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What is a graph?

Vertices:   P, Q, R, S, T
Edges:    all the lines
Degree of a vertex:  number of edges with that vertex as an end-point 
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Two different graphs? No!

In the right graph we have removed the 'crossing' of the lines PS and QT by drawing the line PS outside the 
rectangle PQST.
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The first scientific article using the term graph
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Directed Graphs (Digraphs)

The study of directed graphs (or digraphs, as we abbreviate them) arises when making the roads into one-way 
streets. An example of a digraph is given above, the directions of the one-way streets being indicated by arrows. 
(In this example, there would be chaos at T, but that does not stop us from studying such situations!) 
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Walks, Paths, and Cycles

Much of graph theory involves 'walks' of various kinds. A walk is a 'way of getting from one vertex to another', 
and consists of a sequence of edges, one following after another. For example, in the above figure P —> Q—>R is 
a walk of length 2, and P —> S —> Q —> T —> S —> R is a walk of length 5. A walk in which no vertex appears 
more than once is called a path; for example and P —> Q —> R —> S is a path. A walk in which you end where 
you started, for example  Q —> S —> T —> Q , is called a cycle. 7



Connectedness

Some graphs are in two or more parts. A graph that is in one piece, so that any two vertices are connected by a path, is a 
connected graph; a graph in more than one piece is a disconnected graph. 
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Weighted Graphs

Consider the above graph: it is a connected graph in which a non-negative number is assigned to each edge. Such a graph is 
called a weighted graph, and the number assigned to each edge e is the weight of e, denoted by w(e). 
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Shortest Path (between one pair of vertices)

What is the length of the shortest path (=distance) from A to L? 

The problem is to find a path from A to L with minimum total weight. This problem is called the Shortest Path Problem. Note 
that, if we have a weighted graph in which each edge has weight 1, then the problem reduces to that of finding the number of 
edges in the shortest path from A to L. 
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All-Pairs Shortest Path

What is the length of the shortest path (=distances) from any vertex to any vertex? 

This problem is called the All-Pairs Shortest Path Problem
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All-Pairs Shortest Path : A Solution for Some Cities in Australia
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One of the most decorative 
tables of distances (in Roman 
miles) between major 
European cities printed in 
the eighteenth century. Not 
only were the data extremely 
useful for traveling but also 
for sending a letter, because 
distance, not weight, 
determined the price.

(From the “Historic Maps Collection”, 
Princeton University Library, link: here

http://libweb5.princeton.edu/visual_materials/maps/websites/

thematic-maps/introduction/introduction.html)
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http://libweb5.princeton.edu/visual_materials/maps/websites/thematic-maps/introduction/introduction.html


Real World vs Model vs Representation vs Implementation
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The Real World 

  That messy thing we are trying to study (with computers). 

Model 
  
  Mathematical object in some class M. 

Representation 

   An object of an abstract data type R used to store the model. 

Implementation 

   An object of a concrete type used to store the model.

Any object from the real world might have different models. 
Any model might have several representations (exact).
And representation might have different implementations (exact).



Matrix Representations for Graphs

If G is a graph with vertices labelled {1, 2, ...}, its adjacency matrix A is the n x n matrix whose ij-th entry is the number of 
edges joining vertex i and vertex j. Two nodes i and j are adjacent if the  ij-th entry in the adjcacency matrix is larger than 0. 

If, in addition to the vertices, the edges are labelled {1, 2,..., m}, its incidence matrix M is the n x m matrix whose ij-th entry 
is 1 if vertex i is incident to edge j and 0 otherwise. The figure above shows a labelled graph G with its adjacency and 
incidence matrices. 15



Adjacency Matrix for Weighted Graphs

Given a weighted graph G, the adjacency matrix A is the matrix whose ij-th entry is the weight of the 
edge between vertex i and vertex j. 
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Graph Isomorphism

Graph Isomorphism
Two graphs G and H are isomorphic if there is a one-one correspondence between the vertices of G and those of H such that 
structure (i.e., adjacency) is preserved (i.e., the number of edges joining any two vertices of G is equal to the number of edges 
joining the corresponding vertices of H.) 

Checking Isomorphism always requires to compare representations of two graphs!

Note: we assume here unlabeled undirected graphs only. The vertices of a graph still have to be identified. 
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[advanced comment]
Computational Complexity:
Probably “quasi-polynomial” 

https://www.youtube.com/watch?v=q
YIhA3O9Nz0

(to be confirmed)

Are these 2 graphs isomorphic? YES!

https://www.youtube.com/watch?v=qYIhA3O9Nz0
https://www.youtube.com/watch?v=qYIhA3O9Nz0


Permutation Matrix

In mathematics a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column 
and 0s elsewhere. Each such matrix, say P, represents a permutation of m elements and, when used to multiply another 
matrix, say B, results in permuting the columns (when post-multiplying, BP) or the rows (when pre-multiplying, i.e., PB) of the 
matrix B. 
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Multiplying a Matrix with a Permutation Matrix P (from the right) 

Let B be a matrix and let P be a permutation matrix:

The multiplication BP (multiplying the permutation matrix from the right) permutes the columns of B

19

column 2 becomes column 4 



Multiplying a Matrix with a Permutation Matrix P (from the left)

Let B be a matrix and let P be a permutation matrix:

The multiplication PB (multiplying the permutation matrix from the left) permutes the rows of B
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row 4 becomes row 2 



Changing the representation of a graph via

re-labels the graph represented by adjacency matrix B

The mathematical object remains identical (the represented 
graphs are isomorphic), only the representation of the graph 
changes (the adjacency matrix representations are potentially 
different).
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Zero-Indexing 

(picture from xkcd.com)

Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index 0, 
rather than the index 1 as is typical in everyday non-mathematical/non-programming circumstances.

Make sure that it is clear what you mean, when you say, e.g., the “row with index 1” in a matrix.
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Python
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Using: 
• matplotlib for plotting
• networkx for graph theory

More efficient solution in Exercises (and 
hopefully in lab submission)

Code provided : 

graph-permutation.py
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Problem:
How to find P?

Brute Force Graph Isomorphism Check:



Brute Force Graph Isomorphism Check:
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Naïve approach: enumerate all possible permutation 
matrices, and check for all of them if                                    
holds. If such a P is found, the 2 graphs are isomorphic.



Improvement(s)

Consider node degrees! 

Does it make sense to consider a P which maps 
• vertex 1 of        to vertex 2 of        ? NO!
• vertex 1 to vertex 1? YES!
• vertex 1 to vertex 3, 4, or 5? NO!
• vertex 2 to vertex 1 or 4? NO!
• vertex 2 to vertex 2, 3, or 5? YES! 

Use as initial matrix:
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Improved Graph Isomorphism Check:
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Significantly smaller number of possible 
permutation matrices!

No branching for first row!
Consider all (3) possibilities for row 2. 

vertex 4 of B cannot be 
mapped to vertex 2 of A 
and to vertex 3 of A

Consider all (3) possibilities
for row 3.

Always a good idea:
Reduce the size of the search tree
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Applications [wikipedia]
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State-of-the-Art Implementation for Checking for Graph Isomorphism

State-of-the-art approaches to test if two graphs are isomorphic can compute an answer for graphs with 
thousands of nodes in milliseconds. If you are interested, see for example here 
https://dl.acm.org/doi/10.1145/3356020 for a very nice visualization accompanying this scientific paper, see 
https://jakobandersen.github.io/graph_canon_vis/ 

Subgraph Isomorphism

The formula                                can also be used to check if a graph H is a subgraph of graph G.  

This will be discussed in the exercise session, the slides will be included in this document.

Advanced Comment: Find a canonical representation

Example: Chose the “smallest” adjacency matrix representation
As the canonical representation.

https://dl.acm.org/doi/10.1145/3356020
https://jakobandersen.github.io/graph_canon_vis/
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Applications

Approx. 70 mio. chemical 
compounds are know. 

• How to find them in 
databases? 

• How to name them?
• Where to buy them?
• How to curate databases 

of compounds?
• ...

See also 
https://math.stackexchange.c
om/questions/120408/what-
are-the-applications-of-the-
isomorphic-graphs for a nice 
list of the endless application 
scenarios of isomorphism 
checking.

https://math.stackexchange.com/questions/120408/what-are-the-applications-of-the-isomorphic-graphs
https://math.stackexchange.com/questions/120408/what-are-the-applications-of-the-isomorphic-graphs
https://math.stackexchange.com/questions/120408/what-are-the-applications-of-the-isomorphic-graphs
https://math.stackexchange.com/questions/120408/what-are-the-applications-of-the-isomorphic-graphs


Subgraph Isomorphism ( -> Exercises)
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Obviously H is a subgraph of G (see left figure). Is it also an induced subgraph of H? Yes! (right)



Powers of the Adjacency Matrix
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Example :
Consider the two vertices with index 4 and 5 in 𝐴4

Length 4 walks:
1)  4 -> 5 -> 1 -> 2 -> 5
2)  4 -> 5 -> 2 -> 1 -> 5

There are 2 walks of length 4. 
Furthermore, 𝐴45

4 =2. 
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Algorithm for All-Pairs Shortest Path

Weighted Graph G with weights on edges:

• What is the distance (=length of the 
shortest path) between A and L ?
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Generalization:
• What are the distances of 

ALL paths (=lengths of ALL 
shortest paths) between all 
pairs of nodes?

… and how can we find all 
these distances? 35



The Edge Weight Matrix W

Note: Matrix W has entries 
corresponding to infinity, as it might 
be impossible to reach vertex j from 
vertex i via 1 edge.

We assume all weights are not 
negative, i.e.,  larger or equal to 0.

weights are depicted in red
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A modified Matrix-Matrix Multiplication

Note: this operation is very similar to the 
standard matrix-matrix multiplication: however, 
for computation of the ij-th entry the 
multiplication is replaced by addition, and 
addition is replaced by the minimum operation.
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Examples :
Consider the two vertices with index 4 and 1 in 𝑊4

Shortest Path using maximally 4 edges:
 4 -> 6 -> 3 -> 2 -> 1 (distance 7)

Consider the two vertices with index 5 and 3 in 𝑊4

Shortest Path using maximally 4 edges:
 5 -> 1 -> 2 -> 3 (distance 5)
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Assume all edge weights are not negative. The number of edges needed for a shortest path can 
maximally be n-1, where n is the number of vertices in the graph. If the path would go via n edges, 
then you would have to visit at least one vertex twice, but then the path cannot be a shortest path 
anymore. Obviously 𝑊𝑘 = 𝑊𝑛−1 for all k>n-1.
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Computation of the Distance Matrix by Repeated Squaring

n-2 matrix-matrix multiplication are needed in 
order to compute the distance matrix 𝐷 = 𝑊𝑛−1

k matrix-matrix multiplication are needed (namely 
squaring a matrix k times) in order to compute the 
matrix            

2𝑘has to be larger or equal to n-1, or equivalently, 
k has to be larger or equal to log2(𝑛 − 1)

Example: Consider a graph G with 101 vertices. In order to compute the distance matrix D = 𝑊100, the left 
approach needs to make 99 matrix-matrix multiplications. The right approach (called repeated squaring) 
requires only 7 matrix-matrix multiplications, as 27 = 128, and D = 𝑊128 = 𝑊100
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Another Application of the Distance Matrix: 
Predicting Boiling Points of Paraffins

In 1947 Harry Wiener defined the Wiener-Index of a graph G in order to predict the 
boiling point of different paraffins. He used the graph representation G of the 
carbon backbone of a molecule with n carbon atoms and calculated the Wiener-
Index the sum of all distances between all pairs of vertexes, i.e. 

He predicted the boiling point 𝑡𝐵  to be

43



Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

1
4 6

5
2

3

The chemical compound

The carbon backbone

Graph G Edge Weight Matrix

Distance Matrix

Calculation of Wiener Index and other parameters, 
as well as the resulting boiling point prediction.

Note: Depending on how you chose to label your graph, the edge 
weight matrix might look different. This won’t matter for the 
subsequent calculations.
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Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

The prediction of boiling points of paraffins based on the Wiener-Index of the 
corresponding molecular graph is amazingly accurate. Try it yourself (see 
exercises)! Intuitively, the Wiener-Index quantifies the “compactness” of a graph 
(or molecule). Long single chained molecules with n carbons have a larger 
Wiener-Index than molecules that contain many branches. Long molecules tend 
to align nicely, and have usually a higher boiling point.  
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