
Department of Mathematics and Computer ScienceUniversity of Southern Denmark, Odense February 27, 2025Marco Chiarandini

AI505 – Optimization
Sheet 02, Spring 2025
Solution:Included.Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ willbe tackled in class. The remaining exercises are left for self training after the exercise class. Someexercises are from the text book and the number is reported. They have the solution at the end of thebook.
Exercises on

Exercise 1+ (3.1)Give an example of a problem when Fibonacci search can be applied while the bisection method not.
Solution:Fibonacci search is preferred when derivatives are not available.
Exercise 2+ (3.4)Suppose we have f (x) = x2/2−x . Apply the bisection method to find an interval containing the minimizerof f starting with the interval [0, 1000]. Execute three steps of the algorithm (you can do this by handor in Python).
Solution:We can use the bisection method to find the roots of f ′(x) = x −1. After the first update, we have [0, 500].Then, [0, 250]. Finally, [0, 125].
Exercise 3+ (3.5)Suppose we have a function f (x) = (x + 2)2 on the interval [0, 1]. Is 2 a valid Lipschitz constant for f onthat interval?
Solution:No, the Lipschitz constant must bound the derivative everywhere on the interval, and f ′(1) = 2(1+2) = 6.
Exercise 4+ (4.1)Find examples where each of the four termination conditions would not work individually, showing theimportance of having more than one.
Solution:

• Step-size termination condition: Consider running a descent method on f (x) = 1/x for x > 0. Theminimum does not exist and the descent method will forever proceed in the positive x directionwith ever-increasing step sizes.• Terminating based on gradient magnitude: a descent method applied to f (x) = −x will alsoforever proceed in the positive x direction. The function is unbounded below, so neither a step-size termination condition nor a gradient magnitude termination condition would trigger.
1

AI505 – Spring 2025 Exercise Sheet
• Termination condition to limit the number of iterations: always in effect.

Exercise 5+ (4.2)The first Wolfe condition requires
f (xk + αdk) ≤ f (xk) + βα∇dk f (xk)

What is the maximum step length α that satisfies this condition, given that f (x) = 5+x21+x22 , xk = [−1, −1],
d = [1, 0], and β = 10−4?
Solution:Applying the first Wolfe condition to our objective function yields 6 + (−1 + α)2 ≤ 7 − 2α · 10−4, whichcan be simplified to α2 − 2α + 2 · 10−4α ≤ 0. This equation can be solved to obtain α ≤ 2(1 − 10−4).Thus, the maximum step length is α = 1.9998.
Exercise 6∗

The steepest descent algorithm is a Descent Direction Iteration method that moves along dk = −∇f (xk)at every step. Program steepest descent algorithms using the backtracking line search. Use them tominimize the Rosenbrock function. Set the initial step length α0 = 1 and print the step length usedby each method at each iteration. First, try the initial point x0 = [1.2, 1.2] and then the more difficultstarting point x0 = [−1.2, 1].Consider implementing and comparing also other ways for solving the line search problem and theconjugate gradient.
Solution:

import numpy as np

import matplotlib.pyplot as plt

def rosenbrock(X: np.array, a: int=1, b: int=5):

"""

Vectorized Rosenbrock function.

Parameters:

X: np.ndarray of shape (N, 2) where each row is [x0, x1]

a: int, default 1

b: int, default 5

Returns:

np.ndarray of shape (N,) with function evaluations.

"""

X = np.atleast_2d(X) # Ensure input is always 2D

x0, x1 = X[:, 0], X[:, 1] # Extract columns

return (a-x0)**2 + b*(x1 - x0**2)**2

def gradient(x: np.array, a: int=1, b: int=5):

see page 12 of textbook

return np.array([-2*(a-x[0])-4*b*x[0]*(x[1]-x[0]**2),2*b*(x[1]-x[0]**2)])

def backtracking_line_search(f, grad, x, d, alpha_0=1, p=0.5, beta=1e-4):

y, g, alpha = f(x), grad(x), alpha_0

while (f(x + alpha * d) > y + beta * alpha * np.dot(g, d)) :

alpha *= p

return alpha

def steepest_descent(f, gradient, x_0: np.array, alpha_0: float):

S=10

alpha = np.empty((S),dtype=float)

alpha[0] = alpha_0

x = np.empty((S,2),dtype=float)

2

AI505 – Spring 2025 Exercise Sheet

x[0]=x_0

last = S-1

for k in range(S-1):

alpha[k] = backtracking_line_search(f, gradient, x[k], -gradient(x[k]),alpha_0)

x[k+1] = x[k] - alpha[k] * gradient(x[k])

if np.linalg.norm(x[k+1]-x[k], 2) <= 0.001:

last = k+1

break

return x[0:last,:], alpha[0:last], f(x[0:last,:])

points, alphas, evaluations = steepest_descent(rosenbrock, gradient, np.array([1.2,1.2]),

1)

print(points, alphas, evaluations)

Create the figure with two subplots

fig, axes = plt.subplots(1, 2, figsize=(10, 4)) # 1 row, 2 columns

First subplot

axes[0].plot(alphas, marker=’o’, linestyle=’-’, color=’b’, label=’alphas’)

axes[0].set_title(’alphas’)

axes[0].set_xlabel(’Index’)

axes[0].set_ylabel(’Value’)

#axes[0].set_ylim(0.028, 0.035) # Set y-axis limits

axes[0].grid(True)

Second subplot

axes[1].plot(evaluations, marker=’s’, linestyle=’--’, color=’r’, label=’evaluations’)

axes[1].set_title(’evaluations’)

axes[1].set_xlabel(’Index’)

axes[1].set_ylabel(’Value’)

axes[1].set_ylim(0, 0.05) # Set y-axis limits

axes[1].grid(True)

Adjust layout and show the plots

plt.tight_layout()

plt.savefig("steepest_descent.png")

Note, the exercise is not finished, one should try with different algorithms for solving the line searchproblem.
3

AI505 – Spring 2025 Exercise Sheet
Exercise 7∗

Descent direction methods may use search directions other than the steepest descent mentioned in theprevious exercise. In general, which descent direction guarantees to produce a decrease in f?
Solution:One that makes an angle of strictly less than π/2 radians with −∇f (xk).We can verify this claim by using Taylor’s theorem updated in directional mode:

f (xk + hdk) = f (xk) + h∇dk f (xk) + O(h2) = f (xk) + hdT
k ∇f (xk) + O(h2).

where we used the rule (2.9) in the text book about directional derivative ∇df (x) = ∇f (x)T d = dT ∇f (x).When dk is a downhill direction, the angle θk between dk and ∇f (xk) has cos θk < 0, so that
dT

k ∇f (xk) = ∥∥dk
∥∥ ∥∥∇f (xk)∥∥ cos θk < 0.

It follows that f (xk + dk) < f (xk) for all positive but sufficiently small values of h.
Exercise 8∗

Show that the positive definiteness of a matrix implies symmetry.
Solution:Let the quadratic form f be defined by

f (x) def= xT Axwhere A ∈ Rn×nSince xT Ax is a scalar, then (xT Ax)T = xT Ax, i.e., xT AT x = xT Ax. Hence,
xT

(
A − AT2

)
x = 0

Thus, the skew-symmetric part of matrix A does not contribute anything to the quadratic form. What isleft is, then, the symmetric part
A + AT2which is diagonalizable and has real eigenvalues and orthogonal eigenvectors, all nice properties.

Exercise 9+ (5.1)Compute the gradient of xT Ax − bT x when A is symmetric.
Solution:The real-valued function f : Rn → R, f

def= xT Ax − bT x has derivative df (x)dx which is a 1 × n matrix, i.e., itis a row vector. The gradient of the function ∇f (x) is its transpose, which is a column vector in Rn withcomponents the partial derivatives of f :
∇f (x)i = ∂f (x)

∂xi
, i = 1, . . . , n

A vector-valued function like the linear transformation g : Rn → Rm, g(x) def= Ax, has derivative dg(x)dx thatdenotes the m × n matrix of first-order partial derivatives of the transformation from x to g(x):
dg(x)dx =


∂g(x)1

∂x1 ∂g(x)1
∂x2 . . . ∂g(x)1

∂xn
∂g(x)2

∂x1 ∂g(x)2
∂x2 . . . ∂g(x)2

∂xn...
∂g(x)m

∂x1 ∂g(x)m
∂x2 . . . ∂g(x)m

∂xn


Such a matrix is called the Jacobian matrix of the transformation g(·).

4

AI505 – Spring 2025 Exercise Sheet
Since the ith element of g is given by:

g(x)i n∑
ℓ=1 ai,ℓxℓ

it follows that
∂g(x)i

∂xj
= aij

and hence that dg(x)dx = A

The element-by-element calculations involve cumbersome manipulations and, thus, it is useful to derivethe necessary results for matrix differentiation and have them readily available.Some matrix derivatives useful for us are reported in the table below. They are presented alongsidesimilar-looking scalar derivatives to help memory. This doesn’t mean matrix derivatives always look justlike scalar ones. In these examples, b is a constant scalar, and B is a constant matrix.
Scalar derivative Vector derivative
f (x) → dfdx g(x) → dgdx

bx → b xT B → B

bx → b xT b → b

x2 → 2x xT x → 2x

bx2 → 2bx xT Bx → 2BFor our specific case we have ∇f (x) = 2Ax − b.
Exercise 10∗ (5.2)Apply one step of gradient descent to f (x) = x4 from x0 = 1 with both a unit step factor and with exactline search.
Solution:The derivative is f ′(x) = 4x3. Starting from x0 = 1 and with unit step factor:

f ′(1) = 4 → x1 = 1 − 4 = −3
f ′(−3) = 4ů(−27) = −108 → x2 = −3 + 108 = 105

With line search we solve minα{xk − α∇f (xk)}. Starting at x0 = 1:
f ′(1) = 4min{1 − α4} = 1 → x1 = 1 − 1 × 4 = −3

f ′(−3) = 4ů(−27) = −108 min{−3 + α108} = 0 → x2 = −3 + 0 × 108 = −3
With line search we are not guaranteed to converge to optimum.
Exercise 11∗ (5.7)In conjugate gradient descent, what is the descent direction at the first iteration for the function f (x, y) =
x2 + xy + y2 + 5 when initialized at [x, y] = [1, 1]? What is the resulting point after two steps of theconjugate gradient method?
Solution:The conjugate gradient method initially follows the steepest descent direction. The gradient is

∇f (x, y) = [2x + y, 2y + x]
which for (x, y) = (1, 1) is [3, 3]. The direction of steepest descent is opposite the gradient, d0 = [−3, −3].It is possible to prove the following proposition:

5

AI505 – Spring 2025 Exercise Sheet
Proposition 1 A twice differentiable function f : Rn → R is convex, if and only if the Hessian ∇2f (x) ispositive semi-definite for all x ∈ Rn.

See https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf for a proof.The Hessian is
H = 2 11 2


Since the function is quadratic and the Hessian is positive definite (you can check this by showing thatboth eigenvalues are positive), the conjugate gradient method converges in at most two steps. Thus,the resulting point after two steps is the optimum, (x, y) = (0, 0), where the gradient is zero.

6

https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf

