
Department of Mathematics and Computer ScienceUniversity of Southern Denmark, Odense February 12, 2025Marco Chiarandini

AI505 – Optimization
Sheet 01, Spring 2025
Solution:Included.Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ willbe tackled in class. The remaining exercises are left for self training after the exercise class. Someexercises are from the text book and the number is reported. They have the solution at the end of thebook.
Exercises on

Exercise 1+ PythonShow that the function f (x) = 8x1 + 12x2 + x21 − 2x22 has only one stationary point, and that it is neithera maximum or minimum, but a saddle point (or inflection point). Plot the contour lines of f in Python(see slides 17, 18 of the tutorial material Part 3).
Solution:

import numpy as np

import matplotlib.pyplot as plt

Define the function

def f(x1, x2):

return 8 * x1 + 12 * x2 + x1**2 - 2 * x2**2

Define the grid for plotting

x1 = np.linspace(-10, 10, 400)

x2 = np.linspace(-10, 10, 400)

X1, X2 = np.meshgrid(x1, x2)

Z = f(X1, X2)

Create the contour plot

plt.figure(figsize=(8, 6))

contour = plt.contour(X1, X2, Z, levels=20, cmap="viridis")

plt.colorbar(contour)

plt.xlabel("x1")

plt.ylabel("x2")

plt.title("Contour plot of f(x1, x2) = 8*x1 + 12*x2 + x1^2 - 2*x2^2")

plt.grid(True)

plt.savefig("contour.png")

Exercise 2+
Write the second-order Taylor expansion for the function cos(1/x) around a nonzero point x , and thethird-order Taylor expansion of cos(x) around any point x . Evaluate the second expansion for the specificcase of x = 1.
Exercise 3

1

AI505 – Spring 2025 Exercise Sheet

Figure 1: The contour plot of the figure in Exercise 1.
Suppose that f (x) = xT Qx, where Q is an n × n symmetric positive semidefinite matrix. Show using thedefinition of convex functions, that f (x) is convex on the domain Rn. Hint: It may be convenient to provethe following equivalent inequality: f (y + α(x − y)) − αf (x) − (1 − α)f (y) ≤ 0 for all α ∈ [0, 1] and all
x, y ∈ Rn.
Solution:Since Q is positive semidefinite, the function f (x) is a quadratic form (see the slides xT Ax to confirmthis) which is convex. However, we are asked to prove it using the definition, not just citing propertiesof quadratic forms.
Exercise 4Suppose that f is a convex function. Show that the set of global minimizers of f is a convex set.
Solution:We assume to have optimal points xi from the set of global optimizers i = 1..n. Let x∗ = ∑

i λixi, λ in[0, 1], ∑i λ = 1 be any convex combination of them. Because f is convex we have that:
f
(∑

i
λixi

)
≤
∑

i
λif (xi)

Since xi are optimal solutions, f (xi) = z and there does not exist any other point x ′ with f (x ′) < z. Usingthe fact that ∑i λ = 1 then:
f
(∑

i
λixi

)
≤
∑

i
λif (xi) = z

and since no other point can be better we necessarily have that f (∑i λixi) = z and, hence, that anyconvex combination like x∗ is optimal itself. The set of optimal solutions is therefore convex.
Exercise 5∗

Consider the function f (x1, x2) = (x1 + x22)2. At the point x0 = [1, 0] we consider the search direction
p = [−1, 1]. Show that p is a descent direction and find all minimizers of the problem minα f (x0 + αp).
Solution:Substituting x0 and p we want to solve:

min
α

f
([10] + α

[
−11]) = min

α
f
([1 − α

α

]) = min
α

(1 − α + α2)2
2

AI505 – Spring 2025 Exercise Sheet
We look for the points where the necessary conditions of local optimality are satisfied:

f ′(x0, p, α) = 2(1 − α + α2)(−1 + 2α) = (4α − 2)(α2 − α + 1)
f ′′(x0, p, α) = 4α2 − 4α + (2α − 1)(4α − 2) + 4The first derivative is zero at the only real number: α1 = 1/2. The second term gives a complex number:

α2,3 = 1 ±
√1 − 42In α1 = 1/2, the second derivative is 3 hence positive. The point α is therefore a local minimum. If thefunction is convex the point is also a global minimum.The function is convex if its second derivative is always larger or equal to zero, that is:

4α2 − 4α + (2α − 1)(4α − 2) + 4 ≥ 0
or equivalently 2(6α2 − 2α + 3) ≥ 0The second factor does not have any real root and it is positive in α1, hence it is always positive.We could have carried out the analysis in Python as follows:

import numpy as np

import matplotlib.pyplot as plt

import sympy as sp

def f(alpha):

return (1 - alpha + alpha**2) ** 2

Define the range of alpha values

alpha_values = np.linspace(-2, 2, 400)

f_values = f(alpha_values)

Plot the function

plt.plot(

alpha_values, f_values, label=r"$f(\alpha) = (1 - \alpha + \alpha^2)^2$", color="b"

)

plt.xlabel(r"α")
plt.ylabel(r"$f(\alpha)$")
plt.title("Plot of the Function")

plt.legend()

plt.grid()

plt.savefig("function_plot.png")

Compute the derivatives using sympy

alpha = sp.symbols(’alpha’)

f_sym = (1 - alpha + alpha**2)**2

deriv_f = sp.diff(f_sym, alpha)

second_deriv_f = sp.diff(deriv_f, alpha)

print("Derivative of f(alpha):", deriv_f)

print("Second derivative of f(alpha):", second_deriv_f)

Exercise 6+
Consider the case of a vector function f : Rn → Rm. The matrix J(x) of first derivatives for this functionis defined as follows:

J(x) = [∂
∂xi

fj

]
j=1..m
i=1..nwrite the forward-difference calculations needed to compute J(x) at a given point x.

3

AI505 – Spring 2025 Exercise Sheet

Figure 2: The function f (α) in Exercise 5.
Solution:For each component j of the vector function f (x) we have a gradient vector in the corresponding columnof J(x). Each of the partial derivatives can be approximated by forward difference as follows:

∂f (x)j
∂xi

≈
f (x + hei)j − f (x)j

h
f (x+he1)1−f (x)1

h
f (x+he1)2−f (x)2

h . . . f (x+he1)m−f (x)m
h

f (x+he2)1−f (x)1
h

f (x+he2)2−f (x)2
h . . . f (x+he2)m−f (x)m

h...
f (x+hen)1−f (x)1

h
f (x+hen)2−f (x)2

h . . . f (x+hen)n−f (x)n
h


Exercise 7+ (2.1)Adopt the forward difference method to approximate the Hessian of f (x) using its gradient, ∇f (x).
Exercise 8 (2.6)Combine the forward and backward difference methods to obtain a difference method for estimating thesecond-order derivative of a function f at x using three function evaluations.
Exercise 9 Python (2.3)Implement in Python a finite difference method and the complex step method and compute the gradientof f (x) = ln x + ex + 1/x for a point x close to zero. What term dominates in the expression?
Exercise 10∗ (2.5)Draw the computational graph for f (x, y) = sin(x + y2). Use the computational graph with forwardaccumulation to compute ∂f

∂y at (x, y) = (1, 1). Label the intermediate values and partial derivatives asthey are propagated through the graph.
Exercise 11∗ PythonImplement dual numbers in Python overriding the operators +,-,*,/. Test the implementation on thefollowing operations:

• ε * ε• 1/(1 + ε)• (1 + 2ε)*(3 − 4ε)
4

AI505 – Spring 2025 Exercise Sheet
Calculate the forward accumulation of the dual numbers a = 3 + 1ε and b = 2 on the computationalgraph of log(a ∗ b + max(a, 2)).
Solution:Dual numbers D(a, b) can be writen as a + bε, where ε satisfies ε2 = 0, so we can drop all O(ε2) terms.The four rules are:• (a + bε) ± (c + dε) = (a ± c) + (b ± d)ε• (a + bε) × (c + dε) = (ac) + (ad + bc)ε• (a + bε)/(c + dε) = (a/c) + (ad − bc)/c2εAs the other rules, the last one is designed such that the mulitpliers of ε implement the quotient rulesof derivatives: Let h(x) = f (x)

g(x) , where both f and g are differentiable and g(x) ̸= 0, the quotient rulestates that the derivative of h(x) is
h′(x) = f ′(x)g(x) − f (x)g′(x)(g(x))2 .

import math

class Dual:

"""

A Dual number that holds two numbers: a value and a gradient.

"""

def __init__(self, val: float | int, grad: float | int):

assert type(val) in {float, int}

assert type(grad) in {float, int}

self.v = val

self.g = grad

def __add__(self: "Dual", other: "Dual") -> "Dual":

return Dual(self.v + other.v, self.g + other.g)

def __mul__(self: "Dual", other: "Dual") -> "Dual":

return Dual(self.v * other.v, self.v * other.g + self.g * other.v)

def __sub__(self: "Dual", other: "Dual") -> "Dual":

return Dual(self.v + other.v, self.g + other.g)

def __truediv__(self: "Dual", other: "Dual") -> "Dual":

return Dual(

self.v / other.v, (self.g * other.v - self.v * other.g) / (other.v**2)

)

def __repr__(self):

return "Dual(v=%.4f, g=%.4f)" % (self.v, self.g)

We also need to implement how elementary function would treat dual numbers, in particular the deriva-tive that they apply:
∂ ln(x)

∂x = x ′

x

∂ max(x, p)
∂x = {0 if p > x

x ′ if p < x

5

AI505 – Spring 2025 Exercise Sheet
def log(a: "Dual") -> "Dual":

return Dual(math.log(a.v), a.g / a.v)

def max(a: "Dual", b: int) -> "Dual":

return Dual(a.v if a.v > b else b, 0 if b >= a.v else a.g)

a = Dual(3, 1)

b = Dual(2, 0)

print(log(a * b + max(a, 2)))

We get the same result as the text book:
Dual(v=2.1972, g=0.3333)

Exercise 12∗ PythonRead about nanograd and use it to compute by reverse accumulation the gradient of
f (x1, x2, x3) = max{0, x1 + (−x2x3)2

x2x3
}

.

Exercise 13∗ (3.6)Suppose we have a unimodal function defined on the interval [1, 32]. After three function evaluations ofour choice, will we be able to narrow the optimum to an interval of at most length 10? Why or why not?How much more can we reduce with one further evaluation?
Solution:The best you can do is use Fibonacci Search. With 3 evaluations the uncertainty is shrunk by a factorof Fn+1 = F4 = 3; that is, to (32 − 1)/3 = 10 + 1/3 > 10. With 4 evaluations it is shrunk by a factor of
Fn+1 = F5 = 5; that is to (32 − 1)/5 = 6.2. So 4 would be necessary to reduce the interval to at mostlength 10. The uncertainty shrinks by a factor of 10.3/6.2 = 1.66 by adding one more evaluation afterthree or: Fn+1

Fn
= F5

F4 = 1.66 (quite close to the golden ratio 1.61803 of the Golden ratio search).

6

https://github.com/rasmusbergpalm/nanograd/tree/main

