
Department of Mathematics and Computer ScienceUniversity of Southern Denmark, Odense May 5, 2025Marco Chiarandini

AI505 – Optimization
Sheet 09, Spring 2025
Solution:Included.Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ willbe tackled in class. The remaining exercises are left for self training after the exercise class. Someexercises are from the text book and the number is reported. They have the solution at the end of thebook.
Exercise 1+ (19.2)A Boolean satisfiability problem, often abbreviated SAT, requires determining whether a Boolean designexists that causes a Boolean-valued objective function to output true. SAT problems were the first tobe proven to belong to the difficult class of NP-complete problems. This means that SAT is at least asdifficult as all other problems whose solutions can be verified in polynomial time.Consider the Boolean objective function:

f (x) = x1 ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2)Formulate the problem as an integer linear program. Can any Boolean satisfiability problem be formu-lated as an integer linear program? Solve the problem with scipy.
Solution:Enumeration tries all designs. Each component can either be true or false, thus resulting in 2n possibledesigns in the worst case. This problem has 23 = 8 possible designs.The Boolean satisfiability problem merely seeks a valid solution. As such, we set c to zero. Theconstraints are more interesting. As with all integer linear programs, x is constrained to be nonnegativeand integral. Furthermore, we let 1 correspond to true and 0 correspond to false and introduce theconstraint x ≤ 1. This is equivalent to impose that x ∈ Bn....
Exercise 2∗

Consider max{cT x | Ax = b, x ∈ Zn}. Sometimes the solution of the linear relaxation is already integral.Can you find a sufficient condition for the matrix A for that to happen?
Solution:From the simplex

ABxB + ANxN = bThe variables not in basis are set to zero while for a feasible basis the value of the variables in basiscan be calculated as:
xB = A−1bAll coefficients in A and b are integer. Moreover,

A−1 = 1det(A) adj(A).
where adj is the adjugate of A, which is the transpose of the cofactor matrix C of A. The cofactor matrixof A is the n × n matrix C whose (i, j) entry is the (i, j) cofactor of A, which is the (i, j)-minor Mi,j timesa sign factor:

C = ((−1)i+jMij
)1≤i,j≤n .

1

AI505 – Spring 2025 Exercise Sheet

x1

x2

2/3x1 + 1/2x2 − 1

x1 = 1
x1 − x2

c

Figure 1: The situation in the exercise on the Gomory cut
The element Mij , is the (i, j)-minor of A and corresponds to the determinant of the (n−1)× (n−1) matrixthat results from deleting row i and column j of A.Hence, the numerator of A−1 is a matrix whose absolute values of its elements are products and sub-tractions of integer numbers, the elements of A, and must therefore be integers.Hence, if the denominator of A−1, ie, |A| is an integer number, the values of A−1 will be integer and xBinteger. This is the case if the matrix AB has a determinant equal to ±1.Hence if all square submatrices of the matrix A have determinant equal to 0, +1, −1 the value of thebasis variables will be integer.
Exercise 3∗

Consider the following problem:
max x1 − x2subject to: 23x1 + 12x2 ≤ 1

x1, x2 ≥ 0
x1, x2 ∈ Z

Derive a Chvatal-Gomory cut.
Solution:We first visualize the situation in Figure 1.• For x1 = 0 we obtain 12x2 ≤ 1, that is, x2 ≤ 2

• For x2 = 0 we obtain 23x2 ≤ 1, that is, x1 ≤ 32Hence, the constraints has to pass through [0, 2] and [3/2, 0].One idea to derive a useful valid inequality (cut) is the following.We first multiply the constraint by an arbitrary real number, say 3/2:
32

(23x1 + 12x2
)

≤ (1) 32 =⇒ x1 + 34x2 ≤ 32We can analyze and tighten the obtained constraint as follows
x1 = ⌊1⌋x1 + ⌊34

⌋
x2 ≤ x1 + 34x2 ≤ 32 = 1 + 12

x1 ≤ 1 + 12 and x1 integer =⇒ x1 ≤ 1
The constraint x1 ≤ 1 is a valid inequality because by the construction described it does not removeany feasible integer solution. It is also an useful inequality because it cuts away the current optimal

2

AI505 – Spring 2025 Exercise Sheet
solution of the linear relaxation. By chance then it will be the only inequality necessary to add to solvethe problem since the linear relaxation of the original problem with this added constraint will give theoptimal solution of the original problem, ie, [1, 0].A similar procedure underlays the development of the general formula for Chvatal-Gomory cuts given inthe slides and repeated here:

x∗
b − ⌊x∗

b⌋ −
∑
j∈N

(
Ābj − ⌊Ābj⌋

)
xj ≤ 0 Ā = A−1

B AN

To apply this formula we need to put the problem in equational standard form and apply the simplexalgorithm.
max x1 − x2subject to: 23x1 + 12x2 + x3 = 1

x1, x2 ≥ 0
A = [23 12 1]

b = 1
With hindsight, knowing from above that the optimal solution has value [1.5, 0] and hence has x1 in basislet’s select as basis B = [1]. Applying the theory of the simplex we know that.

AB = [23
]

AN = [12 1]
x∗1 = A−1

B b = 321 = 1.5
and x2 = x3 = 0 because not in basis. Further,

ĀN = A−1
B AN = [34 32

]
and applying the Chvatal-Gomory formula given above:

32 −
⌊32

⌋
−

[(34 −
⌊34

⌋)
x2 + (32 −

⌊32
⌋)

x3
]

≤ 0
12 − 34x2 − 12x3 ≤ 0 =⇒ 3x2 + 2x3 ≥ 2

We can put the inequality in terms of the original variables by substituting x3 with 1 − 23x1 − 12x2
3x2 + 2 (1 − 23x1 − 12x2

)
≥ 2

3x2 + 2 − 43x1 − x2 ≥ 2 =⇒ 2x2 − 43x1 ≥ 0 =⇒ x2 ≥ 23x1This is not a valid inequality. There must be an error in the calculations.
Exercise 4∗

Apply the linear programming branch and bound algorithm to the following instance of the 0-1 knapsackproblem: values v = [9, 4, 2, 3, 5, 3], weights w = [7, 8, 4, 5, 9, 4] and capacity W = 20.
Solution:The relaxed knapsack problem can be efficiently solved with a greedy approach. Items are added one ata time by selecting the next item with the greatest ratio of value to weight. If there is enough remainingcapacity, the item is fully assigned with xi = 1. If not, a fractional value is assigned such that theremaining capacity is saturated and all remaining items have xi = 0.

3

AI505 – Spring 2025 Exercise Sheet
Student backstroke breaststroke butterfly freestyleA 43.5 47.1 48.4 38.2B 45.5 42.1 49.6 36.8C 43.4 39.1 42.1 43.2D 46.5 44.1 44.5 41.2E 46.3 47.8 50.4 37.2

Table 1:
item: 1 2 3 4 5 6value: 9 4 2 3 5 3weight: 7 8 4 5 9 4ratio: 9/7 4/8 2/4 3/5 5/9 3/4ratio: 1.28 0.5 0.5 0.6 0.555 0.75

Exercise 5∗

Consider the problem of selecting students for a swimming medley relay team. In Table 1 we show timesfor each swimming style of five students.We need to choose a student for each of the four swimming styles such that the total relay time isminimized. Formulate the problem as a MILP and solve it in Python.
Exercise 6In this exercise, you have to implement the dynamic programming algorithm for TSP with the help ofthe code below. How far can you go solving the TSP to optimality by enumeration (implemented below)and with dynamic programming?Some typing preliminaries. Cities are points in the 2D plane represented by complex numbers, a builtintype for a two-dimensional data.

import functools

import itertools

import pathlib

import random

import time

import math

import re

import matplotlib.pyplot as plt

from collections import Counter, defaultdict, namedtuple

from statistics import mean, median, stdev

from typing import Set, List, Tuple, Iterable, Dict

Basic concepts

City = complex # e.g. City(300, 100)

Cities = frozenset # A set of cities

Tour = list # A list of cities visited, in order

TSP = callable # A TSP algorithm is a callable function

Link = Tuple[City, City] # A city-city link

def distance(A: City, B: City) -> float:

"Distance between two cities"

return abs(A - B)

def shortest(tours: Iterable[Tour]) -> Tour:

4

AI505 – Spring 2025 Exercise Sheet
"The tour with the smallest tour length."

return min(tours, key=tour_length)

def tour_length(tour: Tour) -> float:

"The total distances of each link in the tour, including the link from last back to

first."

return sum(distance(tour[i], tour[i - 1]) for i in range(len(tour)))

def valid_tour(tour: Tour, cities: Cities) -> bool:

"Does ‘tour‘ visit every city in ‘cities‘ exactly once?"

return Counter(tour) == Counter(cities)

Then we can randomly generate a problem instance as follows.
generate instance

def random_cities(n, seed=1234, width=9999, height=6666) -> Cities:

"Make a set of n cities, sampled uniformly from a (width x height) rectangle."

random.seed(seed)

return Cities(City(random.randrange(width), random.randrange(height))

for c in range(n))

We can find optimal solutions by exhaustive search, ie, enumeration of all permutations of points.
def exhaustive_tsp(cities) -> Tour:

"Generate all possible tours of the cities and choose the shortest one."

return shortest(itertools.permutations(cities))

instance = random_cities(8, seed=42, width=100, height=100)

#optimal_tour = exhaustive_tsp(instance)

#print("Optimal tour:", optimal_tour)

#print("Tour length:", tour_length(optimal_tour))

Finally, we can visualize the tour.
Segment = list # A portion of a tour; it does not loop back to the start.

def plot_tour(tour: Tour, style=’bo-’, hilite=’rs’, title=’’):

"Plot every city and link in the tour, and highlight the start city."

scale = 1 + len(tour) ** 0.5 // 10

plt.figure(figsize=((3 * scale, 2 * scale)))

start = tour[0]

plot_segment([*tour, start], style)

plot_segment([start], hilite)

plt.title(title)

def Xs(cities) -> List[float]: "X coordinates"; return [c.real for c in cities]

def Ys(cities) -> List[float]: "Y coordinates"; return [c.imag for c in cities]

def plot_segment(segment: Segment, style=’bo:’):

"Plot every city and link in the segment."

plt.plot(Xs(segment), Ys(segment), style, linewidth=2/3, markersize=4, clip_on=False)

plt.axis(’scaled’); plt.axis(’off’)

#plot_tour(optimal_tour)

Solution:

5

AI505 – Spring 2025 Exercise Sheet

Figure 2: https://xkcd.com/399/
cache = functools.cache

def first(iterable):

"Return the first item in the iterable."

return next(iter(iterable))

def held_karp_tsp(cities) -> Tour:

"""The Held-Karp shortest tour of this set of cities.

For each end city C, find the shortest segment from A (the start) to C.

Out of all these shortest segments, pick the one that is the shortest tour."""

A = first(cities)

shortest_segment.cache_clear() # Clear cache for a new problem

return shortest(shortest_segment(A, cities - {A, C}, C)

for C in cities - {A})

@cache

def shortest_segment(A, Bs, C) -> Segment:

"The shortest segment starting at A, going through all Bs, and ending at C."

if not Bs:

return [A, C]

else:

return min((shortest_segment(A, Bs - {B}, B) + [C] for B in Bs),

key=segment_length)

def segment_length(segment):

"The total of distances between each pair of consecutive cities in the segment."

Same as tour_length, but without distance(tour[0], tour[-1])

return sum(distance(segment[i], segment[i-1])

for i in range(1, len(segment)))

def run(tsp: callable, cities: Cities):

"""Run a TSP algorithm on a set of cities and plot/print results."""

t0 = time.perf_counter()

tour = tsp(cities)

t1 = time.perf_counter()

L = tour_length(tour)

print(f"length {round(L):,d} tour of {len(cities)} cities in {t1 - t0:.3f} secs")

plot_tour(tour)

plt.savefig("tsp_run.png")

6

AI505 – Spring 2025 Exercise Sheet
Run the TSP algorithms

run(held_karp_tsp, instance)

run(exhaustive_tsp, instance)

7

