
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Tuesday 5th November, 2024
MC

DM587/AI511 – Scientific Programming / Linear Algebra
and Applications

Obligatory Assignment LinReg, Autumn 2024

First Deadline: Monday, November 11, 2024, at noon
Final Deadline: Tuesday, November 12, 2024, at 19

This document is associated with the files linreg.py and draw.py and data files, which are available
in the git repository. The file linreg.py is the only one that needs to be edited and submitted.

In the Introduction to Python - Part 3, on slide 12, we compared three important models for growth
functions in computer science applications:

exponential model y = aebx

power function model y = axb

logarithmic model y = a + b ln x

where a and b are to be determined to fit experimental data as closely as possible. In this exercise you
will work with a procedure called linearization, by which the data are transformed to a form in which a
least squares straight line fit can be used to approximate the constants.
Let x denote the different size of two square matrices that we multiply with each other and y the
computation time registered by executing, for example, the script benchmark from Assignment VecMat.
We will assume to have collected the following data D = {(xi, yi)} (also available in the associated
python script):

x 2 3 4 5 6 7 8 9
y 1.75 1.91 2.03 2.13 2.22 2.30 2.37 2.43

We will fit a linear model and the three models above using least squares and decide which is the best
model.

Linear function Implement the function least_squares(A,b) that takes an appropriate matrix A and
vector b⃗ and returns the least square solution z⃗ of the system Az⃗ = b⃗. In the implementation, you are
not allowed to use the following functions from Numpy and Scipy: linalg.lstsq(A,b), linalg.inv(A),
linalg.polyfit(A,b). You are instead allowed to use other functions like scipy.linalg.qr(A), and
scipy.linalg.solve_triangular(A, b) (read the corresponding documentation to understand what
they do). Using your function least_squares(A,b) determine the linear function y = ax + b that best
fits the given data (xi, yi). You can visualize the situation executing the file draw.py that uses the code
of the function linear_model(x,y) that you implement to draw a plot with the points and the fitted
linear regression.

Exponential function Making the substitution
Y = ln y

in the equation y = aebx produces the equation Y = bx + ln a, whose graph in the xY -plane is a line
of slope b and Y -intercept ln a. Verify this fact!
Hence, a curve of the form y = aebx can be fitted to the given n data points (xi, yi) by letting Yi = ln yi,
then fitting a straight line to the transformed data points (xi, Yi) by least squares to find b and ln a,
and then computing a from ln a. Implement this method to fit an exponential model in the function
exponential_fit that uses your least_squares(A,b). (You may need to use the functions np.log and
np.exp for computing the natural logarithm). You can visualize the situation executing the file draw.py

that uses the function that you implement to draw a plot with the points and the fitted exponential
curve.

1



Figure 1: The result of this assignment with training error on two different data sets. Which curve fits
best the data in the two data sets?

Power function Making the substitutions

X = ln x Y = ln y

in the equation y = axb produces the equation Y = bX + ln a, whose graph in the XY -plane is a line
of slope b and Y -intercept ln a. Verify this fact!
Hence, a curve of the form y = axb can be fitted to the given n data points (xi, yi) by letting Xi = ln xi
and Yi = ln yi, then fitting a straight line to the transformed data points (Xi, Yi) by least squares to
find b and ln a, and finally computing a from ln a. Implement this method to fit an power model in the
function power_fit. You can visualize the situation executing the file draw.py that uses the function
that you implement to draw a plot with the points and the fitted curve.

Logarithmic function Making the substitution

X = ln x

in the equation y = a + b ln x produces the equation Y = a + bX , whose graph in the Xy-plane is a
line of slope b and y-intercept a. Verify this fact!
Hence, a curve of the form y = a + b ln x can be fitted to the given n data points (xi, yi) by letting
Xi = ln xi and then fitting a straight line to the transformed data points (Xi, yi) by least squares to find
b and a. Implement this method to fit a logarithmic model in the function logarithmic_fit. You can
visualize the situation executing the file draw.py that uses the function that you implement to draw a
plot with the points and the fitted curve.

Training error Implement the function training_error(f,x,y) that returns the root sum of squared
errors for the model f. Using this function compare the training error of the four models and determine
which model has the best training error.

2


