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Newton Method
Secant Method
Quasi-Newton MethodDescent Direction Methods

How to select the descent direction?

• first-order methods that rely on gradient

• second-order methods that rely on Hessian information

Advantages of second order methods in descent algorithms:

• way of accelerating the iteration [Davidon mid 1950s]

• additional information that can help improve the local model for informing the selection of

• directions and

• step lengths
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Secant Method
Quasi-Newton MethodSecond-Order Methods

• Locally approximate function as quadratic

• Comparison of first-order and second order approximations
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Newton Method
Secant Method
Quasi-Newton MethodNewton’s Method – Univariate

• Approximate a function using second-order Taylor series expansion

• analytically obtain the location where a quadratic approximation has a zero gradient.

• use that location as the next iteration to approach a local minimum.

• Univariate function

q(x) = f (xk) + (x − xk)f
′(xk) +

(x − xk)
2

2
f ′′(xk)

dq(x)
dx

= f ′(xk) + (x − xk)f
′′(xk) = 0

xk+1 = xk −
f ′(xk)

f ′′(xk)

≡ finding roots of derivative function

6



Newton Method
Secant Method
Quasi-Newton MethodNewton’s Method - Multivariate

• Multivariate function

f (x) ≈ q(x) = f (xk) +∇f (xk)T (x − xk) +
1
2
(x − xk)THk(x − xk)

• H is the Hessian matrix
• Evaluate the gradient and set it to zero:

∇q(x) = ∇f (xk) + H(xk)(x − xk) = 0

• Multivariate update rule

xk+1 = xk − H−1
k ∇f (xk)

• (If f is quadratic and its Hessian is positive definite, then the update converges to the global
minimum in one step. )
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Newton Method
Secant Method
Quasi-Newton MethodAlgorithm

Input: ∇f ,H, x0, ϵ, kmax

Output: x∗

Set k = 0,∆ = 1, x = x0;
while ∥∆∥ > ϵ and k ≤ kmax do

∆ = H(x)−1∇f (x);
x = x −∆;
k = k + 1;

It can be modified to only give a descent direction d = −H(x)−1∇f (x) and leave the step size to
be determined with line search.
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Newton Method
Secant Method
Quasi-Newton MethodNewton’s method – Example

Minimize Booth’s function:

f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

• x0 = [9, 8]
• The gradient of Booth’s function is:

∇f (x) = [10x1 + 8x2 − 34, 8x1 + 10x2 − 38]

• The Hessian of Booth’s function is:

H(x) =

10 8

8 10


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Newton Method
Secant Method
Quasi-Newton Method

• The first iteration of Newton’s method yields:

x1 = x0 − H(x0)
−1∇f (x0)

=

9

8

−
10 8

8 10


−1

·

10 · 9 + 8 · 8− 34

8 · 9 + 10 · 8− 38

 =

9

8

−
10 8

8 10


−1

·

120

114

 =

1

3



• Second iteration: The gradient at x1 is zero, so we have converged after a single iteration. The
Hessian is positive definite everywhere, so x1 is the global minimum.
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Newton Method
Secant Method
Quasi-Newton MethodNewton’s Method

Common causes of error in Newton’s method
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Newton Method
Secant Method
Quasi-Newton MethodNewton’s Method

• has quadratic convergence, meaning the difference between the minimum and the iterate is
approximately squared with every iteration.

• This rate of convergence holds for Newton’s method starting from x0 within an interval
I = [x∗ − δ, x∗ + δ], for a root x∗, if

1. f ′′(x) ̸= 0 for all points in I ,

2. f ′′′(x) is continuous on I , and

3. 1
2

∣∣∣ f ′′′(x0)f ′′(x0)

∣∣∣ < c
∣∣∣ f ′′′(x∗)
f ′′(x∗)

∣∣∣ for some c <∞
sufficient closeness condition, ensuring that the function is sufficiently approximated by
the Taylor expansion and no overshoot.

12



Newton Method
Secant Method
Quasi-Newton MethodOutline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

13



Newton Method
Secant Method
Quasi-Newton MethodSecant Method – Univariate

• For univariate functions, if the second derivative is unknown, it can be approximated using the
secant method

f ′′(xk) =
f ′(xk)− f ′(xk−1)

xk − xk−1

• Update equation

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk)

• It requires an additional initial design point and suffers from the same problems as Newton’s
method and may take more iterations to converge due to approximating the second derivative.
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Newton Method
Secant Method
Quasi-Newton MethodQuasi-Netwon Methods – Multivariate

• Automatic differentiation tools may not be applicable in many situations, and it may be much
more costly to work with second derivatives in automatic differentiation software than with the
gradient.

• Quasi-Newton methods, like steepest descent, require only the gradient of the objective
function to be supplied at each iterate.

• By measuring the changes in gradients, they construct a model of the objective function that
is good enough to produce superlinear convergence.

• The improvement over steepest descent is dramatic, especially on difficult problems.
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Newton Method
Secant Method
Quasi-Newton MethodQuasi-Netwon Methods – Multivariate

Use an approximation Qk ≈ H−1(xk)

Input: x0, convergence tolerance ϵ > 0, Q0 (typically the n × n identity matrix)
Output: x∗
Set k ← 0;
while ∥∇f (xk)∥ > ϵ do

Compute search direction d (xk) = −Qk∇f (xk);
Set xk+1 = xk + αkd (xk) where αk is computed from a line search procedure to satisfy
the Wolfe conditions;

Define δk+1
def
= xk+1 − xk and γk+1

def
= ∇f (xk+1)−∇f (xk);

Compute Qk+1;
k ← k + 1;

• Davidon-Fletcher-Powell (DFP) method
• Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
• Limited-memory BFGS (L-BFGS) method
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Newton Method
Secant Method
Quasi-Newton MethodDavidon-Fletcher-Powell (DFP) method

Qk+1 = Qk −
Qkγkγ

T
k Qk

γT
k Qkγk

+
δkδ

T
k

δTk γk

where all terms on the right hand side are evaluated at the same iteration k .

The update for Q in the DFP method has three properties:

• Q remains symmetric and positive definite.

• If f (x) = 1
2x

TAx + bTx + c , then Q = A−1. Thus the DFP has the same convergence
properties as the conjugate gradient method.

• For high-dimensional problems, storing and updating Q can be significant compared to other
methods like the conjugate gradient method.
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Newton Method
Secant Method
Quasi-Newton MethodBroyden-Fletcher-Goldfarb-Shanno (BFGS) method

Qk+1 = Qk −
(
δkγ

T
k Qk + Qkγkδ

T
k

δTk γk

)
+

(
1 +

γT
k Qkγk

δTk γk

)
δkδ

T
k

δTk γk

BFGS better than DFP with approximate line search but still uses an n × n dense matrix.

Theorem: Suppose that f is twice continuously differentiable and that the iterates generated by the
BFGS algorithm converge to a minimizer x∗ at which the Hessian matrix G is Lipschitz continuous
Suppose also that the sequence ∥xk − x∗∥ converges to zero rapidly enough that∑∞

k=1 ∥xk − x∗∥ <∞. Then xk converges to x∗ at a superlinear rate (ie, faster than linear).
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Newton Method
Secant Method
Quasi-Newton MethodLimited-memory BFGS (L-BFGS) method

For large-scale unconstrained optimization
It stores the last m values for δ and γ rather than the full inverse Hessian (i = 1 oldest, i = m last).
Compute d at x as d = −zm using:

qm = ∇f (xk) qi = qi+1 −
δTi+1qi+1

γT
i+1δi+1

γi+1, i = m − 1, . . . , 1

z0 =
δm ⊙ δm ⊙ qm

γT
mγm

zi = zi−1 + δi−1

(
δTi−1qi−1

γT
i−1δi−1

−
γT
i−1zi−1

γT
i−1γi−1

)
, i = 1, ...,m

For minimization, the inverse Hessian Q must remain positive definite.
The initial Hessian is often set to the diagonal of

Q0 =
γ0δ

T
0

γT
0 γ0

Computing the diagonal for the above expression and substituting the result into z0 = Q0q0 results
in the equation for z0.
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Newton Method
Secant Method
Quasi-Newton MethodL-BFGS

(L-BFGS two-loop recursion)
Input:
Output: Qk∇fk = z
Set q ← ∇fk ;
for i = k − 1, k − 2, . . . , k −m do

αi ← δTi q
γi ·δT

i

;

q ← q − αi · γi ;

z ← Q0q;
for i = k −m, k −m + 1, . . . , k − 1
do

β ← γT
i ·r

γi ·δT
i

;

z ← z + δi (zi − β);

Input:
Output: x∗
Choose starting point x0, integer m > 0;
k ← 0;
while not convergence do

Set Q0;
Compute dk ← −Qk∇fk from Algorithm
on the left;

Compute xk+1 ← xk + αkdk , where αk is
chosen to satisfy the Wolfe conditions;

if k > m then
Discard the vector pair {δk−m,γk−m}
from storage;

Compute and save δk = xk+1 − xk ,
γk = ∇fk+1 −∇fk ;
k ← k + 1;
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Newton Method
Secant Method
Quasi-Newton MethodBFGS Methods - Comparison
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Newton Method
Secant Method
Quasi-Newton MethodSummary

• Incorporating second-order information in descent methods often speeds convergence.

• Newton’s method is a root-finding method that leverages second-order information to quickly
descend to a local minimum.

• The secant method and quasi-Newton methods approximate Newton’s method when the
second-order information is not directly available.

• In Python, methods implemented in the module scipy
https://docs.scipy.org/doc/scipy/tutorial/optimize.html
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