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AI505 – Optimization
Sheet 06, Spring 2025
Solution:Included.Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ willbe tackled in class. The remaining exercises are left for self training after the exercise class. Someexercises are from the text book and the number is reported. They have the solution at the end of thebook.
Exercise 1+ (10.9)Solve the constrained optimization problem

minimize
x

sin(4
x

)
subject to x ∈ [1, 10]

using both the transform x = ta,b(x̂) and a sigmoid transform for constraint bounds x ∈ [a, b]:
x = s(x̂) = a + (b − a)1 + exp (−x̂)Why is the ta,b transform better in this case than the sigmoid transform?

Solution:The problem is minimized at x∗ = 1, which is at the constraint boundary. Solving with the t-transformyields the unconstrained objective function:
ft(x̂) = sin( 45.5 + 4.5 2x̂1+x̂2

)
which has a single global minimum at x̂ = −1, correctly corresponding to x∗.The sigmoid transform has an unconstrained objective function:

fs(x̂) = sin( 41 + 91+exp(−x̂)
)

Unfortunately, the lower-bound a, in this case x = 1, is reached only as x̂ approaches minus infinity.The unconstrained optimization problem obtained using the sigmoid transform does not have a solution.
Exercise 2+ (10.1)Solve

minimize
x

xsubject to x ≥ 0
using the quadratic penalty method with ρ > 0. Solve the problem in closed form.
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Solution:First reformulate the problem as f (x) = x + ρ max(−x, 0)2 for which the derivative is

f ′(x) = {1 + 2ρx if x < 01 otherwise
This unconstrained objective function can be solved by setting f ′(x) = 0, which yields the solution
x∗ = −1/2ρ. Thus, as ρ → ∞ we have that x∗ → 0.
Exercise 3∗ (10.11)Suppose we want to minimize x31 + x22 + x3 subject to the constraint that x1 + 2x2 + 3x3 = 6. How mightwe transform this into an unconstrained problem with the same minimizer?Solve the transformed problem numerically.
Solution:We can rearrange the constraint in terms of x1:

x1 = 6− 2x2 − 3x3and substitute the relation into the objective:
min
x2,x3x

22 + x3 − (2x2 + 3x3 − 6)3
Exercise 4∗ (10.13)Consider using a penalty method to optimize

minimize
x

1− x2
subject to |x| ≤ 2

Optimization with the penalty method typically involves running several optimizations with increasingpenalty weights. Impatient engineers may wish to optimize once using a very large penalty weight.Explain what issues are encountered for both the count penalty method and the quadratic penaltymethod.Implement the method and solve the problem numerically.
Solution:The transformed objective function is f (x) = 1 − x2 + ρp(x), where p is either a count penalty or aquadratic penalty:

pcount(x) = (|x| > 2) pquadratic(x) = max(|x| − 2, 0)2The count penalty method does not provide any gradient information to the optimization process. Anoptimization algorithm initialized outside of the feasible set will be drawn away from the feasible regionbecause 1 − x2 is minimized by moving infinitely far to the left or right from the origin. The largemagnitude of the count penalty is not the primary issue; small penalties can lead to similar problems.The quadratic penalty method does provide gradient information to the optimization process, guidingsearches toward the feasible region. For very large penalties, the quadratic penalty method will producelarge gradient values in the infeasible region. In this problem, the partial derivative is:
f ′(x) = −2x + ρ


2(x − 2) if x > 22(x + 2) if x < −20 otherwise

For very large values of ρ, the partial derivative in the infeasible region is also large, which can causeproblems for optimization methods. If ρ is not large, then infeasible points may not be sufficientlypenalized, resulting in infeasible solutions.
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Exercise 5∗Verify the numerical results of Example 10.3 and 10.4 (pages 172-173) of the text book.
Solution:Classifying problems and deciding which method among those studied in this course can be used toaddress them is a skill that will be tested at the oral exam. Hence, questions like this are to be expected.
Example 10.3 can be approached in two ways:1. as a univariate optimization problem with the given smooth derivative2. as a root finding problem on the derivative functionIn Python:

import numpy

import scipy as sp

import matplotlib.pyplot as plt

def func(x: numpy.array):

return -numpy.exp(-(x[0]*x[1] -3/2)**2-(x[1]-3/2)**2)

def func1(x: float):

_x=numpy.array([x**2, x])

return func(_x)

def f1prime(x: float):

return -6 * func1(x) * (x**5 - 3/2*x**2+1/3*x-1/2)

opt = sp.optimize.minimize_scalar(func1, method=’golden’)

print(opt)

root = sp.optimize.root_scalar(f1prime, x0=0, method=’secant’)

print(opt)

# Generate x values

x = numpy.linspace(-2, 2, 100)

y = func1(x)

# Create the plot

plt.figure(figsize=(6, 4))

plt.plot(x, y, label=r"$f(x)$", color="blue")

plt.xlabel("x")

plt.ylabel("f(x)")

plt.title("Plot of $f(x)$")
plt.axhline(0, color=’black’, linewidth=0.5)

plt.axvline(0, color=’black’, linewidth=0.5)

plt.legend()

plt.grid(True)

# Show the plot

# plt.show()

plt.savefig("ex10_3.png")

message:

Optimization terminated successfully;

The returned value satisfies the termination criteria

(using xtol = 1.4901161193847656e-08 )

success: True
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fun: -0.8879747422664449

x: 1.1652486100083423

nit: 38

nfev: 43

message:

Optimization terminated successfully;

The returned value satisfies the termination criteria

(using xtol = 1.4901161193847656e-08 )

success: True

fun: -0.8879747422664449

x: 1.1652486100083423

nit: 38

nfev: 43

Example 10.4 This problem corresponds to solving a system of nonlinear equations with the samenumber of equalities conditions as number of variables (if more variables than equations, we need to fixsome variables). There is no need to optimize. In general, the system may have no solutions, a uniquesolution, or many solutions.
Netwon’s method A Method to solve this problem is by reducing it to the solution of a system of linearequations.Let r1(x) = 0, ..., rm(x) = 0 be the non linear equations and r(x) = {r1(x), ..., rm(x)} be the set of lefthand sides of these equations. We aim at finding a direction p to move xk towardsStarting from the Taylor expansion:

r(x + p) = r(x) + ∫ 1
0 J(x + tp)pdt

We can define a linear model Mk (p) of r(xk + p) by approximating the right hand side:
Mk (p) def= r(xk ) + J(xk )p
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# Newton’s Method for Nonlinear Equations:Choose x0;
for k =0,1,2,... doCalculate a solution pk to the Newton equations J(xk )pk = −r(xk );

xk+1 ← xk + pk ;
endWhen the iterate xk is close to a nondegenerate root x∗, Newton’s method converges superlinearly.Potential shortcomings of the method include the following:
• When the starting point is remote from a solution, Algorithm can behave erratically. When J(xk )is singular, the Newton step may not even be defined.• First-derivative information (the Jacobian matrix J) may be difficult to obtain.• It may be too expensive to find and calculate the Newton step pk exactly when n is large.• The root x∗ in question may be degenerate, that is, J(x∗) may be singular.

Broyden’s method Secant methods, also known as quasi-Newton methods, do not require calculationof the Jacobian J(x). Instead, they construct their own approximation to this matrix, updating it at eachiteration so that it mimics the behavior of the true Jacobian J over the step just taken. The approximateJacobian, which we denote at iteration k by Bk , is then used to construct a linear model analogous tothe one above, namely
Mk (p) def= r(xk ) + BkpThe most successful practical algorithm is Broyden’s method, for which the update formula is

sk = xk+1 − xk , yk = r(xk+1)− r(xk )
Bk+1 = Bk + (yk − Bksk )sT

k
sT

k sk# Broyden:Choose x0 and a nonsingular initial Jacobian approximation B0;
for k = 0, 1, 2, ... doCalculate a solution pk to the linear equations;

Bkpk − r(xk );Choose αk by performing a line search along pk ;
xk+1 ← xk + αkpk ;
sk ← xk+1 − xk ;
yk ← r(xk+1)− r(xk );Obtain Bk+1 from the formula above;

endUnder certain assumptions, Broyden’s method converges superlinearly, that is,∥∥xk+1 − x∗
∥∥ = o(∥∥xk − x∗

∥∥)
An initial guess for the Jacobian is (−1/α) or the computed Jacobian.Implementations in scipy: root(method=’broyden1’):

def Lagrangian(var: numpy.array):

lmb = var[2]

x1 = var[0]

x2 = var[1]

return func(numpy.array([x1,x2])) + lmb * (x1-x2**2)

def Lagrangian_nabla(var: numpy.array):

lmb = var[2]

x1 = var[0]

x2 = var[1]

dx1 = 2*x2 * func(numpy.array([x1,x2])) * (3/2-x1*x2)-lmb
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dx2 = 2*lmb * x2 + func(numpy.array([x1,x2])) * (-2*x1*(x1*x2-3/2)-2*(x2-3/2))

dlmb = x2**2-x1

return numpy.array([dx1,dx2,dlmb])

numpy.set_printoptions(suppress=True)

res = sp.optimize.root(Lagrangian_nabla, x0=[0,0,0], method=’broyden1’, tol=1e-14)

print(res)

print(res.x)

print(Lagrangian_nabla(res.x))

res = sp.optimize.root(Lagrangian_nabla, x0=[0,0,0], method=’lm’, tol=1e-14)

print(res)

print(res.x)

print(Lagrangian_nabla(res.x))

message: The maximum number of iterations allowed has been reached.

success: False

status: 2

fun: [-1.956e-03 -3.863e-03 3.962e-03]

x: [ 8.307e-01 -9.136e-01 2.030e-03]

nit: 8000

method: broyden1

nfev: 16010

[ 0.83067483 -0.91358452 0.00202981]

[-0.00195573 -0.0038628 0.00396184]

message: xtol=0.000000 is too small, no further improvement in the approximate

solution is possible.

success: False

status: 3

fun: [-3.053e-16 5.551e-17 0.000e+00]

x: [ 1.358e+00 1.165e+00 1.701e-01]

method: hybr

nfev: 43

fjac: [[-6.240e-01 -6.789e-01 3.870e-01]

[-7.383e-02 -4.419e-01 -8.940e-01]

[-7.779e-01 5.864e-01 -2.256e-01]]

r: [-2.584e+00 -3.006e+00 -2.467e+00 -3.908e+00 -1.652e+00

2.316e+00]

qtf: [ 1.528e-16 -1.988e-18 2.701e-16]

[1.35780432 1.16524861 0.1700643 ]

[-0. 0. 0.]

The Broyden method was not successful. The method ’hybr’ uses a modification of the Powell hybridmethod as implemented in MINPACK and perfromed better. However, results were highly dependenton the initial point.We should now proceed to test the KKT conditions.
Exercise 6∗Derive the Karush-Kuhn-Tucker conditions (FONCs) for constrained maximization problems.
Solution:In an optimal solution x∗, the gradient has to stay in the tangent cone of the active constraints. In theminimization case, imposing µ ≥ 0 we derived:

∇f (x∗) = −µ · ∇g(x∗)− λ · ∇h(x∗)
In a maximization case, maintaining µ ≥ 0 we derive:

∇f (x∗) = µ · ∇g(x∗)− λ · ∇h(x∗)
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The λ multipliers are free (λ ∈ R) hence we do not need to change sign, because they can adapt. Hence,for maximization there is a change of sign only in front of the multipliers µ in the gradient condition:

∇f (x∗)− µ · ∇g(x∗) + λ · ∇h(x∗) = 0h(x∗) = 0
µ · g(x∗) = 0
g(x∗) ≤ 0, h(x∗) = 0
µ ≥ 0

Exercise 7∗Consider the following constrained optimization problem:
min (x1 − 32

)2 +(x2 − 12
)4 s.t.


1− x1 − x21− x1 + x21 + x1 − x21 + x1 + x2

 ≥ 0
Plot the problem and determine the optimal solution reasoning on the plot. Then, show that in theoptimal solution the KKT conditions hold.
Solution:The solution is x∗ = (1, 0)T . The first and second constraints are active at this point. Denoting them by
c1 and c2 (and the inactive constraints by c3 and c4), we have

∇f (x∗) = −1
− 12
 ,∇c1 = −1

−1
 ,∇c2 = −11

 .

Therefore, the KKT conditions are satisfied when we set
λ∗ = [ 34 , 14 , 0, 0]T

.

Exercise 8Consider the problem min(x1,x2) 0.5(x21 + x22 )
subject to x1 − 1 ≥ 0.Write the Lagrangian function, the dual function and solve the dual problem.

Solution:The Lagrangian function is:
L(x1, x2, λ1) = 0.5(x21 + x22 )− λ1(x1 − 1).If we hold λ1 fixed, this is a convex function of [x − 1, x2]. Therefore, the infimum with respect to [x1, x2]is achieved when the partial derivatives with respect to x1 and x2 are zero, that is,

x1 − λ1 = 0, x2 = 0.By substituting these infimal values into L(x1, x2, λ1) we obtain the dual objective:
q(λ1) = 0.5(λ21 + 0)− λ1(λ1 − 1) = −0.5λ21 + λ1.Hence, the dual problem is max

λ1≥0 − 0.5λ21 + λ1which clearly has the solution λ1 = 1.
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