost:3000/print.html#see-also-1
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/empty_solution.html
http://localhost:3000/operations/empty_solution.html
http://localhost:3000/operations/random_solution.html
http://localhost:3000/operations/random_solution.html
http://localhost:3000/operations/copy_solution.html
http://localhost:3000/operations/copy_solution.html
http://localhost:3000/operations/lower_bound.html
http://localhost:3000/operations/lower_bound.html
http://localhost:3000/operations/objective_value.html
http://localhost:3000/operations/objective_value.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/apply_move.html

Neighbourhood

Signature

Description

The Neighbourhood type represents a particular neighbourhood structure defined over the decision
space of a given problem instance. Neighbourhood structures are constructive or destructive if they
work with partial candidate solutions and local if they work with complete solutions. Constructive
neighbourhood structures consist of changes that add components to partial candidate solutions
yielding partial or complete solutions. Destructive neighbourhoods structures consist of changes that
remove components from complete or partial solutions yielding partial solutions. Local
neighbourhood structures consist of changes that leave solutions complete.

Formally, a neighbourhood structure can be defined as:

• a function
• a function
• a subset of pairs of candidate solutions
• a subset of candidate solutions for every solution :

Neighbourhoods are also characterised by:

• their size defined as
• symmetricity if
• neighbourhood graph of a directed graph: with and

 (if symmetric neighbourhood then undirected graph)

Use cases

The algorithms will need to access the Neighbourhood instances associated with the problem. The
related operations construction_neighbourhood , destruction_neighbourhood and local(-
search)-neighbourhoods are used by algorithms to determine the instances of the Neighbourhood
types implemented.

See also

Problem, Solution, Move, construction_neighbourhood, destruction_neighbourhood,
local_neighbourhood, moves.

Neighbourhood

N

N : →Sπ 2Sπ

N : × → T , FSπ Sπ

N ⊆ ×Sπ Sπ

s N(s) := ∈ S|N(s,)s′ s′

|N(s)|
∈ N(s) ⟹ s ∈ N()s′ s′

(S, N , π) := (V , A)GN V = S

(uv) ∈ A ⟺ v ∈ N(u)

http://localhost:3000/print.html#neighbourhood
http://localhost:3000/print.html#neighbourhood
http://localhost:3000/print.html#signature-2
http://localhost:3000/print.html#signature-2
http://localhost:3000/print.html#description-2
http://localhost:3000/print.html#description-2
http://localhost:3000/print.html#use-cases-2
http://localhost:3000/print.html#use-cases-2
http://localhost:3000/print.html#see-also-2
http://localhost:3000/print.html#see-also-2
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/construction_neighbourhood.html
http://localhost:3000/operations/construction_neighbourhood.html
http://localhost:3000/operations/destruction_neighbourhood.html
http://localhost:3000/operations/destruction_neighbourhood.html
http://localhost:3000/operations/local_neighbourhood.html
http://localhost:3000/operations/local_neighbourhood.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/moves.html

Move

Description

The Move type identifies the changes between two neighbouring solutions. Formally, for a problem
instance , candidate solution space , and a neighbourhood structure , there is
an instance of Move for every pair of candidate solutions, , in containing the
information used by an operator function that applied to yields , that is, . The
operation apply implements the operator function.

It follows that a particular neighbourhood structure can be fully represented by a
collection of operator functions and that for each candidate solution the neighbourhood set

 associated to is generated by a subset of operator functions . Hence,
. For each solution the operator functions are

described by a set of instantiations of Moves that is generated by move generators, like the operations
moves .

As an example, for candidate solutions that are linear permutations, a possible neighbourhood
structure defines as neighbouring two solutions if they differ only in the position of two adjacent
elements in the permutation. This neighbourhood structure can be represented by a Move with
information about the position of the first element to swap. The operator function that uses this
information will change the element indexed by Move with the following element in the permutation.
The generator moves will instantiate all moves that are needed to reach all neighbouring solutions. In
this case, there are as many moves as are the elements in the permutation each specifying a different
index.

Use cases

Each neighbourhood structure defines its own moves that are generated by move generators such as
moves and are used by the operator apply to implement the changes to the solution. Hence, we

need a different definition for Move , moves and apply for each neighbourhood structure.

See also

Neighbourhood, Solution, moves, apply_move, invert_move, lower_bound_increment,
objective_value_increment.

Move

π Sπ N (π) ⊆ (S × S)
s, ∈ Ss′ s, s′ N (π)

δ s s′ = δ(s)s′

N (π) ⊆ (S × S)
Δ s ∈ S

N(s) N Δ(s) ⊆ Δ
∈ N(s) ⟺ = δ(s), δ ∈ Δ(s)s′ s′ s δ ∈ Δ(s)

http://localhost:3000/print.html#move
http://localhost:3000/print.html#move
http://localhost:3000/print.html#description-3
http://localhost:3000/print.html#description-3
http://localhost:3000/print.html#use-cases-3
http://localhost:3000/print.html#use-cases-3
http://localhost:3000/print.html#see-also-3
http://localhost:3000/print.html#see-also-3
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/invert_move.html
http://localhost:3000/operations/invert_move.html
http://localhost:3000/operations/lower_bound_increment.html
http://localhost:3000/operations/lower_bound_increment.html
http://localhost:3000/operations/objective_value_increment.html
http://localhost:3000/operations/objective_value_increment.html

Operations

http://localhost:3000/print.html#operations
http://localhost:3000/print.html#operations

Empty solution

Signature

Description

This function produces an empty solution for the given problem instance.

Use cases

Empty solutions are typically used as initial solutions in constructive search.

See also

Problem, Solution.

empty_solution(Problem) : Solution

http://localhost:3000/print.html#empty-solution
http://localhost:3000/print.html#empty-solution
http://localhost:3000/print.html#signature-3
http://localhost:3000/print.html#signature-3
http://localhost:3000/print.html#description-4
http://localhost:3000/print.html#description-4
http://localhost:3000/print.html#use-cases-4
http://localhost:3000/print.html#use-cases-4
http://localhost:3000/print.html#see-also-4
http://localhost:3000/print.html#see-also-4
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html

Heuristic solution

Signature

Description

This function produces a feasible solution for the given problem instance or none if the underlying
heuristic fails to generate such a solution.

Use cases

Heuristic solutions are often used as initial solutions in local search.

See also

Problem, Solution.

heuristic_solution(Problem) : Solution[0..1]

http://localhost:3000/print.html#heuristic-solution
http://localhost:3000/print.html#heuristic-solution
http://localhost:3000/print.html#signature-4
http://localhost:3000/print.html#signature-4
http://localhost:3000/print.html#description-5
http://localhost:3000/print.html#description-5
http://localhost:3000/print.html#use-cases-5
http://localhost:3000/print.html#use-cases-5
http://localhost:3000/print.html#see-also-5
http://localhost:3000/print.html#see-also-5
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html

Random solution

Signature

Description

This function samples the feasible decision space of the given problem instance uniformly at random
(with replacement) and produces a feasible solution.

Use cases

Random solutions are often used as initial solutions in local search. The initial population of
evolutionary algorithms typically consists of solutions generated at random.

See also

Problem, Solution.

random_solution(Problem) : Solution

http://localhost:3000/print.html#random-solution
http://localhost:3000/print.html#random-solution
http://localhost:3000/print.html#signature-5
http://localhost:3000/print.html#signature-5
http://localhost:3000/print.html#description-6
http://localhost:3000/print.html#description-6
http://localhost:3000/print.html#use-cases-6
http://localhost:3000/print.html#use-cases-6
http://localhost:3000/print.html#see-also-6
http://localhost:3000/print.html#see-also-6
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html

Copy solution

Signature

Description

This function produces a copy of the given solution.

Use cases

Making copies of solutions may be required when keeping track of the best solution found so far. It is
also required by optimisation algorithms such as beam search and evolutionary algorithms.

See also

Solution.

copy_solution(Solution) : Solution

http://localhost:3000/print.html#copy-solution
http://localhost:3000/print.html#copy-solution
http://localhost:3000/print.html#signature-6
http://localhost:3000/print.html#signature-6
http://localhost:3000/print.html#description-7
http://localhost:3000/print.html#description-7
http://localhost:3000/print.html#use-cases-7
http://localhost:3000/print.html#use-cases-7
http://localhost:3000/print.html#see-also-7
http://localhost:3000/print.html#see-also-7
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html

Lower bound

Signature

Description

This function produces a lower bound on the value taken by the objective function at any feasible
solution that can be obtained by applying construction moves to the given, presumably partial,
solution. If it is known that no feasible solution can be obtained by further construction, this function
should produce no value.

Evaluation of the lower bound must occur before this function returns, but the time at which the
evaluation actually occurs is otherwise unspecified.

It is assumed that the objective function is to be minimised.

Use cases

Lower bounds are typically used in constructive search to guide solution construction or to stop it
early (also known as pruning) by signalling that a better feasible solution than the best one known so
far can no longer be constructed from a given partial solution.

Lower-bound functions are strongly related to the notion of admissible heuristics in computer science.

See also

Solution, Neighbourhood, Move, objective_value, empty_solution, apply_move,
lower_bound_increment.

lower_bound(Solution) : double[0..1]

http://localhost:3000/print.html#lower-bound
http://localhost:3000/print.html#lower-bound
http://localhost:3000/print.html#signature-7
http://localhost:3000/print.html#signature-7
http://localhost:3000/print.html#description-8
http://localhost:3000/print.html#description-8
http://localhost:3000/print.html#use-cases-8
http://localhost:3000/print.html#use-cases-8
http://localhost:3000/print.html#see-also-8
http://localhost:3000/print.html#see-also-8
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/objective_value.html
http://localhost:3000/operations/objective_value.html
http://localhost:3000/operations/empty_solution.html
http://localhost:3000/operations/empty_solution.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/lower_bound_increment.html
http://localhost:3000/operations/lower_bound_increment.html

Objective value

Signature

Description

This function produces the value of the objective function at the given solution if the solution is
feasible, and no value otherwise. A solution is feasible if it satisfies all constraints of the problem. The
objective value of an infeasible solution is undefined.

In general, both complete and partial solutions may be feasible or infeasible. Feasible partial solutions
are common, for example, in models of the knapsack problem, as even an empty knapsack is a
feasible solution. Infeasible complete solutions may arise, for example, when constructing solutions
for the travelling salesman problem on incomplete graphs.

Evaluation of the objective function must occur before this function returns, but the time at which the
evaluation actually occurs is otherwise unspecified.

It is assumed that the objective function is to be minimised.

Use cases

Objective-value evaluation is required by all optimisation algorithms.

See also

Solution, lower_bound, objective_value_increment.

objective_value(Solution) : double[0..1]

http://localhost:3000/print.html#objective-value
http://localhost:3000/print.html#objective-value
http://localhost:3000/print.html#signature-8
http://localhost:3000/print.html#signature-8
http://localhost:3000/print.html#description-9
http://localhost:3000/print.html#description-9
http://localhost:3000/print.html#use-cases-9
http://localhost:3000/print.html#use-cases-9
http://localhost:3000/print.html#see-also-9
http://localhost:3000/print.html#see-also-9
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/operations/lower_bound.html
http://localhost:3000/operations/lower_bound.html
http://localhost:3000/operations/objective_value_increment.html
http://localhost:3000/operations/objective_value_increment.html

Construction neighbourhood

Signature

Description

This function returns the construction neighbourhood structure of the given problem instance. In a
constructive-search model of a combinatorial optimisation problem, the construction neighbourhood
structure, or construction rule, specifies how partial solutions, including empty solutions, may be
made progressively more complete until a complete solution is reached.

Use cases

A construction neighbourhood structure is required by all constructive search approaches, including
but not limited to greedy construction and ruin and recreate.

See also

Problem, Neighbourhood, destruction_neighbourhood, empty_solution.

construction_neighbourhood(Problem) : Neighbourhood

http://localhost:3000/print.html#construction-neighbourhood
http://localhost:3000/print.html#construction-neighbourhood
http://localhost:3000/print.html#signature-9
http://localhost:3000/print.html#signature-9
http://localhost:3000/print.html#description-10
http://localhost:3000/print.html#description-10
http://localhost:3000/print.html#use-cases-10
http://localhost:3000/print.html#use-cases-10
http://localhost:3000/print.html#see-also-10
http://localhost:3000/print.html#see-also-10
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/operations/destruction_neighbourhood.html
http://localhost:3000/operations/destruction_neighbourhood.html
http://localhost:3000/operations/empty_solution.html
http://localhost:3000/operations/empty_solution.html

Destruction neighbourhood

Signature

Description

This function returns the destruction neighbourhood structure of the given problem instance. In a
constructive-search model of a combinatorial optimisation problem, the destruction neighbourhood
structure, or destruction rule, dictates how complete or partial solutions may be made progressively
less complete until an empty solution is reached.

Use cases

A destruction neighbourhood structure is required by some constructive search approaches, such as
ruin and recreate.

See also

Problem, Neighbourhood, construction_neighbourhood, empty_solution.

destruction_neighbourhood(Problem) : Neighbourhood

http://localhost:3000/print.html#destruction-neighbourhood
http://localhost:3000/print.html#destruction-neighbourhood
http://localhost:3000/print.html#signature-10
http://localhost:3000/print.html#signature-10
http://localhost:3000/print.html#description-11
http://localhost:3000/print.html#description-11
http://localhost:3000/print.html#use-cases-11
http://localhost:3000/print.html#use-cases-11
http://localhost:3000/print.html#see-also-11
http://localhost:3000/print.html#see-also-11
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/operations/construction_neighbourhood.html
http://localhost:3000/operations/construction_neighbourhood.html
http://localhost:3000/operations/empty_solution.html
http://localhost:3000/operations/empty_solution.html

Local neighbourhood

Signature

Description

This function returns the local neighbourhood structure of the given problem instance. In a local-
search model of a combinatorial optimisation problem, the local neighbourhood structure specifies
which feasible solutions, or neighbours, can be obtained from each feasible solution by means of a
"small" modification. The notion of local optimum is intrinsically tied to the definition of such a
neighbourhood.

Use cases

A local neighbourhood structure is required by all local search approaches, including but not limited to
best-improvement, first-improvement and iterated local search, tabu search and evolutionary
algorithms.

See also

Problem, Neighbourhood.

local_neighbourhood(Problem) : Neighbourhood

http://localhost:3000/print.html#local-neighbourhood
http://localhost:3000/print.html#local-neighbourhood
http://localhost:3000/print.html#signature-11
http://localhost:3000/print.html#signature-11
http://localhost:3000/print.html#description-12
http://localhost:3000/print.html#description-12
http://localhost:3000/print.html#use-cases-12
http://localhost:3000/print.html#use-cases-12
http://localhost:3000/print.html#see-also-12
http://localhost:3000/print.html#see-also-12
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Problem.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html

Moves

Signature

Description

This function provides for the complete enumeration of the neighbours of a given solution by
producing a sequence of moves in unspecified order.

Pre-requisites

Both the given neighbourhood structure and the given solution must pertain to the same problem
instance.

Use cases

Move enumeration is appropriate when the optimisation algorithm performs a full exploration of the
set of neighbours of a solution before deciding how to proceed. In this case, enumeration order is
irrelevant to the algorithm.

Greedy construction with random tie breaking and best-improvement local search are examples of
algorithms where the whole set of neighbours is explored before the next move is accepted or the
algorithm stops.

See also

Neighbourhood, Solution, Move, random_moves_without_replacement, apply_move.

moves(Neighbourhood, Solution) : Move[0..*]

http://localhost:3000/print.html#moves
http://localhost:3000/print.html#moves
http://localhost:3000/print.html#signature-12
http://localhost:3000/print.html#signature-12
http://localhost:3000/print.html#description-13
http://localhost:3000/print.html#description-13
http://localhost:3000/print.html#pre-requisites
http://localhost:3000/print.html#pre-requisites
http://localhost:3000/print.html#use-cases-13
http://localhost:3000/print.html#use-cases-13
http://localhost:3000/print.html#see-also-13
http://localhost:3000/print.html#see-also-13
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/random_moves_without_replacement.html
http://localhost:3000/operations/random_moves_without_replacement.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/apply_move.html

Random move

Signature

Description

This function provides for the random sampling of the neighbours of a given solution by producing a
move drawn uniformly at random from the set of possible moves for that solution under the given
neighbourhood structure or none if no such moves exist.

Pre-requisites

Both the given neighbourhood structure and the given solution must pertain to the same problem
instance.

Use cases

Sampling moves uniformly at random is appropriate when only a partial exploration of the set of
neighbours of a solution is performed by the optimisation algorithm. In this case, complete
exploration of that set is neither expected nor detected.

Randomised local search (RLS) and most evolutionary algorithms are examples of algorithms where a
single move for each solution is typically generated at random and immediately applied.

See also

Neighbourhood, Solution, Move, moves, apply_move.

random_move(Neighbourhood, Solution) : Move[0..1]

http://localhost:3000/print.html#random-move
http://localhost:3000/print.html#random-move
http://localhost:3000/print.html#signature-13
http://localhost:3000/print.html#signature-13
http://localhost:3000/print.html#description-14
http://localhost:3000/print.html#description-14
http://localhost:3000/print.html#pre-requisites-1
http://localhost:3000/print.html#pre-requisites-1
http://localhost:3000/print.html#use-cases-14
http://localhost:3000/print.html#use-cases-14
http://localhost:3000/print.html#see-also-14
http://localhost:3000/print.html#see-also-14
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/apply_move.html

Random moves without replacement

Signature

Description

This function provides for the complete enumeration of the neighbours of a given solution by
producing a sequence of moves in random order.

Pre-requisites

Both the given neighbourhood structure and the given solution must pertain to the same problem
instance.

Use cases

Sampling at random without replacement is appropriate when the optimisation algorithm explores
the set of neighbours of a solution sequentially and may decide to stop the exploration and proceed
some other way after seeing each move. In this case, the order in which moves are presented may
influence how long such a partial exploration takes. Sampling at random without replacement avoids
the bias inherent to deterministic enumeration, while still allowing completion of the exploration to be
detected.

First-improvement local search is an example of an algorithm where moves are typically accepted
before the whole set of neighbours is explored, but complete exploration is still performed in case no
improving move is found.

See also

Neighbourhood, Solution, Move, moves, apply_move.

random_moves_without_replacement(Neighbourhood, Solution) : Move[0..*]

http://localhost:3000/print.html#random-moves-without-replacement
http://localhost:3000/print.html#random-moves-without-replacement
http://localhost:3000/print.html#signature-14
http://localhost:3000/print.html#signature-14
http://localhost:3000/print.html#description-15
http://localhost:3000/print.html#description-15
http://localhost:3000/print.html#pre-requisites-2
http://localhost:3000/print.html#pre-requisites-2
http://localhost:3000/print.html#use-cases-15
http://localhost:3000/print.html#use-cases-15
http://localhost:3000/print.html#see-also-15
http://localhost:3000/print.html#see-also-15
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/apply_move.html

Apply move

Signature

Description

This function applies a move to a solution in order to produce the corresponding neighbour.

Pre-requisites

The given move must have been generated under some neighbourhood for the given solution or a
pristine copy of it, or be the inverse of the move that produced the given solution.

Use cases

Applying moves to solutions is required by all optimisation algorithms in order to visit new solutions.

See also

Move, Solution, invert_move, moves.

apply_move(Move, Solution) : Solution

http://localhost:3000/print.html#apply-move
http://localhost:3000/print.html#apply-move
http://localhost:3000/print.html#signature-15
http://localhost:3000/print.html#signature-15
http://localhost:3000/print.html#description-16
http://localhost:3000/print.html#description-16
http://localhost:3000/print.html#pre-requisites-3
http://localhost:3000/print.html#pre-requisites-3
http://localhost:3000/print.html#use-cases-16
http://localhost:3000/print.html#use-cases-16
http://localhost:3000/print.html#see-also-16
http://localhost:3000/print.html#see-also-16
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/operations/invert_move.html
http://localhost:3000/operations/invert_move.html
http://localhost:3000/operations/moves.html
http://localhost:3000/operations/moves.html

Invert move

Signature

Description

This function produces the inverse of a given move. If a given move can be applied to a solution A to
obtain solution B, then applying its inverse to solution B must produce solution A. As a consequence,
the inverse of a construction move must be a valid destruction move and vice-versa.

Use cases

Obtaining the inverse of moves allows backtracking to be performed from a given solution by applying
the inverse of each move previously applied to the solution in reverse order. This assumes that
storing, inverting and applying moves is generally more efficient than copying and storing solutions.

See also

Move, apply_move.

invert_move(Move) : Move

http://localhost:3000/print.html#invert-move
http://localhost:3000/print.html#invert-move
http://localhost:3000/print.html#signature-16
http://localhost:3000/print.html#signature-16
http://localhost:3000/print.html#description-17
http://localhost:3000/print.html#description-17
http://localhost:3000/print.html#use-cases-17
http://localhost:3000/print.html#use-cases-17
http://localhost:3000/print.html#see-also-17
http://localhost:3000/print.html#see-also-17
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/apply_move.html

Lower-bound increment

Signature

Description

This function produces the difference between the lower bound of the solution that would be
obtained by applying the given move to the given solution and the lower bound of the given solution.
If lower bound of either solution is undefined, the lower-bound increment is also undefined, and this
function produces no value.

Since it is assumed that the objective function is to be minimised, the lower-bound increment resulting
from a construction move cannot be negative, and that resulting from a destruction move cannot be
positive.

Pre-requisites

The given move must have been generated under some neighbourhood structure for the given
solution or a pristine copy of it, or be the inverse of the move that produced the given solution.

Use cases

The lower-bound increment provides a heuristic measure of move quality in constructive search. In
algorithms such as GRASP, construction moves typically consist of adding components to the current
solution, and move quality is often seen as an attribute of the components themselves. The lower-
bound increment provides a more general, drop-in replacement for such move-quality heuristics in
constructive search.

Determining the lower-bound increment can often be performed faster than applying a move to a
solution and computing the difference between the two lower-bound values. This avoids spending
time applying moves to solutions that will be discarded immediately, and motivates further investment
in efficient lower-bound increment evaluation, even if at the expense of some additional processing
when moves are applied to solutions.

See also

Solution, Neighbourhood, Move, lower_bound, objective_value, objective_value_increment.

lower_bound_increment(Move, Solution) : double[0..1]

http://localhost:3000/print.html#lower-bound-increment
http://localhost:3000/print.html#lower-bound-increment
http://localhost:3000/print.html#signature-17
http://localhost:3000/print.html#signature-17
http://localhost:3000/print.html#description-18
http://localhost:3000/print.html#description-18
http://localhost:3000/print.html#pre-requisites-4
http://localhost:3000/print.html#pre-requisites-4
http://localhost:3000/print.html#use-cases-18
http://localhost:3000/print.html#use-cases-18
http://localhost:3000/print.html#see-also-18
http://localhost:3000/print.html#see-also-18
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/lower_bound.html
http://localhost:3000/operations/lower_bound.html
http://localhost:3000/operations/objective_value.html
http://localhost:3000/operations/objective_value.html
http://localhost:3000/operations/objective_value_increment.html
http://localhost:3000/operations/objective_value_increment.html

Objective-value increment

Signature

Description

This function produces the difference between the value of the objective function at the solution that
would be obtained by applying the given move to the given solution and the corresponding value at
the given solution. If either solution is infeasible, the objective-value increment is undefined, and this
function produces no value.

It is assumed that the objective function is to be minimised.

Pre-requisites

The given move must have been generated under some neighbourhood structure for the given
solution or a pristine copy of it, or be the inverse of the move that produced the given solution.

Use cases

The objective-value increment provides a measure of move quality, especially in local-search
algorithms, but also in constructive search algorithms.

Determining the objective-value increment can often be performed faster than applying a move to a
solution and computing the difference between the two objective values. This avoids spending time
applying moves to solutions that will be discarded immediately, and motivates further investment in
efficient objective-value increment evaluation, even if at the expense of some additional processing
when moves are applied to solutions.

See also

Solution, Neighbourhood, Move, objective_value, apply_move.

objective_value_increment(Move, Solution) : double[0..1]

http://localhost:3000/print.html#objective-value-increment
http://localhost:3000/print.html#objective-value-increment
http://localhost:3000/print.html#signature-18
http://localhost:3000/print.html#signature-18
http://localhost:3000/print.html#description-19
http://localhost:3000/print.html#description-19
http://localhost:3000/print.html#pre-requisites-5
http://localhost:3000/print.html#pre-requisites-5
http://localhost:3000/print.html#use-cases-19
http://localhost:3000/print.html#use-cases-19
http://localhost:3000/print.html#see-also-19
http://localhost:3000/print.html#see-also-19
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Solution.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Neighbourhood.html
http://localhost:3000/types/Move.html
http://localhost:3000/types/Move.html
http://localhost:3000/operations/objective_value.html
http://localhost:3000/operations/objective_value.html
http://localhost:3000/operations/apply_move.html
http://localhost:3000/operations/apply_move.html

Glossary

complete solution

A solution for which all (decision) components are decided on.

construction neighbourhood

A neighbourhood structure for partial solutions where every neighbour solution is more complete, in
the sense that more components are decided on, and may either be a partial or a complete solution.
This means that, the consecutive application of (constructive) moves to a given partial solution will
eventually lead to a complete solution.

decision space

The domain of the optimisation problem, which contains the set of all partial and all complete
(candidate) solutions for the given problem definition.

destruction neighbourhood

A neighbourhood structure for partial and for complete solutions where every neighbour solution is
less complete, in the sense that less components are decided on, and is a partial solution. This means
that, the consecutive application of (destructive) moves to a given solution will eventually lead to an
empty solution.

empty solution

A solution for which no components are decided on.

feasible set

The subset of the decision space consisting of all feasible solutions.

feasible solution

A solution for which the objective function is defined.

http://localhost:3000/print.html#glossary
http://localhost:3000/print.html#glossary
http://localhost:3000/print.html#complete-solution
http://localhost:3000/print.html#complete-solution
http://localhost:3000/print.html#construction-neighbourhood-1
http://localhost:3000/print.html#construction-neighbourhood-1
http://localhost:3000/print.html#decision-space
http://localhost:3000/print.html#decision-space
http://localhost:3000/print.html#destruction-neighbourhood-1
http://localhost:3000/print.html#destruction-neighbourhood-1
http://localhost:3000/print.html#empty-solution-1
http://localhost:3000/print.html#empty-solution-1
http://localhost:3000/print.html#feasible-set
http://localhost:3000/print.html#feasible-set
http://localhost:3000/print.html#feasible-solution
http://localhost:3000/print.html#feasible-solution

infeasible solution

A solution for which the objective function is undefined.

local neighbourhood

A neighbourhood structure for solutions that are complete and feasible, and where each neighbour
solution is also complete and feasible.

move

A description of, or a data structure encoding, a set of changes to be applied to a solution to obtain a
neighbour solution. A move is assumed to always be associated to some neighbourhood structure.

neighbour

A solution that, under a given neighbourhood structure, can be obtained by applying a set of changes
(a move) to a given solution, in which case the former solution is called a neighbour of the latter.

neighbourhood size

The total number of neighbours of a given solution under a given neighbourhood structure.

neighbourhood structure

A description of the neighbourhood of any given solution, which relies on a set of rules that define
which solutions are neighbours of the given solution, and the moves that lead to them.

objective function

A function mapping a solution in the decision space to an element of the objective space (in this case,
a real value). Minimisation is assumed, that is, a solution is considered better than any other solution
with a greater objective value.

objective space

The codomain of the objective function. In this specification, the objective space is the set of real

http://localhost:3000/print.html#infeasible-solution
http://localhost:3000/print.html#infeasible-solution
http://localhost:3000/print.html#local-neighbourhood-1
http://localhost:3000/print.html#local-neighbourhood-1
http://localhost:3000/print.html#move-1
http://localhost:3000/print.html#move-1
http://localhost:3000/print.html#neighbour
http://localhost:3000/print.html#neighbour
http://localhost:3000/print.html#neighbourhood-size
http://localhost:3000/print.html#neighbourhood-size
http://localhost:3000/print.html#neighbourhood-structure
http://localhost:3000/print.html#neighbourhood-structure
http://localhost:3000/print.html#objective-function
http://localhost:3000/print.html#objective-function
http://localhost:3000/print.html#objective-space
http://localhost:3000/print.html#objective-space

values, .

partial solution

A solution for which some of the components are not decided on.

solution

An element of the decision space. A solution is described by a set of (decision) components, which may
or may not be decided on.

R

http://localhost:3000/print.html#partial-solution
http://localhost:3000/print.html#partial-solution
http://localhost:3000/print.html#solution
http://localhost:3000/print.html#solution

