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Gradient Descent
Conjugate Descent
Accelerated DescentsDescent Direction Methods

How to select the descent direction?

• first-order methods that rely on gradient

• second-order methods that rely on Hessian information

Advantages of first order methods:
• cheap iterations: good for small and large scale optimization embedded optimization
• helpful because easy to warm restart

Limitations of first order methods:
• not hard to find challenging instances for them.
• can converge slowly.
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Gradient Descent
Conjugate Descent
Accelerated DescentsGradient Descent

The steepest descent direction at xk , at kth iteration of a local descent iterative method, is
the one opposite to the gradient (gradient descent):

dk = − ∇f (xk)
∥∇f (xk)∥

Guaranteed to lead to improvement if:

• f is smooth
• step size is sufficiently small
• xk is not a stationary point (ie, ∇f (xk) = 0)
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Gradient Descent
Conjugate Descent
Accelerated DescentsGradient Descent: Example

• Suppose we have

f (x) = x1x
2
2

• The gradient is ∇f = [x2
2 , 2x1x2]

• xk = [1, 2]

dk+1 = − ∇f (xk)
∥∇f (xk)∥

=
[−4,−4]√
16 + 16

=

[
− 1√

2
,− 1√

2

]
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Gradient Descent
Conjugate Descent
Accelerated DescentsImplementation

class DescentMethod:
alpha: float

class GradientDescent(DescentMethod):
def __init__(self, f, grad, x, alpha):

self.alpha = alpha

def step(self, f, grad, x):
alpha, g = self.alpha, grad(x)
return x - alpha * g
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Theorem: The next direction is orthogonal to the current direction.

Proof:

α∗
k = argmin

α
f (xk + αdk)

∇f (xk + α∗
kdk) = ∇dk

f (xk) = 0 because α∗
k is minimum

∇f (xk + α∗
kdk)

Tdk = 0 because directional derivative: ∇s f (x) = ∇f (x)T s

dk+1 = − ∇f (xk + α∗
kdk)

∥∇f (xk + α∗
kdk)∥

gradient descent

dk+1 · dk = − ∇f (xk + α∗
kdk)

∥∇f (xk + α∗
kdk)∥

· dk = 0 dT
k+1dk = 0 =⇒ dk+1 ⊥ dk
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Accelerated DescentsGradient Descent: Example

2D Rosenbrock function

f (x , y) = (a− x)2 + b(y − x2)2

Narrow valleys not aligned with gradient can be a
problem
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Gradient Descent
Conjugate Descent
Accelerated DescentsConjugate Gradient

[Hestenes and Stiefel, 1950s]

For A symmetric positive definite:

Ax = b ⇐⇒ minimize
x

f (x) def
=

1
2
xTAx − bTx

∇f (x) = Ax − b def
= r(x)
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Gradient Descent
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Accelerated DescentsConjugate Direction

Def.: A set of nonzero vectors {d0,d1, . . . ,dℓ} is said to be conjugate with respect to the
symmetric positive definite matrix A if

dT
i Adj = 0, for all i ̸= j

(the vectors are linearly independent. Generally, not orthogonal.)

Theorem: Given an arbitrary x0 ∈ Rn and a set of conjugate vectors {d0,d1, . . . ,dn−1} the
sequence {xk} generated by

xk+1 = xk + αkdk

where αk is the analytical solution of min
α

f (xk + αdk) given by:

αk = − rTk dk

dT
k Adk

(aka, conjugate direction algorithm) converges to the solution x∗ of the linear system and
minimization problem in at most n steps.
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Accelerated Descents

Proof:

min
α

f (xk + αdk)

We can compute the derivative with respect to α:

∂

∂α
f (x + αd ) =

∂

∂α
(x + αd )TA(x + αd )− bT (x + αd )(+c)

= dTA(x + αd )− dTb

= dT (Ax − b) + αdTAd

Setting ∂f (x+αd )
∂α = 0 results in:

αk = −dT
k (Axk − b)
dT
k Adk

= −dT
k r(xk)
dT
k Adk

(1)
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• Since the directions {dk} are linearly independent, they must span the whole space Rn. Hence,
there is a set of scalars σk such that:

x∗ − x0 = σ0d0 + σ1d1 + . . .+ σn−1dn−1

• By premultiplying this expression by dT
k A and using the conjugacy property, we obtain:

σk =
dT
k A(x∗ − x0)

dT
k Adk

(2)

• If xk is generated by conjugate direction algorithm, then we have

xk = x0 + α0d0 + α1d1 + . . .+ αkdk−1

• By premultiplying this expression by dT
k A and using the conjugacy property, we have that

dT
k A(xk − x0) = 0

• and therefore

dT
k A(x∗ − x0) = dT

k A(x∗ − xk + xk − x0) = dT
k A(x∗ − xk) + dT

k A(xk − x0) =

= dT
k A(x∗ − xk) = dT

k (b − Axk) = −dT
k rk .

• Using this result in (2) and comparing with (1) we conclude αk = σk .



Gradient Descent
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Accelerated Descents

If the matrix A is diagonal, the contours of the
function f (·) are ellipses whose axes are aligned
with the coordinate directions

If A is not diagonal, its contours are elliptical, but
they are usually not aligned with the coordinate
directions.
Transform the problem to make A diagonal and
minimize along the coordinate directions.
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Accelerated DescentsConjugate Gradient Method

• The conjugate gradient method is a conjugate direction method with the property: In
generating its set of conjugate vectors, it can compute a new vector dk by using only the
previous vector dk−1. Hence, little storage and computation requirements.

dk = −rk + βkdk−1

where βk is to be determined such that dk−1 and dk must be conjugate with respect to A. By
premultiplying by dT

k−1A and imposing that dT
k−1Adk = 0 we find that

βk =
rTk Adk−1

dT
k−1Adk−1

• Larger values of β indicate that the previous descent direction contributes more strongly.
• d0 is commonly chosen to be the steepest descent direction at x0

• Advantage with respect to steepest descent: implicitly reuses previous information about the
function and thus better convergence.
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Gradient Descent
Conjugate Descent
Accelerated DescentsAlgorithm CG

Basic version:

Input: f , x0
Output: x∗
Set r0 ← Ax0 − b,d0 ← r0, k ← 0;
while rk ̸= 0 do

αk ← −dT
k r(xk )
dT
k Adk

;

xk+1 ← xk + αkdk ;
rk+1 ← Axk+1 − b;

βk+1 ←
rTk+1Adk

dT
k Adk

;

dk+1 ← −rk+1 + βk+1dk ;
k ← k + 1;

Computationally improved version:

Input: f , x0
Output: x∗
Set r0 ← Ax0 − b,d0 ← r0, k ← 0;
while rk ̸= 0 do

αk ← − r(xk )T r(xk )
dT
k Adk

;

xk+1 ← xk + αkdk ;
rk+1 ← rk + αkAdk ;

βk+1 ←
rTk+1rk+1

rTk rk
;

dk+1 ← −rk+1 + βk+1dk ;
k ← k + 1;

• we never need to know the vectors x , r , and d for more than the last two iterations.

• major computational tasks: the matrix–vector product Adk , inner products dT
k Adk and

rTk+1rk+1, and three vector sums 17



Gradient Descent
Conjugate Descent
Accelerated DescentsNonLinear Conjugate Gradient Methods

• The conjugate gradient method can be applied to nonquadratic functions as well.

• Smooth, continuous functions behave like quadratic functions close to a local minimum

• but! we do not know the value of A that best approximates f around xk . Instead, several
choices for βk tend to work well:

• Two changes:
• αk is computed by solving an approximate line search
• the residual r , (it was simply the gradient of f ), must be replaced by the gradient of the

nonlinear objective f .
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Fletcher-Reeves Method:
Input: f , x0
Output: x∗
Evaluate f0 = f (x0),∇f0 = ∇f (x0);
Set d0 ← −∇f0, k ← 0;
while ∇fk ̸= 0 do

Compute αk by line search and set
xk+1 ← xk + αkdk ;

Evaluate ∇fk+1;

βFR
k+1 ←

∇f Tk+1∇fk+1

∇f Tk ∇fk
;

dk+1 ← −∇fk+1 + βFR
k+1dk ;

k ← k + 1;

Polak-Ribière:
Input: f , x0
Output: x∗
Evaluate f0 = f (x0),∇f0 = ∇f (x0);
Set d0 ← −∇f0, k ← 0;
while ∇fk ̸= 0 do

Compute αk by line search and set
xk+1 ← xk + αkdk ;

Evaluate ∇fk+1;

βPR
k+1 ←

∇f Tk+1(∇fk+1−∇fk )

∇f Tk ∇fk
;

dk+1 ← −∇fk+1 + βFR
k+1dk ;

k ← k + 1;

PR with:

β+
k+1 = max{βPR

k+1, 0}
becomes PR+ and guaranteed to converge (satisfies first Wolfe conditions).
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The conjugate gradient method with the Polak-Ribière update. Gradient descent is shown in gray.
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Gradient Descent
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• Addresses common convergence issues
• Some functions have regions with very small gradients (flat surface) where gradient descent

gets stuck
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Rosenbrock function with b = 100

Momentum overcomes these issues by replicating the effect of physical momentum
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Momentum update equations:

vk+1 = βvk − α∇f (xk)
xk+1 = xk + vk+1

import numpy as np

class Momentum(DescentMethod):
alpha: float # learning rate
beta: float # momentum decay
v: np.array # momentum

def __init__(self, alpha, beta, f, grad, x):
self.alpha = alpha
self.beta = beta
self.v = np.zeros_like(x)

def step(self, grad, x):
self.v = self.beta * self.v - self.alpha * ↪→

↪→grad(x)
return x + self.v
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Issue of momentum: steps do not slow down enough at the bottom of a valley, overshoot.

Nesterov Momentum update equations:

vk+1 = βvk − α∇f (xk + βvk)
xk+1 = xk + vk+1
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Accelerated DescentsAdagrad

• Instead of using the same learning rate for all components of x ,
Adaptive Subgradient method (Adagrad) adapts the learning rate for each component of x .
For each component of x , the update equation is

xi,k+1 = xi,k −
α

ϵ+
√
si,k
∇fi (xk)

where

si,k =
k∑

j=1

(∇fi (xj))2

ϵ ≈ 1× 10−8, α = 0.01

• components of s are strictly nondecreasing, hence learning rate decreases over time
26
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• Extends Adagrad to avoid monotonically decreasing learning rate by maintaining a decaying
average of squared gradients

ŝk+1 = γŝk + (1− γ)
(
∇f(xk)⊙∇f (xk)

)
, γ ∈ [0, 1], ⊙ element-wise product

Update Equation

xi,k+1 = xi,k −
α

ϵ+
√
ŝi,k
∇fi (xk)

= xi,k −
α

ϵ+ RMS(∇fi (xk))
∇fi (xk)

root mean square: For n values {x1, x2, . . . , xn}

xRMS =

√
1
n
(x1

2 + x2
2 + · · ·+ xn2).
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Also extends Adagrad to avoid monotonically decreasing learning rate
Modifies RMSProp to eliminate learning rate parameter entirely

xi,k+1 = xi,k −
RMS(∆xi )

ϵ+ RMS(∇fi (x))
∇fi (xk)
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• The adaptive moment estimation method (Adam), adapts the learning rate to each
parameter.

• stores both an exponentially decaying gradient like momentum and an exponentially decaying
squared gradient like RMSProp and Adadelta

• At each iteration, a sequence of values are computed

Biased decaying momentum vk+1 = βvk − α∇f (xk)
Biased decaying squared gradient sk+1 = γsk + (1− γ) (∇f (xk)⊙∇f (xk))

Corrected decaying momentum v̂k+1 = vk+1/(1− γv ,k)

Corrected decaying squared gradient ŝk+1 = sk+1/(1− γs,k)

Next iterate xk+1 = xk + αv̂k+1/(ϵ+
√

ŝk+1)

• Defaults: α = 0.001, γv = 0.9, γs = 0.999, ϵ = 1× 10−8
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Same as Adam, but based on the max-norm L∞.

sk+1 = γ∞sk + (1− γ∞) (∥∇f (xk)∥∞)

= max (γsk , ∥∇f (xk)∥∞)
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Nadam

• Nesterov-accelerated Adaptive Moment Estimation

• Adam is basically RMSProp with momentum

• We have seen that Nesterov is often more efficient

• Welcome to Nadam: Adam which uses the Nesterov momentum.
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• Learning rate determines how sensitive the method is to the gradient signal.

• Many accelerated descent methods are highly sensitive to hyperparameters such as learning
rate.

• Applying gradient descent to a hyperparameter of an underlying descent method is called
hypergradient descent

• Requires computing the partial derivative of the objective function with respect to the
hyperparameter
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• Gradient descent follows the direction of steepest descent.

• The conjugate gradient method can automatically adjust to local valleys.

• Descent methods with momentum build up progress in favorable directions.

• A wide variety of accelerated descent methods use special techniques to speed up descent.

• Hypergradient descent applies gradient descent to the learning rate of an underlying descent
method.
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