Al505

Optimization

First-Order Methods

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Gradient Descent
Conjugate Descent

O utl i n e Accelerated Descents

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

Descent Direction Methods

How to select the descent direction?

® first-order methods that rely on gradient

® second-order methods that rely on Hessian information

Advantages of first order methods:

® cheap iterations: good for small and large scale optimization embedded optimization

® helpful because easy to warm restart

Limitations of first order methods:
® not hard to find challenging instances for them.

® can converge slowly.

Gradient Descent
Conjugate Descent

O utl i n e Accelerated Descents

1. Gradient Descent

Gradient Descent
Conjugate Descent

Gradient Descent e e

The steepest descent direction at x,, at kth iteration of a local descent iterative method, is
the one opposite to the gradient (gradient descent):

o Vf(xk)
%=)]

Guaranteed to lead to improvement if:

® { is smooth
® step size is sufficiently small

® X is not a stationary point (ie, Vf(xx) = 0)

Gradient Descent
Conjugate Descent

Gradient Descent: Example Aecdicrated Descents

® Suppose we have

f(x) = x1x22

® The gradient is V = [x3, 2x1x]

® X, = [1,2]

dir = Vi(xk) _ [—4, —4] _ {_1 _1]
LT V)l V6t 16 NG

Gradient Descent

Implementation

class DescentMethod:
alpha: float

class GradientDescent (DescentMethod) :
def __init__(self, f, grad, x, alpha):
self.alpha = alpha

def step(self, f, grad, x):
alpha, g = self.alpha, grad(x)
return x - alpha * g

Gradient Descent
Conjugate Descent

Gradient Descent e e

Theorem: The next direction is orthogonal to the current direction.
Proof:

o) = argmin f(xx + ady)
[e3

Vi(xk+ ajdi) = Va,f(x)=0 because « is minimum
Vf(xk +ajde) d =0 because directional derivative: V¢ f(x) = Vf(x)"s
Vf(Xk =+ Oék) .
dii1=— radient descent

T TV agdo] :

Vf(xk -i-Oékdk) T
dii1-dy=— -dy =0 d . d;,=0 dei1 L d
k+1 * di HVf(xk+a}§dk)|| k k+19k = Oiy1 k

O

Gradient Descent
Conjugate Descent

Gradient Descent: Example Aecdicrated Descents

2D Rosenbrock function

f(x,y) = (a—x)>+ by — x*)

Narrow valleys not aligned with gradient can be a o
problem)

X1

Outline

2. Conjugate Descent

Gradient Descent
Conjugate Descent
Accelerated Descents

10

Gradient Descent
Conjugate Descent

Conjugate Gradient Ao Dessents

[Hestenes and Stiefel, 1950s]

For A symmetric positive definite:

1
Ax = b <= minimize f(x) def EXTAX —b"x

VF(x) = Ax — b % r(x)

11

Gradient Descent
Conjugate Descent

Conjugate Direction Rectitrared Descents

Def.: A set of nonzero vectors {dp, d1, ..., d,} is said to be conjugate with respect to the

))

symmetric positive definite matrix A if
d Ad; =0, for all i #
(the vectors are linearly independent. Generally, not orthogonal.)

Theorem: Given an arbitrary xg € R" and a set of conjugate vectors {dp, d;,...,d, 1} the
sequence {x,} generated by

X1 = Xk + ouedy
where o is the analytical solution of min f(x, + «dy) given by:
(03

- I‘kT dk
d] Ad,

Qi =

(aka, conjugate direction algorithm) converges to the solution x* of the linear system and
minimization problem in at most n steps.

12

Proof:

min f(xx + ady)

We can compute the derivative with respect to a:

Oa

2f(x +ad) = ag(x +ad)"A(x + ad) — b"(x + ad)(+c¢)
o

=d"A(x+ad)—d"b

=d"(Ax —b) + ad" Ad

Setting W = 0 results in:
P dkT(AXk - b) _ 7dkTr(xk)
' dT Ady d/ Ad,

Gradient Descent
Conjugate Descent
Accelerated Descents

13

Since the directions {d,} are linearly independent, they must span the whole space R". Hence,
there is a set of scalars o such that:

x* — Xo = O'Odo + O'1d1 + ...+ (Infldnfl
By premultiplying this expression by d,” A and using the conjugacy property, we obtain:

d] A(x* — x
oy = HAX — x0) 2)
d! Ady
If x, is generated by conjugate direction algorithm, then we have

X = Xo + aodp + a1dy + ...+ apdi_1
By premultiplying this expression by d,” A and using the conjugacy property, we have that
d] A(xk — x0) =0
and therefore
d] A(x* — x0) = d] A(X* — X + xx — x0) = d] A(x* — xi) + d] A(xk — x0) =
=d] A(x* — x) =d] (b— Ax,) = —d, ..

Using this result in (2) and comparing with (1) we conclude oy = . O

€

€1

If the matrix A is diagonal, the contours of the
function f(-) are ellipses whose axes are aligned
with the coordinate directions

Conjugate Descent

If Ais not diagonal, its contours are elliptical, but
they are usually not aligned with the coordinate
directions.

Transform the problem to make A diagonal and
minimize along the coordinate directions.

15

Gradient Descent
Conjugate Descent

Conjugate Gradient Method Accelerated Descents

® The conjugate gradient method is a conjugate direction method with the property: In
generating its set of conjugate vectors, it can compute a new vector di by using only the
previous vector di ;. Hence, little storage and computation requirements.

di = —rg + Brdi—1

where [is to be determined such that d;_; and d; must be conjugate with respect to A. By
premultiplying by d,” | A and imposing that d, ; Ad, = 0 we find that

3, — I’kTAdk,1
KT AT Ad,

® | arger values of [indicate that the previous descent direction contributes more strongly.
® dy is commonly chosen to be the steepest descent direction at xg

e Advantage with respect to steepest descent: implicitly reuses previous information about the

function and thus better convergence.
16

Gradient Descent

. Conjugate Descent
Algorlthm CG Accelerated Descents
Basic version: Computationally improved version:
Input: 7, xo Input: 7, xg
Output: x~ Output: x*
Set ro < Axo — b, do < ro, k < 0; Set ry < Axg — b, dy < ro, k < 0;
while r, #0 go while r, # 0 do
o d, r(x). r Tr
O € = 4Tag, e 77():;}“5:@;
X1 < Xk + apdy; Xit1 — Xie + oudy;
rey1 < Axerr — b; ri1 < re+ agAdy;
%3 — ’kT+1Adk . ’kTkaﬂ .
k+1 dlAd, Brt1 i
di1 < —Fig1 + Prard; dii1 < —rey1 + Brgrde;
| k< k+1; k<« k+1,

® we never need to know the vectors x, r, and d for more than the last two iterations.

® major computational tasks: the matrix—vector product Adj, inner products d,” Ad) and
rkTHrkH, and three vector sums

17

Conjugate Descent

NonLinear Conjugate Gradient Methods

® The conjugate gradient method can be applied to nonquadratic functions as well.

® Smooth, continuous functions behave like quadratic functions close to a local minimum

® but! we do not know the value of A that best approximates f around xj. Instead, several
choices for 3, tend to work well:

[)

Two changes:
® (is computed by solving an approximate line search

® the residual r, (it was simply the gradient of), must be replaced by the gradient of the
nonlinear objective f.

18

NonLinear Conjugate Gradient

Fletcher-Reeves Method:

Input: f, xg

Output: x*

Evaluate fy = (x0),Vfo = Vf(xo);

Set dy < —Vfy, k + 0;

while V1, # 0 do

Compute « by line search and set
X1 ¢ Xk + apdy;

Evaluate Vi 1;

V£,V
AFR k1 YTkt ,
B & ~wfres,

diy1 < —Vi + B;I;Rldk;
B k +— k+1,;

PR with:

82;1 - max{ﬁffl'/ O}

Methods

Polak-Ribiére:

Conjugate Descent
Accelerated Descents

Input: f, x
Output: x*
Evaluate fy = (x0),Vfo = Vf(xo);
Set dy < —Vfy, k + 0;
while V7, # 0 do
Compute «y by line search and set
X1 < Xk + apdy;
Evaluate Vi 1;
VEE 1 (Vhiia—VE) .
VETVE, '
dii1 + — Vi + S,I(:fldk;
k<« k+1,

3PR
Bryr <

becomes PR™ and guaranteed to converge (satisfies first Wolfe conditions).

19

Conjugate Descent

The conjugate gradient method with the Polak-Ribiére update. Gradient descent is shown in gray.

X2

X1

20

Outline

3. Accelerated Descents

Gradient Descent
Conjugate Descent
Accelerated Descents

21

Conjugate Descent

Accelerated Descents Recelerated Descents

® Addresses common convergence issues

® Some functions have regions with very small gradients (flat surface) where gradient descent

gets stuck
0
(T
)
= —05
X
3]
I
-1 |

22

Gradient Descent
Conjugate Descent

M omen t um Accelerated Descents

Rosenbrock function with b = 100

—— gradient descent
momentum

X2

1

Momentum overcomes these issues by replicating the effect of physical momentum

23

Gradient Descent
Conjugate Descent

M omen t um Accelerated Descents

Momentum update equations:
import numpy as np

Viyl = ﬁva7<1Y7f(xk) class Momentum(DescentMethod) :
alpha: float # learning rate
beta: float # momentum decay
Vv: np.array # momentum

Xk+1 = Xk + Vikt1

def __init__(self, alpha, beta, f, grad, x):
self.alpha = alpha
self.beta = beta
self.v = np.zeros_like(x)

def step(self, grad, x):
self.v = self.beta * self.v - self.alpha *x <
—grad(x)
return x + self.v

Gradient Descent
Conjugate Descent

Nesterov Momentum Accelerated Descents
Issue of momentum: steps do not slow down enough at the bottom of a valley, overshoot.

Nesterov Momentum update equations:
Vir1 = Bvk — aV i (xk + Bvk)

Xk+1 = Xk + Vit1

— momentum

X2

x

—— Nesterov momentum

25

Gradient Descent
Conjugate Descent

Ad a g ra d Accelerated Descents

® |nstead of using the same learning rate for all components of x,
Adaptive Subgradient method (Adagrad) adapts the learning rate for each component of x.
For each component of x, the update equation is

fi(xk)

Xik+1 = Xi k

o
-——V
€+ \/Sik

where

k
Sik = Z (Vfi(xj))2

Jj=1

e~1x10"% a=0.01

® components of s are strictly nondecreasing, hence learning rate decreases over time

26

RMSProp

Conjugate Descent
Accelerated Descents

® Extends Adagrad to avoid monotonically decreasing learning rate by maintaining a decaying

average of squared gradients
Skr1 =75+ (1—7) (Vf(Xk) O] Vf(xk)) ,

Update Equation

Q
Xi k+1 = Xi k — —————=V"fi(xk)
€+ /S k
o

T T RMS(VA) T

= Xi k

root mean square: For n values {x1,x2,...,x,}

1
XRMS = \/n (x12 + X2 + -+ xp2).

~v € [0,1], © element-wise product

27

AdaDelta

Also extends Adagrad to avoid monotonically decreasing learning rate
Modifies RMSProp to eliminate learning rate parameter entirely

Xi,k+1 = Xik

RMS(Ax;)

¢+ RMS(Vf(x))

Vf,‘(Xk)

Conjugate Descent
Accelerated Descents

28

Conjugate Descent
Ad am Accelerated Descents

® The adaptive moment estimation method (Adam), adapts the learning rate to each
parameter.

® stores both an exponentially decaying gradient like momentum and an exponentially decaying
squared gradient like RMSProp and Adadelta

® At each iteration, a sequence of values are computed

Biased decaying momentum Vi1 = Bvk — aV T (xk)
Biased decaying squared gradient Skr1 =S5k + (1 —) (VF(xk) © VF(xk))
Corrected decaying momentum Vier1 = Vi1 /(1 — v k)
Corrected decaying squared gradient Skt1 = Skt1/(1 — Ys.k)
Next iterate Xkr1 = Xk + aVr1 /(€ + /Sks1)

® Defaults: o = 0.001, 7, = 0.9, = 0.999,¢ =1 x 1078

29

Adamax

Same as Adam, but based on the max-norm L.

Skt =778k + (1 =77) (IVFA(x)ll o)
max (ysk, | V£ (xk)l[o)

Conjugate Descent
Accelerated Descents

30

Nadam

Nadam

® Nesterov-accelerated Adaptive Moment Estimation
® Adam is basically RMSProp with momentum
® \We have seen that Nesterov is often more efficient

® \Welcome to Nadam: Adam which uses the Nesterov momentum.

Accelerated Descents

31

Hypergradient Descent hectitrated Descants

® | earning rate determines how sensitive the method is to the gradient signal.

® Many accelerated descent methods are highly sensitive to hyperparameters such as learning
rate.

® Applying gradient descent to a hyperparameter of an underlying descent method is called
hypergradient descent

® Requires computing the partial derivative of the objective function with respect to the
hyperparameter

32

Gradient Descent
Conjugate Descent

Hypergradient Descent Acceleratad Descents

—— hypermomentum
—— hyper-Nesterov

X2

A1

33

S umma ry Accelerated Descents

Gradient descent follows the direction of steepest descent.

The conjugate gradient method can automatically adjust to local valleys.

Descent methods with momentum build up progress in favorable directions.

A wide variety of accelerated descent methods use special techniques to speed up descent.

Hypergradient descent applies gradient descent to the learning rate of an underlying descent
method.

34

	Gradient Descent
	Conjugate Descent
	Accelerated Descents

