Department of Mathematics and Computer Science April 24, 2025
University of Southern Denmark, Odense Marco Chiarandini

Al505 — Optimization
Sheet 08, Spring 2025

Solution:

Included.

Exercises with the symbol ™ are to be done at home before the class. Exercises with the symbol * will
be tackled in class. The remaining exercises are left for self training after the exercise class. Some
exercises are from the text book and the number is reported. They have the solution at the end of the
book.

Exercise 17 (13.1)

Filling a multidimensional space requires exponentially more points as the number of dimensions in-
creases. To help build this intuition, determine the side lengths of an n-dimensional hypercube such
that it fills half of the volume of the n-dimensional unit hypercube.

Solution:
The volume of an hypercube /" is:
V="

to find the hypercube of side s that fills half of V we need to compute:

1
rM"2=s" = s=r—== r2-n

V2

As an example for n = 3 with r =1, s must be 0.79.

Exercise 27 (13.2)

Suppose that you sample randomly inside a unit sphere in n dimensions. Compute the probability that
a randomly sampled point is within e distance from the surface of the sphere as n — oo. Hint: The
volume of a sphere is C(n)r", where r is the radius and C(n) is a function of the dimension n only.

Solution:

The probability that a randomly sampled point is within e-distance from the surface is the ratio of the
volumes. Thus:
Plixlz >1—€e)=1=Pllixll, <1—¢)=1—(1—¢)"

that tends to 1 as n — co.

Exercise 3™

Generate a full factorial set of design points in Python using numpy.meshgrid for two dimensions and
plot the generated points. Find a function from the benchmark suite and evaluate the function in those
points.

Repeat the same process for a function with n = 3 and for n > 3 dimensions.

Solution:

import numpy as np
import itertools

def samples_full_factorial_prod(a, b, m):
ranges = [np.linspace(al[il, b[il, m[i]) for i in range(len(a))]
F = itertools.productranges)return F

AI505 - Spring 2025 EXERCISE SHEET

def samples_full_factorial_mesh(a, b, m):
ranges = [np.linspace(alil, b[il, m[i]) for i in range(len(a))]
M = np.meshgridranges)return M

def uniform_projection_plan(m, n):

perms = [np.random.permutation(m) for i in range(n)]
L = np.array([[perms[i] [j] for i in range(n)] for j in range(m)])
return L

Exercise 4*

Construct in Python a Latin Hypercube design plan with numbers 1 through m = 4 for 3 dimensions.
How many different Latin Hypercubes are there? How many different uniform projection plans are there
for a single Latin Hypercube? How many different uniform projection plans can be generated from all
Latin Hypercubes of m numbers in 3 dimensions?

Solution:
There are (4!) Latin Hypercubes of dimension 3. For each Latin Hypercube there are

Exercise 5

Consult the documentation of the quasi-Monte Carlo python submodule scipy.stats.qmc and repeat
the previous exercises using those functions.

Exercise 6

Quasi-random sequences are typically constructed for the unit n-dimensional hypercube, [0,1]". Any
multidimensional function with bounds on each variable can be transformed into such a hypercube.
Show how.

Solution:
Let x € [ay, b1] X [a2, ba] x ... x [a,, b,]. We want to tranform to and from variables x’ € [0,1]", ie,
belonging to the hypercube /" =[0,1]".
For every dimension i =1, ..., n:
, x| — a;
x; = x;-(b; —a;) + a; Xi= ——
/J,‘ — dai

This is also called normalization (which is not the same as standardization.
In Python terms, we can transform a sampling plan generated in the hypercube /" to a sampling plan
for the hyperrectangle [a1, by] X [a2, ba] x ... x [a,, by] as follows:

import numpy as np

def rev_unit_hypercube_parameterization(x, a, b):
return x*(b-a)+a

Alternatively, we can stay in the hypercube and transform the function to a function in the hypercube
as follows:

def reparameterize_to_unit_hypercube(f, a, b):
delta = b - a
return lambda x: f(x * delta + a)

Exercise 7* (13.3)

AI505 - Spring 2025 EXERCISE SHEET

Suppose we have a sampling plan X = {x1, ..., x10}, where
x; = [cos(27ti/10), sin(277i/10)]

Compute the Morris-Mitchell criterion for X using an L, norm when the parameter g is set to 2. In other
words, evaluate ®,(X). If we add [2, 3] to each x;, will ®,(X) change? Why or why not?
Compare the MM criterion for the points given above with a set of 10 uniformly sampled random points.

Solution:
import numpy as np

def pairwise_distances(X: np.ndarray, p: int = 2) -> np.ndarray:
m = X.shape[0]
dists = []
for i in range(m - 1):
for j in range(i + 1, m):
d = np.linalg.norm(X[i] - X[j], ord=p)
dists.append(d)
return np.array(dists)

def phiq(X: np.ndarray, q: float = 1.0, p: int = 2) -> float:
dists = pairwise_distances(X, p)
return np.sum(dists ** (-q)) ** (1.0 / q)

Create 10 points evenly spaced on the unit circle

X = np.array([
[np.cos(2 * np.pi * i / 10), np.sin(2 * np.pi * i / 10)]
for i in range(10)

D

print("phiq(X, 2):", phiq(X, g=2))

np.random. seed (42)

random_points = np.random.rand(10, 2)

print("phiq(X, 2):", phiq(random_points, g=2))

phiq(X, 2): 6.422616289332565
phiq(X, 2): 31.659636916479467

No. The Morris-Mitchell criterion is based entirely on pairwise distances. Shift- ing all of the points
by the same amount does not change the pairwise distances and thus will not change ®,(X).

Exercise 8 (13.4)

Additive recurrence requires that the multiplicative factor ¢ be irrational. Why can ¢ not be rational?

Solution:

A rational number can be written as a fraction of two integers a/b. It follows that the sequence repeats
every b iterations:

a
= — 11
X4l = X + b(moc)

a
X = Xo + /(E(mOCH)

Exercise 9*

Consider the set X of random points given by:

AI505 - Spring 2025 EXERCISE SHEET

np.random. seed (42)
X = np.random.rand(6, 2)

Plot them and:

e calculate the discrepancy of the sample plan.

e find the best space-filling subset of size 3.

Exercise 10"
Consider the sets X and Y of random points given by:

np.random. seed (42)
X = np.random.rand (10, 2)
Y = np.random.rand(10, 2)

Plot them and decide which is the most space-filling on the basis of pairwise distances.

Exercise 11

Calculate an approximation of the value of 7 using the Monte Carlo method. Draw a circle inscribed in
a unit square and use a sampling plan to create sample points in the square. Use the ratio between
the number of points inside the circle and the total number of points to approximate .

Compare the convergence rate of uniform random sampling against a quasi-Monte Carlo low discrepancy
method like Sobol method.

Plot the sample plans generated.

Solution:
The unit square is [0, 1] x [0, 1]. The equation of a circle of radius 1 inscribed in the square is
x4yt =1

Points internal to the circle satisfy x* + y?> < 1. We denote the area under the curve by H.
The area of the square is 1 and the one of the circle is mr? = &. The area inscribed in the square is
/4.

#H o7
#X ' 7%
Hence,
7 =4r

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gmc

Settings
max_power = 10 # up to 2710 = 1024 points

--- Sobol sequence ---

sobol_sampler = gmc.Sobol(d=2, scramble=True)
sobol_points = sobol_sampler.random_base2(m=max_power)
#sobol_points = 2 * sobol_points - 1

sobol_radii = np.sum(sobol_points**2, axis=1)

-—— Monte Carlo (uniform random) ---
np.random. seed (42)

random_points = np.random.rand(2**max_power, 2)
random_radii = np.sum(random_points**2, axis=1)

Store estimates

AI505 - Spring 2025 EXERCISE SHEET

ns = []
pi_sobol = []
pi_random = []

Compute estimates for each power of 2
for m in range(l, max_power + 1):

n = 2%*m

ns.append (n)

inside_sobol = np.sum(sobol_radiil[:n] <= 1)
inside_random = np.sum(random_radiil[:n] <= 1)

pi_sobol.append(4 * inside_sobol / n)
pi_random.append(4 * inside_random / n)

--- Plot -—-
plt.figure(figsize=(10, 5))
plt.plot(ns, pi_sobol, marker=’o’, label=’Sobol Estimate’)

plt.plot(ns, pi_random, marker=’x’, linestyle=’--’, label=’Monte Carlo Estimate’, alpha
=0.7)
plt.axhline(np.pi, color=’red’, linestyle=’:’, label=r’True π’)

plt.xscale(’log’, base=2)

plt.xlabel("Number of Points (log scale)")

plt.ylabel(r"Estimated π")

plt.title(r"Comparison: Sobol vs Monte Carlo Estimation of π")
plt.grid(True, linestyle=’--’, linewidth=0.5)

plt.legend()

plt.tight_layout ()

plt.savefig("pi_convergence.png")

Plotting
fig, axs = plt.subplots(l, 2, figsize=(12, 6), sharex=True, sharey=True)

Circle coordinates

theta = np.linspace(0, np.pi/2, 500)
circle_x = np.cos(theta)

circle_y = np.sin(theta)

Sobol sequence

axs[0] .scatter(sobol_points[:, 0], sobol_points[:, 1], s=5, color=’blue’)

axs[0] .scatter(sobol_points[sobol_radii > 1, 0], sobol_points[sobol_radii > 1, 1], s=5,
color=’gray’, label=’Outside Circle’)

axs[0] .scatter(sobol_points[sobol_radii <= 1, 0], sobol_points[sobol_radii <= 1, 1], s=5,
color="blue’, label=’Inside Circle’)

axs[0] .plot(circle_x, circle_y, color=’red’, linewidth=1.5, label=’Unit Circle’)

axs[0] .set_title("Sobol Sequence")

axs[0] .set_xlabel("x")

axs[0] .set_ylabel("y")

axs[0] .axis("square")

axs[0] .grid(True, linestyle=’--’, linewidth=0.5)

Random sampling

#axs[1] .scatter(random_points[:, 0], random_points[:, 1], s=5, color=’orange’)

axs[1] .scatter(random_points[random_radii > 1, 0], random_points[random_radii > 1, 1], s
=5, color=’gray’, label=’Outside Circle’)

axs[1] .scatter(random_points[random_radii <= 1, 0], random_points[random_radii <= 1, 1], s
=5, color=’blue’, label=’Inside Circle’)

axs[1] .plot(circle_x, circle_y, color=’red’, linewidth=1.5, label=’Unit Circle’)

axs[1] .set_title("Monte Carlo (Uniform Random)")

axs[1] .set_xlabel("x")

axs[1] .axis("square")

axs[1] .grid(True, linestyle=’--’, linewidth=0.5)

AI505 - Spring 2025 EXERCISE SHEET

Comparison: Sobol vs Monte Carlo Estimation of

3.75 4 —&— Sobol Estimate
Monte Carle Estimate
350 4 True
3.25 4
=
- 3.00 4
z
[1+]
£
2 2.75
wl
2.504
2.251
2.00 A
T T T T T
72 24 26 28 510
Number of Points (log scale)
Convergence of m Estimate: Sobol vs Monte Carlo (100 trials)
—&— Sobol Estimate
----- True m
4.0 4 Monte Carlo Mean + Std
3.5+
=
=
b s
m —— 4
E
£ 3.0
wl
2.51
2.04 4
T T

22 2% 26 28 210
Number of Points (log scale)

plt.suptitle(f"Distribution of {n} Points: Sobol vs Monte Carlo", fontsize=14)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.savefig("pi_points.png")

AI505 - Spring 2025 EXERCISE SHEET

Distribution of 1024 Points: Sobol vs Monte Carlo

Sobol Sequence Monte Carlo (Uniform Random)

