AI505 Optimization

Second-Order Methods

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

Descent Direction Methods

How to select the descent direction?

- first-order methods that rely on gradient
- second-order methods that rely on Hessian information

Advantages of second order methods in descent algorithms:

- way of accelerating the iteration [Davidon mid 1950s]
- additional information that can help improve the local model for informing the selection of
 - · directions and
 - step lengths

Second-Order Methods

- Locally approximate function as quadratic
- Comparison of first-order and second order approximations

Newton Method Secant Method Quasi-Newton Method

Outline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

5

Newton's Method – Univariate

- Approximate a function using second-order Taylor series expansion
- analytically obtain the location where a quadratic approximation has a zero gradient.
- use that location as the next iteration to approach a local minimum.
- Univariate function

$$q(x) = f(x_k) + (x - x_k)f'(x_k) + \frac{(x - x_k)^2}{2}f''(x_k)$$

$$\frac{dq(x)}{dx} = f'(x_k) + (x - x_k)f''(x_k) = 0$$

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Newton's Method - Multivariate

Multivariate function

$$f(\mathbf{x}) \approx q(\mathbf{x}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_k)^T H_k (\mathbf{x} - \mathbf{x}_k)$$

- H is the Hessian matrix
- Evaluate the gradient and set it to zero:

$$\nabla \mathbf{q}(x) = \nabla f(\mathbf{x}_k) + H(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) = 0$$

Multivariate update rule

$$\mathbf{x}_{k+1} = \mathbf{x}_k - H_k^{-1} \nabla f(\mathbf{x}_k)$$

• (If f is quadratic and its Hessian is positive definite, then the update converges to the global minimum in one step.)

Algorithm

```
Input: \nabla f, H, \mathbf{x}_0, \epsilon, k_{max}

Output: \mathbf{x}^*

Set k = 0, \Delta = 1, \mathbf{x} = \mathbf{x}_0;

while \|\Delta\| > \epsilon and k \le k_{max} do
\Delta = H(\mathbf{x})^{-1} \nabla f(\mathbf{x});
\mathbf{x} = \mathbf{x} - \Delta;
k = k + 1;
```

It can be modified to only give a descent direction $\mathbf{d} = -H(\mathbf{x})^{-1}\nabla f(\mathbf{x})$ and leave the step size to be determined with line search.

3

Newton's method - Example

Minimize Booth's function:

$$f(x) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$$

- $x_0 = [9, 8]$
- The gradient of Booth's function is:

$$\nabla f(x) = [10x_1 + 8x_2 - 34, 8x_1 + 10x_2 - 38]$$

• The Hessian of Booth's function is:

$$H(x) = \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}$$

9

• The first iteration of Newton's method yields:

$$\mathbf{x}_{1} = \mathbf{x}_{0} - H(\mathbf{x}_{0})^{-1} \nabla f(\mathbf{x}_{0})$$

$$= \begin{bmatrix} 9 \\ 8 \end{bmatrix} - \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 10 \cdot 9 + 8 \cdot 8 - 34 \\ 8 \cdot 9 + 10 \cdot 8 - 38 \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \end{bmatrix} - \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 120 \\ 114 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

• Second iteration: The gradient at x_1 is zero, so we have converged after a single iteration. The Hessian is positive definite everywhere, so x_1 is the global minimum.

Newton's Method

Common causes of error in Newton's method

Newton's Method

- has quadratic convergence, meaning the difference between the minimum and the iterate is approximately squared with every iteration.
- This rate of convergence holds for Newton's method starting from x_0 within an interval $I = [x^* \delta, x^* + \delta]$, for a root x^* , if
 - 1. $f''(x) \neq 0$ for all points in I,
 - 2. f'''(x) is continuous on I, and
 - 3. $\frac{1}{2} \left| \frac{f'''(x_0)}{f''(x_0)} \right| < c \left| \frac{f'''(x^*)}{f''(x^*)} \right|$ for some $c < \infty$ sufficient closeness condition, ensuring that the function is sufficiently approximated by the Taylor expansion and no overshoot.

Newton Method Secant Method Quasi-Newton Method

Outline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

Secant Method - Univariate

 For univariate functions, if the second derivative is unknown, it can be approximated using the secant method

$$f''(x_k) = \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$

Update equation

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})} f'(x_k)$$

• It requires an additional initial design point and suffers from the same problems as Newton's method and may take more iterations to converge due to approximating the second derivative.

Newton Method Secant Method Quasi-Newton Method

Outline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

Quasi-Netwon Methods - Multivariate

- Automatic differentiation tools may not be applicable in many situations, and it may be much
 more costly to work with second derivatives in automatic differentiation software than with the
 gradient.
- Quasi-Newton methods, like steepest descent, require only the gradient of the objective function to be supplied at each iterate.
- By measuring the changes in gradients, they construct a model of the objective function that is good enough to produce superlinear convergence.
- The improvement over steepest descent is dramatic, especially on difficult problems.

Quasi-Netwon Methods - Multivariate

Use an approximation $Q_k \approx H^{-1}(\mathbf{x}_k)$

```
Input: \mathbf{x}_0, convergence tolerance \epsilon > 0, Q_0 (typically the n \times n identity matrix)

Output: \mathbf{x}^*

Set k \leftarrow 0;

while \|\nabla f(\mathbf{x}_k)\| > \epsilon do

Compute search direction \mathbf{d}(\mathbf{x}_k) = -Q_k \nabla f(\mathbf{x}_k);

Set \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}(\mathbf{x}_k) where \alpha_k is computed from a line search procedure to satisfy the Wolfe conditions;

Define \delta_{k+1} \stackrel{def}{=} \mathbf{x}_{k+1} - \mathbf{x}_k and \gamma_{k+1} \stackrel{def}{=} \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k);

Compute Q_{k+1};
k \leftarrow k+1;
```

- Davidon-Fletcher-Powell (DFP) method
- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
- Limited-memory BFGS (L-BFGS) method

Davidon-Fletcher-Powell (DFP) method

$$Q_{k+1} = Q_k - rac{Q_k \gamma_k \gamma_k^{ op} Q_k}{\gamma_k^{ op} Q_k \gamma_k} + rac{\delta_k \delta_k^{ op}}{\delta_k^{ op} \gamma_k}$$

where all terms on the right hand side are evaluated at the same iteration k.

The update for Q in the DFP method has three properties:

- Q remains symmetric and positive definite.
- If $f(x) = \frac{1}{2}x^T Ax + b^T x + c$, then $Q = A^{-1}$. Thus the DFP has the same convergence properties as the conjugate gradient method.
- For high-dimensional problems, storing and updating Q can be significant compared to other methods like the conjugate gradient method.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method ussi-Newton Method

$$Q_{k+1} = Q_k - \left(\frac{\delta_k \gamma_k^{\mathsf{T}} Q_k + Q_k \gamma_k \delta_k^{\mathsf{T}}}{\delta_k^{\mathsf{T}} \gamma_k}\right) + \left(1 + \frac{\gamma_k^{\mathsf{T}} Q_k \gamma_k}{\delta_k^{\mathsf{T}} \gamma_k}\right) \frac{\delta_k \delta_k^{\mathsf{T}}}{\delta_k^{\mathsf{T}} \gamma_k}$$

BFGS better than DFP with approximate line search but still uses an $n \times n$ dense matrix.

Theorem: Suppose that f is twice continuously differentiable and that the iterates generated by the BFGS algorithm converge to a minimizer x^* at which the Hessian matrix G is Lipschitz continuous Suppose also that the sequence $\|\mathbf{x}_k - \mathbf{x}^*\|$ converges to zero rapidly enough that $\sum_{k=1}^{\infty} \|x_k - x^*\| < \infty$. Then x_k converges to x^* at a superlinear rate (ie, faster than linear).

Limited-memory BFGS (L-BFGS) method

For large-scale unconstrained optimization

It stores the last m values for δ and γ rather than the full inverse Hessian (i=1 oldest, i=m last). Compute d at x as $d=-z_m$ using:

$$oldsymbol{q}_m =
abla f(oldsymbol{x}_k) \qquad \qquad oldsymbol{q}_i = oldsymbol{q}_{i+1} - rac{oldsymbol{\delta}_{i+1}^T oldsymbol{q}_{i+1}}{oldsymbol{\gamma}_{i+1}^T oldsymbol{\delta}_{i+1}} oldsymbol{\gamma}_{i+1}, \quad i = m-1, \ldots, 1$$

$$\mathbf{z}_0 = \frac{\delta_m \odot \delta_m \odot \mathbf{q}_m}{\gamma_m^T \gamma_m} \qquad \mathbf{z}_i = \mathbf{z}_{i-1} + \delta_{i-1} \left(\frac{\delta_{i-1}^T \mathbf{q}_{i-1}}{\gamma_{i-1}^T \delta_{i-1}} - \frac{\gamma_{i-1}^T \mathbf{z}_{i-1}}{\gamma_{i-1}^T \gamma_{i-1}} \right), \quad i = 1, ..., m$$

For minimization, the inverse Hessian Q must remain positive definite.

The initial Hessian is often set to the diagonal of

$$Q_0 = rac{\gamma_0 \delta_0^{ au}}{\gamma_0^{ au} \gamma_0}$$

Computing the diagonal for the above expression and substituting the result into $\mathbf{z}_0 = Q_0 \mathbf{q}_0$ results in the equation for \mathbf{z}_0 .

L-BFGS

```
(L-BFGS two-loop recursion)
          Input:
          Output: Q_k \nabla f_k = \mathbf{z}
          Set \boldsymbol{a} \leftarrow \nabla f_{\nu}:
          for i = k - 1, k - 2, ..., k - m do
               lpha_i \leftarrow rac{\delta_i^T \mathbf{q}}{\gamma_i \cdot \delta_i^T};
\mathbf{q} \leftarrow \mathbf{q} - lpha_i \cdot \gamma_i;
          z \leftarrow Q_0 a:
          for i = k - m, k - m + 1, \dots, k - 1
            dο
```

Input:

Output: x*

Choose starting point x_0 , integer m > 0; $k \leftarrow 0$:

while not convergence do

Set Q_0 ;

Compute $\mathbf{d}_k \leftarrow -Q_k \nabla f_k$ from Algorithm on the left;

Compute $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k$, where α_k is chosen to satisfy the Wolfe conditions:

if k > m then

Discard the vector pair $\{\delta_{k-m}, \gamma_{k-m}\}$ from storage;

Compute and save $\delta_k = \mathbf{x}_{k+1} - \mathbf{x}_k$,

$$\gamma_k = \nabla f_{k+1} - \nabla f_k$$
; $k \leftarrow k+1$;

BFGS Methods - Comparison

Summary

- Incorporating second-order information in descent methods often speeds convergence.
- Newton's method is a root-finding method that leverages second-order information to quickly descend to a local minimum.
- The secant method and quasi-Newton methods approximate Newton's method when the second-order information is not directly available.
- In Python, methods implemented in the module scipy https://docs.scipy.org/doc/scipy/tutorial/optimize.html