Department of Mathematics and Computer Science February 27, 2025
University of Southern Denmark, Odense Marco Chiarandini

Al505 — Optimization
Sheet 02, Spring 2025

Solution:

Included.

Exercises with the symbol ™ are to be done at home before the class. Exercises with the symbol * will
be tackled in class. The remaining exercises are left for self training after the exercise class. Some
exercises are from the text book and the number is reported. They have the solution at the end of the
book.

Exercises on

Exercise 17 (3.1)

Give an example of a problem when Fibonacci search can be applied while the bisection method not.

Solution:

Fibonacci search is preferred when derivatives are not available.

Exercise 27 (3.4)

Suppose we have f(x) = x?/2—x. Apply the bisection method to find an interval containing the minimizer
of f starting with the interval [0, 1000]. Execute three steps of the algorithm (you can do this by hand
or in Python).

Solution:

We can use the bisection method to find the roots of f'(x) = x—1. After the first update, we have [0, 500].
Then, [0, 250]. Finally, [0, 125].

Exercise 37 (3.5)

Suppose we have a function f(x) = (x + 2)? on the interval [0,1]. Is 2 a valid Lipschitz constant for f on

that interval?

Solution:

No, the Lipschitz constant must bound the derivative everywhere on the interval, and '(1) = 2(1+2) = 6.

Exercise 47 (4.1)

Find examples where each of the four termination conditions would not work individually, showing the
importance of having more than one.

Solution:

e Step-size termination condition: Consider running a descent method on f(x) = 1/x for x > 0. The
minimum does not exist and the descent method will forever proceed in the positive x direction
with ever-increasing step sizes.

e Terminating based on gradient magnitude: a descent method applied to f(x) = —x will also
forever proceed in the positive x direction. The function is unbounded below, so neither a step-
size termination condition nor a gradient magnitude termination condition would trigger.

AI505 - Spring 2025 EXERCISE SHEET

e Termination condition to limit the number of iterations: always in effect.

Exercise 57 (4.2)

The first Wolfe condition requires
f(xk + ady) < f(xk) + BaVdif(xk)

What is the maximum step length «a that satisfies this condition, given that f(x) = 5+x7+x3, x, = [—1, =1],
d=1[1,0], and B =10""?

Solution:

Applying the first Wolfe condition to our objective function yields 6 + (—1 + a)? < 7 — 2a - 107, which
can be simplified to @ —2a 4+ 2 - 1074 < 0. This equation can be solved to obtain a < 2(1 —107%).
Thus, the maximum step length is o = 1.9998.

Exercise 6*

The steepest descent algorithm is a Descent Direction Iteration method that moves along di = —V f(x)
at every step. Program steepest descent algorithms using the backtracking line search. Use them to
minimize the Rosenbrock function. Set the initial step length oo = 1 and print the step length used
by each method at each iteration. First, try the initial point xo = [1.2,1.2] and then the more difficult
starting point xo = [—1.2,1].

Consider implementing and comparing also other ways for solving the line search problem and the
conjugate gradient.

Solution:

import numpy as np
import matplotlib.pyplot as plt

def rosenbrock(X: np.array, a: int=1, b: int=5):
nun

Vectorized Rosenbrock function.

Parameters:
X: np.ndarray of shape (N, 2) where each row is [x0, x1]
a: int, default 1
b: int, default 5

Returns:
np.ndarray of shape (N,) with function evaluations.
nun
X = np.atleast_2d(X) # Ensure input is always 2D
x0, x1 = X[:, 0], X[:, 1] # Extract columns
return (a-x0)**2 + bk(xl - x0**2)**2

def gradient(x: np.array, a: int=1, b: int=5):
see page 12 of textbook
return np.array([-2*(a-x[0])-4*b*x [0]* (x[1]-x[0] **2) ,2%bx (x[1]-x [0] **2)])

def backtracking_line_search(f, grad, x, d, alpha_0=1, p=0.5, beta=le-4):
y, g, alpha = f(x), grad(x), alpha_0
while (f(x + alpha * d) > y + beta * alpha * np.dot(g, d))
alpha *= p
return alpha

def steepest_descent(f, gradient, x_0: np.array, alpha_0: float):
S=10
alpha = np.empty((S),dtype=float)
alpha[0] = alpha_O
x = np.empty((S,2),dtype=float)

AI505 - Spring 2025 EXERCISE SHEET

alphas evaluations
0.032 0.05 ;
1
0.030 A |
I
0.028 - 0.04 !
i
0.026 i
0.03 A L
8 0.024 E H
b b [
0.022 | 0.02 4 L
1
0.020 4 i
. S S A N
———
0.018 - 0.01 4 -
0.016 -
T T T T T T T T 0.00 T T T T T T T T T
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Index Index
x[0]=x_0
last = S-1

for k in range(S-1):

alpha[k] = backtracking line_search(f, gradient, x[k], -gradient(x[k]),alpha_0)
x[k+1] = x[k] - alphalk] * gradient(x[k])
if np.linalg.norm(x[k+1]-x[k], 2) <= 0.001:

last = k+1

break

return x[0:last,:], alphal[0:last], f(x[0:last,:])

points, alphas, evaluations = steepest_descent(rosenbrock, gradient, np.array([1.2,1.2]),

1)

print (points, alphas, evaluations)

Create the figure with two subplots
fig, axes = plt.subplots(l, 2, figsize=(10, 4)) # 1 row, 2 columns

First

subplot

axes[0] .plot(alphas, marker=’0’, linestyle=’-’, color=’b’, label=’alphas’)
axes[0] .set_title(’alphas’)
axes[0] .set_xlabel(’Index’)

axes[0]

.set_ylabel(’Value’)

#axes[0] .set_y1im(0.028, 0.035) # Set y-axis limits

axes[0]

.grid(True)

Second subplot

axes[1]
axes[1]
axes[1]
axes[1]
axes[1]
axes[1]

.plot (evaluations, marker=’s’, linestyle=’--’, color=’r’, label=’evaluations’)
.set_title(’evaluations’)

.set_xlabel(’Index’)

.set_ylabel(’Value’)

.set_ylim(0, 0.05) # Set y-axis limits

.grid(True)

Adjust layout and show the plots
plt.tight_layout ()

plt.savefig("steepest_descent.png")

Note, the exercise is not finished, one should try with different algorithms for solving the line search

problem.

AI505 - Spring 2025 EXERCISE SHEET

Exercise 7*

Descent direction methods may use search directions other than the steepest descent mentioned in the
previous exercise. In general, which descent direction guarantees to produce a decrease in f?

Solution:

One that makes an angle of strictly less than 77/2 radians with —V f(x).
We can verify this claim by using Taylor's theorem updated in directional mode:

f(xe + hdy) = f(xi) + hV g, f(xx) + O(h?) = f(xi) + hd] VF(xi) + O(h?).

where we used the rule (2.9) in the text book about directional derivative V4f(x) = VF(x)"d = d’ V£(x).
When dy is a downhill direction, the angle 6 between di and Vf(xk) has cos 6, < 0, so that

d{ Vi(xe) = ||di|| ||V f(xi)|| cos 6k < 0.
It follows that f(xx + di) < f(xx) for all positive but sufficiently small values of h.

Exercise 8*

Show that the positive definiteness of a matrix implies symmetry.

Solution:

Let the quadratic form f be defined by
def

f(x) = x" Ax
where A € R™"
Since x"Ax is a scalar, then (xTAx)T = xTAx, i.e, x"TATx = xT Ax. Hence,

A—AT
XT(Z)X:O

Thus, the skew-symmetric part of matrix A does not contribute anything to the quadratic form. What is
left is, then, the symmetric part
A+ AT
2
which is diagonalizable and has real eigenvalues and orthogonal eigenvectors, all nice properties.

Exercise 97 (5.1)

Compute the gradient of x” Ax — b"x when A is symmetric.

Solution:

def
The real-valued function f : R” - R, f = x" Ax — b”x has derivative dg(x") which is a 1 x n matrix, te., it

is a row vector. The gradient of the function V(x) is its transpose, which is a column vector in R" with
components the partial derivatives of f:

f (x)

Vf(X),' = aX- ,

i=1,...,n

. . . . def S |
A vector-valued function like the linear transformation g : R” — R, g(x) = Ax, has derivative %LX) that
denotes the m x n matrix of first-order partial derivatives of the transformation from x to g(x):

9g(x)1 9g(x)r 9g(x)1
%) 0x2 e ax,
9g(x)2 9g(x)2 99(x)
dg(x) | "ox o T ox
dx : :
99(X)m 99 (X)m 99(X)m
xq x> e ax,

Such a matrix is called the Jacobian matrix of the transformation g(-).

AI505 - Spring 2025 EXERCISE SHEET

Since the ith element of g is given by:

it follows that
9g(x);
aX/‘

= Clij

and hence that
dg(x)
dx

The element-by-element calculations involve cumbersome manipulations and, thus, it is useful to derive
the necessary results for matrix differentiation and have them readily available.

Some matrix derivatives useful for us are reported in the table below. They are presented alongside
similar-looking scalar derivatives to help memory. This doesn’t mean matrix derivatives always look just
like scalar ones. In these examples, b is a constant scalar, and B is a constant matrix.

Scalar derivative | Vector derivative
fx) - & gx) — &

bx — b x"B— B

bx —= b x"b — b

x? — 2x x"x — 2x

bx? — 2bx x"Bx — 2B

For our specific case we have Vf(x) = 2Ax — b.

Exercise 10* (5.2)

Apply one step of gradient descent to f(x) = x* from xo = 1 with both a unit step factor and with exact
line search.

Solution:

The derivative is f'(x) = 4x>. Starting from xo = 1 and with unit step factor:

(1) =4 - xq
F(=3) = 44(—27) = —108 — x

1-4=-3
—34108 = 105

With line search we solve ming{xx — aVf(xc)}. Starting at xo = 1:

(1) =4min{1 — a4} =1 —»>x1=1-1x4=-3
F(=3) = 46(—27) = —108 min{—3 + a108} = 0 —>x=-3+0x108=-3

With line search we are not guaranteed to converge to optimum.

Exercise 11* (5.7)

In conjugate gradient descent, what is the descent direction at the first iteration for the function f(x, y) =
x? + xy + y? + 5 when initialized at [x, y] = [1,1]? What is the resulting point after two steps of the
conjugate gradient method?

Solution:

The conjugate gradient method initially follows the steepest descent direction. The gradient is
Vix,y) =[2x+y, 2y + x|

which for (x, y) = (1,1) is [3, 3] The direction of steepest descent is opposite the gradient, dy = [—3, —3].
It is possible to prove the following proposition:

AI505 - Spring 2025 EXERCISE SHEET

Proposition 1 A twice differentiable function f : R" — R is convex, if and only if the Hessian V*f(x) is
positive semi-definite for all x € R".

See https://wiki.math.ntnu.no/_media/tma4d180/2016v/note2.pdf for a proof.
The Hessian is

H=
1 2

Since the function is quadratic and the Hessian is positive definite (you can check this by showing that
both eigenvalues are positive), the conjugate gradient method converges in at most two steps. Thus,
the resulting point after two steps is the optimum, (x, y) = (0, 0), where the gradient is zero.

https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf

