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Preface

For multivariate functions, we have argued that:

® derivatives can have exponential growth in the resulting analytical expression

® calculating zeros might be challenging

Hence, minimizing by solving Vf(x) = 0 may be computationally demanding.



Descent Direction lteration

Descent Direction Methods use a local model to incrementally improve design point until some
convergence criteria is met

1. Check termination conditions at x; if not met, continue.
2. Decide descent direction dj using local information
3. Decide step size (= magnitude of the overall step = v, since commonly ||di||> = 1)

4. Compute next design point x, 1

X1 < Xk + apdy




Line Search for Step Size

Assuming we have the search direction:

® Used to compute «

® Using the techniques discussed from previous classes, solve:

minimize, f(x + ad)

® Often this is computed approximately to reduce cost



Line Search: Alternatives

Step size:

® Fixed « called learning rate (commonly ||dk||> = 1 not imposed)

® Decaying step factor

ax = apy* ! for v € [0, 1]

Decaying step factor is often required in convergence proofs



Approximate Line Search

® |f function calls are expensive, rather than finding the minimum along a search direction, find
a point of sufficient decrease

f(xk+1) < f(xk) + BaVg, f(xk)
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Sufficient decrease

® 3c10,1], usually B =1x10"*

® Backtracking line search starts with a large step and then backs off

def backtracking_line_search(f, grad, x, d, alpha_0=1, p=0.5, beta=le-4):
y, g, alpha = f(x), grad(x), alpha_0
while ( f(x + alpha * d) > y + beta * alpha * np.dot(g, d) )
alpha *= p
return alpha



Approximate Line Search: Example




Approximate Line Search

Building on backtracking line search are the Wolfe Conditions each sufficient to guarantee
convergence to a local minimum.

1. First Wolfe Condition: Sufficient Decrease

f(Xk+1) < f(Xk) + “Savdk f(Xk)

2. Second Wolfe Condition: Curvature Condition

de f(Xk+1) > O’de f(Xk)

f <o <1with
- 0 = 0.1 with conjugate gradient method
- 0 = 0.9 with Newton method



Approximate Line Search

The curvature condition ensures the second-order function approximations have positive curvature

de f(Xk+1) 2 ank f(Xk)

mimmum of second-order approximation
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Approximate Line Search

Regions satisfying the curvature condition

de f(Xk+1) 2 (J'Vdk f(Xk)

reduced curvature
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Approximate Line Search: Example

Consider approximate line search on f(xi,x0) = x7 + x1x0 + x5

from x = [1,2] in the direction d = [—1, —1], gradient at x is g = [4, 5]

using a maximum step size of 10, a reduction factor of 0.5,

first Wolfe condition parameter 3 = 1 x 10~*, second Wolfe condition parameter o = 0.9.

first Wolfe condition (f(x + ad) < f(x) + Ba(g” - d)):

a=10:  f([1,2] +10-[-1,-1]) <7+ 1 x 107*10[4,5]"[-1, 1] = 217 £ 6.991
a=10-05=5: f([1,2]+5[-1,—1]) <7+1x 107*5[4,5]"[-1,—1] — 37 £ 6.996
a=25: f([1,2]+25 [-1,-1]) <7+1x 107*25[4,5]7[-1,-1] = 3.25 < 6.998

The candidate design point x’ = x + ad = [—-1.5, —.0.5] is checked against the second Wolfe
condition V47 (x") > oV 4f(x):

[-3.5,—2.5] - [-1,—1] > o[4,5] - [-1,-1] = 6> —8.1

Approximate line search terminates with x = [~1.5, —0.5]. .



Approximate Line Search

Regions where the strong curvature condition is satisfied

‘vdk f(xk+1)‘ < 70‘de f(xk)
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Approximate Line Search

® The sufficient decrease condition with the strong curvature condition form the strong Wolfe
conditions.

® Satisfying the strong Wolfe conditions requires a more complicated algorithm

Strong backtracking line search:

1. Bracketing Phase: tests successively larger step sizes to bracket an interval [ 1, ]
guaranteed to contain step lengths satisfying the Wolfe conditions.

2. Zoom Phase: shrink the interval using bisection to find point satisfying the strong Wolfe
conditions
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Approximate Line Search

1. Bracketing Phase
An interval guaranteed to contain step lengths satisfying the Wolfe conditions is found when one of
the following conditions hold:

F(x+ad) > f(x)
f(x+ ad) > f(x) + paVdf(x)
Vi(x+ad)>0
v= ) T 1
- P f(x+ad) > f(x) + paVaf(x)
)y fats B Vf(x+ad) > 0
— LV I Wolfe conditions satisfied

Yas(x)
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Approximate Line Search

1. Braketing Phase + zoom phase (o)

flx+ad) > f(x)
e f(x+ad) > fix) + BaVaf(x)
oV f(x+ad) > 0
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Trust Region Methods

® Descent methods can place too much trust in their first and second order information

® A trust region is the local area of the design space where the local model is believed to be
reliable.

® Trust region methods, or restricted step methods, limit the step size to ensure local
approximation error is minimized

® |f the improvement matches the predicted value, the trust region is expanded; otherwise it is
contracted
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Trust Region Methods
® x’ is new design point

U f(x/) is local function approximation, eg, second-order Taylor approximation

® § is trust region radius

minimize, f(x)
subject to  ||x — x|| <4

Constrained optimization problem.
It can be solved efficiently if 7 quadratic
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Trust Region Methods

0 can be expanded or contracted based on performance

actual improvement f(x) —f(x)

n= _ _ = =
predicted improvement  f(x) — f(x’)

If 7 < 11 contract
if 7 > 1, expand
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Trust Region Methods: Example

X2

X . .
! Trust regions can be also non circular.
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Trust Region Methods

Termination Conditions (commonly used together):

® Maximum lterations: k > kax
® Aboslute Improvement: f(xx) — f(xx11) < €,

® Relative Improvement: f(xx) — f(xky1) < €| (xk)

® Gradient Magnitude: ||V (xky1)|| < €z

Then random restart.
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Summary

® Descent direction methods incrementally descend toward a local optimum.
® Univariate optimization can be applied during line search.
® Approximate line search can be used to identify appropriate descent step sizes.

® Trust region methods constrain the step to lie within a local region that expands or contracts
based on predictive accuracy.

® Termination conditions for descent methods can be based on criteria such as the change in the
objective function value or magnitude of the gradient.
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