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Benchmarking
Stochastic MethodsBenchmarking in the COCO Platform

• Functions divided in suites.

• Functions, fi , within suites are distinguished by their identifier i = 1, 2, ....

• parametrized by the (input) dimension, n, and

• instance number, j . (j as an index to a continuous parameter vector setting, eg, search space
translations and rotations).

f ji ≡ f [n, i , j ] : Rn → R x 7→ f ji (x) = f [n, i , j ](x).

• Varying n or j leads to a variation of the same function i of a given suite.

• Fixing n and j of function fi defines an optimization problem instance (n, i , j) ≡ (fi , n, j)
that can be presented to the solver.
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Benchmarking
Stochastic MethodsWhy?

Varying the instance parameter j represents a natural randomization for experiments in order to:

• generate repetitions on a single function for deterministic solvers, making deterministic and
non-deterministic solvers directly comparable (both are benchmarked with the same
experimental setup)

• average away irrelevant aspects of the function definition

• alleviate the problem of overfitting, and

• prevent exploitation of artificial function properties
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Benchmarking
Stochastic MethodsBBOB Functions

• All benchmark functions are scalable with the dimension.

• Most functions have no specific value of their optimal solution (they are randomly shifted in
x-space).

• All functions have an artificially chosen optimal function value (they are randomly shifted in
f -space).
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Benchmarking
Stochastic MethodsRuntime and Target Values

• Runtime of a solver on a problem is the hitting time condition.

• define a non-increasing quality indicator measure and prescribe a set of target values, t.

• target values are compared with the best so-far-seen f -value.

• For a single run, the solver run is successful on the problem instance (fi , n, j) when the
best-so-far f -value reaches the target value t.

• COCO collects hundreds of different target values from each single run.

• targets t(i , j) depend on the problem instance in a way to make problems comparable

• typically, target values are set to known or estimated optimal solution plus an added precision

• runtime is the number of f -evaluations needed to solve the problem (fi , n, j , t(i , j)).

• only runtimes to comparable target values can be aggregated among problem instances.
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Benchmarking
Stochastic MethodsSimulated Restarts

• If a solver does not hit the target t in a given single run, the run is considered to be
unsuccessful.

• The runtime of this single run remains undefined but is bounded from below by the number of
evaluations conducted during the run τ ∈ [T ,∞]

• T depends on the termination condition encountered. It can be the budget of evaluations.

• For hard problem instances COCO uses budget-based target values:
For any given budget, COCO selects from the finite set of recorded target values the easiest
(i.e., largest) target for which the expected runtime of all solvers (ERT) exceeds the budget.

• With unsuccessful runs: draw further runs from the set of tried problem instances, uniformly at
random with replacement, until find an instance, j , for which (fi , n, j , t(i , j)) is solved.
the runtime is then the sum of the overall time spend and associated to the initially unsolved
problem instance.
print: '|' if problem.final_target_hit, ':' if restarted and '.' otherwise.
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Benchmarking
Stochastic MethodsAggregation

• Aggregation is to compute a statistical summary over a set or subset of problem instances over
which we assume a uniform distribution

• If we can distinguish between problems easily, for example, according to their input dimension,
we can use the information to select the solver, hence not worth aggregating data

• Empirical cumulative distribution functions of runtimes (runtime ECDFs)
• Absolute distributions vs Performance profiles (ECDFs of runtimes relative to the respective best

solver)
• aggregate runtimes from several targets per function (!?)

• arithmetic average, as an estimator of the expected runtime. The estimated expected runtime
of the restarted solver, ERT, is often plotted against dimension to indicate scaling with
dimension.
alternatives: average of log-runtimes ≡ geometric average or shifted geometric mean
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Benchmarking
Stochastic Methods

• Employ randomness strategically to help explore design space

• Randomness can help escape local minima

• Increases chance of searching near the global minimum

• Typically rely on pseudo-random number generators to ensure repeatability

• Control over randomness and the exploration vs exploitation trade off.
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Benchmarking
Stochastic MethodsNoisy Descent

• Saddle points, where the gradient is very close to zero, can cause descent methods to select
step sizes that are too small to be useful

• add Gaussian noise at each descent step

xk+1 ← xk + α∇f (xk) + ϵk

ϵk ∼ N (0, σ2
k)

• σk = 1
k
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Benchmarking
Stochastic MethodsStochastic Gradient Descent

• evaluates gradients using randomly chosen subsets of the training data (batches)

• significantly less expensive computationally than calculating the true gradient at every
iteration and yields same effect as noisy gradient approximation

• helping traverse past saddle points Convergence guarantees for stochastic gradient descent
require that the positive step sizes be chosen such that:

∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞

• ensure that the step sizes decrease and allow the method to converge, but not too quickly so
as to become stuck away from a local minimum

15



Benchmarking
Stochastic Methods

16



Benchmarking
Stochastic MethodsMesh Adaptive Direct Search

• Similar to generalized pattern search but uses random positive spanning directions

• Example: set of positive spanning sets constructed from nonzero directions d1, d2 ∈ {−1, 0, 1}.
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Benchmarking
Stochastic Methods

• Construct lower triangular matrix L sampling from:

{−1/
√
αk + 1,−1/

√
αk + 2, . . . , 1/

√
αk − 1}

• permute rows and columns of L randomly to obtain a matrix D whose columns correspond to
n directions that linearly span Rn. The maximum magnitude among these directions is 1/

√
αk

• add one additional direction dn+1 = −
∑n

i=1 di or add n additional directions dn+j = −dj

•

αk+1 ←

{
αk/4 if no improvement was found in this iteration
min(1, 4αk) otherwise

• If f (xk = xk−1 + αd ) < f (xk−1), then the queried point is xk−1 + 4αd = xk + 3αd
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Benchmarking
Stochastic MethodsSimulated Annealing

• often used on functions with many local minima due to its ability to escape local minima.

• a candidate transition from x to x ′ is sampled from a transition distribution T , eg,
multivariate Gaussian

x ′ = x + ϵ ϵ ∼ T

• Metropolis acceptance criterion:

p(x , x ′) =

{
1 if ∆ ≤ 0
e−

∆
t if ∆ > 0

∆ = f (x ′)− f (x)
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Benchmarking
Stochastic MethodsAnnealing Plan

• a logarithmic annealing schedule

tk = t0
ln(2)

ln(k + 1)

guaranteed to asymptotically reach the global optimum under
certain conditions, but it can be slow in practice.

• exponential annealing schedule, more common, uses a simple
decay factor:

tk+1 = γtk

• fast annealing

tk =
t0
k
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Benchmarking
Stochastic MethodsSimulated Annealing

• Corana et al 1987 introduced variable step-size v
(separate directional components)

• cycle of random moves, one in each direction

x ′ = x + rviei

where r is randomly sampled from {−1, 1}

• after ns cycles, step size is adjusted according to

vi =


vi
(
1 + ci

ai/ns−0.6
0.4

)
if ai > 0.6ns

vi
(
1 + ci

0.4−ai/ns
0.4

)−1
if ai < 0.4ns

vi otherwise

a: accepted steps in each direction; c : typically 2.

regulates the ratio of
accepted-to-rejected points to about
50%.
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Benchmarking
Stochastic MethodsSimulated Annealing

• Temperature reduction occurs every nt step
adjustments, which is every ns · nt cycles

• termination when the temperature sinked
low and no improvement expected or when
no movement more than ϵ in last nϵ
iterations
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Benchmarking
Stochastic MethodsCross-Entropy Method

• Maintains explicit probability distribution over design space often called a proposal
distribution

• Requires choosing a family of parameterized distributions

• At each iteration, a set of design points are conditionally independently sampled from the
proposal distribution; these are evaluated and ranked

• The best-performing subset of samples, called elite samples, are retained

• The proposal distribution parameters are then updated based on the elite samples, and the
next iteration begins
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Benchmarking
Stochastic MethodsCross-Entropy Method

• Cross-entropy is a measure of divergence between two probability distributions p and q
(related to Kullback-Leibler divergence)

• Here we measure cross-entropy in a case where one distribution (the one of optimal solutions)
is unknown.

• A model is created and then its cross-entropy is measured on the elite set to assess how
accurate the model is in predicting this set.

• Let q be the true distribution of the optimal solutions, and p the distribution of solutions as
predicted by the model. Since the true distribution is unknown, cross-entropy cannot be
directly calculated. Instead, an estimate of cross-entropy is:

H(T , p) = −
N∑
i=1

1
N

log2 p(xi )

where N is the size of the elite set, and p(x) is the probability of solution x estimated from
the training set T .

24



Benchmarking
Stochastic MethodsCross-Entropy Method

cross-entropy ≡ Maximum likelihood estimation

• A widely used frequentist estimator is maximum likelihood, in which θ is set to the value that
maximizes the likelihood function p(x | θ).

• This corresponds to choosing the value of θ for which the probability of the observed data set
is maximized.

• In the machine learning literature, the negative log of the likelihood function is called an
error function. Because the negative logarithm is a monotonically decreasing function,
maximizing the likelihood is equivalent to minimizing the error.

• Suppose our data set consists of N data points x = {x1, . . . , xN}:

L(x | θ) = p(x | θ) =
N∏
i=1

p(xi | θ) likelihood

E(x | θ) = − logL(x) error function
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Benchmarking
Stochastic MethodsCross-Entropy Method

•

min
θ
E(x | θ) = min

θ
(− logL(x)) = −max

θ
logL(x) maximum log-likelihood

min

(
−

N∑
i=1

log p(xi | θ)

)

• hence minimizing the negative of the log-likelhoood is equivalent to minimizing the entropy
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Benchmarking
Stochastic MethodsMultivariate normal distribution

Probability density function

• 1-dimensional:

f (x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
.

• 2-dimensional:

f (x , y) =
1

2πσXσY

√
1 − ρ2

exp

(
− 1

2 [1 − ρ2]

[(
x − µX

σX

)2

− 2ρ
(
x − µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
])

where ρ is the correlation between X and Y and where σX > 0 and σY > 0. In this case,

µ =

µX

µY

, Σ =

 σ2
X ρσXσY

ρσXσY σ2
Y

.

• d dimensional:

fX(x1, . . . , xd) =
exp

(
− 1

2 (x − µ)T Σ−1 (x − µ)
)

√
(2π)k |Σ|

with symmetric covariance matrix Σ positive definite.
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(Disadvantage: it is unimodal)



Benchmarking
Stochastic MethodsNatural Evolution Strategies

• Similar to cross-entropy method, except instead of parameterizing distribution based on elite
samples, it is optimized using gradient descent

• The aim is to minimize the expectation

Ex∼p(·|θ)[f (x)].

• The distribution parameter gradient is estimated from the set of function evaluations

Input: f ,θ, kMAX ,N = 100, α = 0.01
Output: θ
for k in 1, . . . , kMAX do

Let X = {x1, . . . , xN} be a conditionally independent sample of size N from p(θ);
θk+1 = θk − α 1

N

∑N
i=1 f (xi )∇θ log p(xi ,θk);

29



Benchmarking
Stochastic MethodsNatural Evolution Strategies

30



Benchmarking
Stochastic MethodsNatural Evolution Strategies

31



Benchmarking
Stochastic MethodsNatural Evolution Strategies

32



Benchmarking
Stochastic MethodsNatural Evolution Strategies

33



Benchmarking
Stochastic MethodsCovariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

• Same approach as natural evolution strategy and cross entropy method, but the proposal
distribution is a multivariate Gaussian parameterized by a covariance matrix.

• At every iteration, m designs are sampled from the multivariate Gaussian:

x ∼ N (µ, σ2Σ)

parameters: mean vector µ, a covariance matrix Σ, and an additional step-size scalar σ.

• The covariance matrix only increases or decreases in a single direction with every iteration,
whereas σ is adapted to control the overall spread of the distribution.

• Design points are sorted f (x (1)) ≤ f (x (2)) ≤ . . . ≤ f (x (m)).

• A new mean vector µk+1 is formed using a weighted average of the first me-elite sampled
designs:

µ(k + 1)←
me∑
i=1

wix
(i)
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Benchmarking
Stochastic MethodsCMA-ES

• the first me elite weights sum to 1, and all the weights approximately sum to 0 and are ordered
largest to smallest

• positive and negative weigths, more aggressive shift

• The step size σ is updated using a cumulative vector p1 that tracks steps over time:
Comparing the length of p1 to its expected length under random selection provides the
mechanism by which σ is increased or decreased.

• covariance matrix is updated using a cumulative vector p2 and adjusted weights;
the update consists of three components: the previous covariance matrix Σk , a rank-one
update, and a rank-µ update
Rank-one updates using the cumulation vector allow for correlations between consecutive steps
to be exploited

• covariance estimated around original mean µk (cross-entropy did it around new mean µk+1)

35



Benchmarking
Stochastic MethodsSummary

• Stochastic methods employ random numbers during the optimization process

• Simulated annealing uses a temperature that controls random exploration and which is
reduced over time to converge on a local minimum

• The cross-entropy method and evolution strategies maintain proposal distributions from which
they sample in order to inform updates

• Natural evolution strategies uses gradient descent with respect to the log likelihood to update
its proposal distribution

• Covariance matrix adaptation is a robust and sample-efficient optimizer that maintains a
multivariate Gaussian proposal distribution with a full covariance matrix
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