
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

March 12, 2025
Marco Chiarandini

AI505 – Optimization

Sheet 04, Spring 2025

Solution:
Included.
Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ will
be tackled in class. The remaining exercises are left for self training after the exercise class. Some
exercises are from the text book and the number is reported. They have the solution at the end of the
book.

Exercise 1∗ Consider the natural evolutionary strategy for an univariate function. Assume the

univariate normal distribution as proposal distribution p(x | θ) = N (x | µ, σ 2).

• Derive the update rule for θ

• If after a number of iterations the value of µ becomes equal to x∗, that is, the minimum of f , what
will be the update rule for σ 2 and what will be the difficulty encountered by the algorithm?

Solution:
The Gaussian distribution with mean µ and variance σ 2 has probability density function:

p(x) = 1√
2πσ 2

e− (x−µ)2

2σ2

The log-likelihood of a single value sampled from it is:

L(x | µ, σ 2) = log p(x | µ, σ 2) = −1
2 ln 2π − 1

2 ln σ 2 − (x − µ)2
2σ 2

For a set of opints X = {x1, . . . , xN} draw independently from the distribution we have

p(X | µ, σ 2) =
N∏

i=1
p(xi | µ, σ 2)

L(X | µ, σ 2) = log
N∏

i=1
p(xi | µ, σ 2) =

N∑

i=1

(
−1

2 ln 2π − 1
2 ln σ 2 − (xi − µ)2

2σ 2

)

Exercise 2∗ (8.4)
The maximum likelihood estimates are the parameter values that maximize the likelihood of sampling
the points {x1, . . . , xm}.
Derive the maximum likelihood estimate for the cross-entropy method that uses multivariate normal
distributions: N (x | µ, Σ).

Solution:

L(x | µ, Σ) = −1
2 ln 2π − 1

2 ln Σ − (x − µ)2
2

1

AI505 – Spring 2025 Exercise Sheet

Exercise 3∗

Implement Simulated Annealing. Set the initial temperature such that the initial acceptance ratio is
0.2 and the annealing plan to exponential with coolring rate γ = 0.99. Apply the algorithm to the
Rosenbrock function and plot the value of the function and the temperature throughout the iterations.

Solution:

import numpy as np

import matplotlib.pyplot as plt

def compute_initial_temperature(objective, bounds):

dim = len(bounds)

deltas = []

for r in range(100): # restarts

current_solution = np.array([np.random.uniform(b[0], b[1]) for b in bounds])

current_value = objective(current_solution)

for i in range(100):

Generate a new candidate solution

new_solution = current_solution + np.random.normal(0, 0.1, size=dim) # Small

perturbation

Ensure the new solution is within bounds

new_solution = np.clip(new_solution, [b[0] for b in bounds], [b[1] for b in

bounds])

new_value = objective(new_solution)

store deltas

delta = new_value - current_value

deltas.append(delta)

return -np.mean(deltas)/np.log(0.2)

def simulated_annealing(objective, bounds, initial_temp=1000, cooling_rate=0.99, max_iter

=1000):

"""

Simulated Annealing for continuous optimization.

Parameters:

objective (function): The objective function to minimize.

bounds (list of tuples): Bounds for each dimension [(min, max), ...].

initial_temp (float): Starting temperature.

cooling_rate (float): Cooling rate (should be between 0 and 1).

max_iter (int): Maximum number of iterations.

Returns:

best_solution (numpy array): The best solution found.

best_value (float): The corresponding objective function value.

history (list): Values of the objective function during iterations.

temp_history (list): Temperature values during iterations.

"""

Initialize solution randomly within bounds

dim = len(bounds)

current_solution = np.array([np.random.uniform(b[0], b[1]) for b in bounds])

current_value = objective(current_solution)

best_solution, best_value = current_solution, current_value

temp = initial_temp

2

AI505 – Spring 2025 Exercise Sheet

history = []

temp_history = []

for i in range(max_iter):

Store history

history.append(current_value)

temp_history.append(temp)

Generate a new candidate solution

new_solution = current_solution + np.random.normal(0, 0.1, size=dim) # Small

perturbation

Ensure the new solution is within bounds

new_solution = np.clip(new_solution, [b[0] for b in bounds], [b[1] for b in bounds

])

new_value = objective(new_solution)

Acceptance probability

delta = new_value - current_value

if delta < 0 or np.exp(-delta / temp) > np.random.rand():

current_solution, current_value = new_solution, new_value

Update best solution found

if current_value < best_value:

best_solution, best_value = current_solution, current_value

Decrease temperature

temp *= cooling_rate

return best_solution, best_value, history, temp_history

Rosenbrock function

def rosenbrock_function(x):

return sum(100 * (x[i+1] - x[i]**2)**2 + (1 - x[i])**2 for i in range(len(x) - 1))

bounds = [(-2, 2), (-2, 2)] # 2D problem

initial_temperature = compute_initial_temperature(rosenbrock_function, bounds)

print("Initial temparature:", initial_temperature)

best_sol, best_val, history, temp_history = simulated_annealing(rosenbrock_function,

bounds, initial_temp = initial_temperature)

Plot function value and temperature over iterations

fig, axes = plt.subplots(2, 1, figsize=(8, 6))

axes[0].plot(history, color="tab:blue")

axes[0].set_xlabel("Iteration")

axes[0].set_ylabel("Function Value")

axes[0].set_title("Objective Function Value")

axes[1].plot(temp_history, color="tab:red", linestyle="dashed")

axes[1].set_xlabel("Iteration")

axes[1].set_ylabel("Temperature")

axes[1].set_title("Temperature Schedule")

plt.tight_layout()

plt.savefig("simann.png")

print(f"Best solution: {best_sol}")

print(f"Best value: {best_val}")

3

AI505 – Spring 2025 Exercise Sheet

4

