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What is a graph?

Vertices: PQ,R,S T
Edges: all the lines
Degree of a vertex: number of edges with that vertex as an end-point



Two different graphs? No!

T S

In the right graph we have removed the 'crossing' of the lines PS and QT by drawing the line PS outside the
rectangle PQST.



The first scientific article using the term graph
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Directed Graphs (Digraphs)

S

The study of directed graphs (or digraphs, as we abbreviate them) arises when making the roads into one-way
streets. An example of a digraph is given above, the directions of the one-way streets being indicated by arrows.
(In this example, there would be chaos at 7, but that does not stop us from studying such situations!)



Walks, Paths, and Cycles

Much of graph theory involves 'walks' of various kinds. A walk is a 'way of getting from one vertex to another’,
and consists of a sequence of edges, one following after another. For example, in the above figure P —> Q—>R is
awalk of length 2, andP —>S —>Q —>T —>S —> Ris a walk of length 5. A walk in which no vertex appears

more than once is called a path; for example and P —>Q —> R —> S is a path. A walk in which you end where
you started, for example Q —>S —> T —> Q, is called a cycle.



Connectedness

P @- Q T

Some graphs are in two or more parts. A graph that is in one piece, so that any two vertices are connected by a path, is a
connected graph; a graph in more than one piece is a disconnected graph.



Weighted Graphs

Consider the above graph: it is a connected graph in which a non-negative number is assigned to each edge. Such a graph is
called a weighted graph, and the number assigned to each edge e is the weight of e, denoted by w(e).



Shortest Path (between one pair of vertices)

What is the length of the shortest path (=distance) from A to L?

The problem is to find a path from A to L with minimum total weight. This problem is called the Shortest Path Problem. Note
that, if we have a weighted graph in which each edge has weight 1, then the problem reduces to that of finding the number of

edges in the shortest path from A to L.



All-Pairs Shortest Path

11



All-Pairs Shortest Path : A Solution for Some Cities in Australia
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One of the most decorative =
tables of distances (in Roman

miles) between major =

European cities printed in
the eighteenth century. Not =
only were the data extremely

useful for traveling butalso =

for sending a letter, because

distance, not weight,

determined the price. =
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(From the “Historic Maps Collection”,

Princeton University Library, link: here &=

http://libweb5.princeton.edu/visual _materials/maps/websites/

thematic—maps/introduction/introduction.html)

rpiA ot
raman it Lo
i
o,
rmo
2 %
E3Eg [ amere
=
12}
=[] 70
57}
Fl
4]
2
EE 2]
0
|22] 37}
15135
3
172{75}
3] 3
24 |2 £
341 N 12
5[33]2
2313 2;
(3]0 &
72 |33}
&2 3] 4z 3|
3720 7]
g 591
7% £ i
¥l E3E 7 TA PN ML
(0]
[43]2 &
[52]>: o
371 mac 4513
391z o 3
7
Z5]24] GEQLS
3r3 1
2
B
TAEAEI 6 E
o153 [55(70( 81| 7] ¢
A 7
7513315
[52(57] 4805t
#3053 3]
3¢ 7 |35 | #3)#0]
5 331
K R EL
] e
AL [53(2:
[o]35 32
A 2y (50155153 o]
|52} 3¢
22 124]
= 2z
5553 {201
[37]
Tl 3
22
193]
32 ]
%
73]
22}
73}
(2] 20}
37}
| 20) 22|
22153]

)

B8

A e
I3\ sel;

|74
2| 20133 93122 | 18]

Dremen.
Lo canen
Cracaw

Dhefs Fjur rwesfet: don Groogls sur- érfindung
der Westen devr Orter. srem. eaonpel wreweee

Niirmbery vom V% anckficrth. am Mg

mtlagen

Tk

s
Vinachcori oo,

Augula

it Ae um o

. 3
o &
o ¢
am ot
e
¢ o Denarn.
R stanen —am
~Cracovia e
Samiasoon 3
e
Drelda_or
a_am
[70]
20
] 7
22
2 m
n
@
26]22)2x | 451 3
7|
50) 3]
4]
(72| 73] s}
28] 2 [24]28] [#:]2574 |57
32
2
3:
g 237
£ 23]
a
30| %9[ 3538 4532 0| #5] 74152
52 2 7
73] 530 27,
EZi ZIEED
3 123} ) GG
45713 5[ #
e a5
7 Lz [Fa]70

g

Teutlche Meilen folche voneinandes ent.
legen.
Zom ExEHPEL
7 el Moo 7

rond rrat-dem Zeig der Beohton Mamd o dee Lete
Z e A7,
2 0 Moo /g
e Zucnfi-dr Finger s 2oL €. cle Sewder Stecle
54 A
Mfahl?f.ﬂlﬁyu&:;xv.

F or FOMRIN IS CHEN CFRICIN

Sl
cucyarde . Stutgardin o Swivaion.

[l l‘

ol
N,

[ 52]
94
76}
|55

BREERE
o[

S

NE
3¢

3z,
53]
Bz
£

8%

B8

| A aoen
 Weina
==

% awaw.


http://libweb5.princeton.edu/visual_materials/maps/websites/thematic-maps/introduction/introduction.html

Real World vs Model vs Representation vs Implementation

The Real World
That messy thing we are trying to study (with computers).
Model

Mathematical object in some class M.

Representation

1 2 3 4 5 6

An object of an abstract data type R used to store the model. L0 B O O 1 O\
i 211 0 1 0 1 O
Implementation . P19 3 9 3 1
An object of a concrete type used to store the model 410 0 0 0 1 1
' 511 1.0 1 0 0

6 \0 0010 0

Any object from the real world might have different models.
Any model might have several representations (exact).

. . ) ) i >>> import scipy as sp
And representation might have different implementations (exact).

>>> G = nx.Graph([(1,1)])
>>> A = nx.adjacency_matrix(G)



Matrix Representations for Graphs

. & eeat®

adjacent vertices adjacent edges
(01 0 1) 1 00 10 0)
1012 1100 1 1

A= M=
010 1 011000
.1 2 1 0 ) 00111 1)

If G is a graph with vertices labelled {1, 2, ...}, its adjacency matrix A is the n x n matrix whose ij-th entry is the number of
edges joining vertex i and vertexj. Two nodes i and j are adjacent if the ij-th entry in the adjcacency matrix is larger than O.

If, in addition to the vertices, the edges are labelled {1, 2,..., m}, its incidence matrix M is the n x m matrix whose ij-th entry

is 1 if vertex i is incident to edge j and 0 otherwise. The figure above shows a labelled graph G with its adjacency and
incidence matrices.



Adjacency Matrix for Weighted Graphs

(001 0 1) 1 0010 0)

1012 11001 1
A= M=

0101 011000

.1 2 1 0 00111 1)

Given a weighted graph G, the adjacency matrix A is the matrix whose ij-th entry is the weight of the
edge between vertex i and vertex .



Graph Isomorphism

Graph G Graph H An isomorphism [advanced comment]
between G and H . .
Computational Complexity:
fla) =1 «“ . .- _1»
Probabl uasi-polynomial
Cl\ @ )26 Yy q poly

YIhA309Nz0

flg)=5

fic)=8
9.o fd) = 3 https://www.youtube.com/watch?v=q
o f(h) =2

(to be confirmed)

=4
4 3
O @ ..
Are these 2 graphs isomorphic? YES!
Graph Isomorphism
Two graphs G and H are isomorphic if there is a one-one correspondence between the vertices of G and those of H such that

structure (i.e., adjacency) is preserved (i.e., the number of edges joining any two vertices of G is equal to the number of edges
joining the corresponding vertices of H.)

Checking Isomorphism always requires to compare representations of two graphs!

Note: we assume here unlabeled undirected graphs only. The vertices of a graph still have to be identified.


https://www.youtube.com/watch?v=qYIhA3O9Nz0
https://www.youtube.com/watch?v=qYIhA3O9Nz0

Permutation Matrix

o O O O =
o O = OO
_ O O O O
o O O = O
S = O O O

In mathematics a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column
and Os elsewhere. Each such matrix, say P, represents a permutation of m elements and, when used to multiply another
matrix, say B, results in permuting the columns (when post-multiplying, BP) or the rows (when pre-multiplying, i.e., PB) of the
matrix B.



Multiplying a Matrix with a Permutation Matrix P (from the right)

( 1 6 11
2 7 12
3 8 13
4 9 14

\ 5 10 15

Let B be a matrix and let P be a permutation matrix:

The multiplication BP (multiplying the permutation matrix from the right) permutes the columns of B

16
17
13
19
20

21
L \

23

24
25 )

OO O O

O O = OO

_ o O O O

o O OO

oS R O O O

column 2 becomes column 4

|
QU I WO DN =

11
12
13
14
15

21
L
23
24
25

O 0 N O

p—
-

17
13
19

1+1
4+ 2
23
544
3495



Multiplying a Matrix with a Permutation Matrix P (from the left)

row 4 becomes row 2

(10000\ (1611 16 21\ (1611 16 21
0 0 011 o 2 7 12 17 22 4 9 14 19 24
01 00 0 |x| 3 8 13 18 23 |=1|2 7 12 17 22
0 0 0 0 1 4 9 14 19 24 5 10 15 20 25
\00100) \5 10 152025) \3813 1823)

Let B be a matrix and let P be a permutation matrix:

The multiplication PB (multiplying the permutation matrix from the left) permutes the rows of B

1 =1
4 — 2
2—3
5—4
3—5



Changing the representation of a graph via P(PB)T

/

1 00 0 0) 1 00 0 0) 0 1 1 0 0
000 10 000 1 0 1 0110
0100 0 |x 01000 ]|x|11010
00 0 0 1 00 0 0 1 01 10 1
0010 0) 0010 0) 000 1 0
P . P B
K row permuted B

~~

transposed row permuted B

"~

row permuted column permuted B

P(PB)" re-labels the graph represented by adjacency matrix B

The mathematical object remains identical (the represented
graphs are isomorphic), only the representation of the graph
changes (the adjacency matrix representations are potentially
different).

_ o = O O
—_ = - O O

1 —1
4 — 2
2 —3
5—4
3—9

_0 O = =

S OO+ O

OO = ==




Zero-Indexing

Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index O,
rather than the index 1 as is typical in everyday non-mathematical/non-programming circumstances.

Make sure that it is clear what you mean, when you say, e.g., the “row with index 1” in a matrix.

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, 50ME FrROM ZERD.

DIFFERENT TASks CALL FOR
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGORITHMS
EXPERT DONALD KNUTH,

“WHO ARE You? How DID
YOU GET IN MY HOUSE?
/

VAT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

/

(picture from xkcd.com)



Python

import matplotlib.pyplot as plt
import numpy as np
import networkx as nx

# Note, there might be several differnent adjacency matrices for the same graph

B=np.array([[ @, 1, 1, @, @],

(1, o, 1, 1, el,

(i, 1, o, 1, @i,

e, 1, 1, o, 1],

Lo, 0, 0, 1, @I
P=np.array([[ 1, ©, @, 0, @],

Lo, @, 0, 1, @],

Lo, 1, @, o, @],

Lo, @, @, o, 1],

Lo, @0, 1, @, @I
# 1->1 0->0 [[1, o, @, o, e],
# 4->2 3->1 [e, @, o, 1, @],
# 2->3 1->2 [o, 1, o, @, @],
# 5->4 4->3 [e, o, @, @, 1],
# 3->5 2->4 [e, o, 1, o, @]]

# for drawing the graph, only
G = nx.from_numpy_matrix(B)
plt.figure()

plt.subplot(211)

# the annoyingness of zero- and one- indexing let's rename the depicted labels
mathLabels = {@: 1, 1:2, 2:3, 3:4, 4:5}
nx.draw(G, with_labels=True, labels=mathLabels)

# As taught in the lecture P*(P*B)AT
A = np.matmul(P,np.transpose(np.matmul(P,B)))

# Since python 3.5 the following also works (note the stronger binding of
# the transpose operator
A = P@(P@B).T

# More clever (see Appendix C or the numpy documentation)
# define how rows should be permuted
# r = np.array([@, 3, 1, 4, 2]

# A = (B[np.array(r)].TD[np.array(r)]

H = nx.from_numpy_matrix(A)

plt.subplot(212)

nx.draw(H, with_labels=True, labels=mathLabels)
plt.show()

23



Brute Force Graph Isomorphism Check: P(PB)T

O o O O

O O = OO

_— o O O O

Theorem:

Two undirected graphs G4 and G (with adjacency matri-
ces A and B) are isomorphic, if and only if there exists a

permutation matrix P, such that A = P (PB)" .

1—1
4 -5 92 :
2—3 \
5 =>4 \ \
3—95

0 0 10000 0110 0 0010 1
1 0 000 1 0 10110 00 1 1 1 ,
o0 lxllotoo0o0lx|11010l||l-]11001]| Problem:
0 1 000 0 1 01 10 1 0100 0 .
0 0 0010 0 000 1 0 1 110 0 How to find P?



A=P(PB)"

Brute Force Graph Isomorphism Check

_——— .,
~ ™~ ~ =~
= — — =
=™ ~ ~ =~
= — — —
e o
e —
~_~ =,
e B B B B
= e P
= = —~
= —~ —
= = ~ ~
e —
_ T,
[ o
= —~ —~
= —~ —
[ pf
= ™ ~ ~
e
o~ =,
= ] P
= —~
[ pf
~ ™~ ~ =~
| — —
B
_— T,
= = ~ ~
e vl ™ i
= - P
e vl ™ i
p—{ P
e —

O o -

SO~

OO —H —~ -

SO~~~

— O o~ o~

OO —H —~ -

O = o~

SO~~~

OO —H —

— O~~~

SO~~~

OO —H —~

S = o~ o~

SO~~~

— O o~ -

SO H —~H -

SO~~~

OO —H —

S =~ —~

—— O -

OO —H —

SO~

OO —H —~ -

SO H —~H -

L B e TR o B e B |

Naive approach: enumerate all possible permutation

T

P (PB)

holds. If such a P is found, the 2 graphs are isomorphic.

matrices, and check for all of them if A

SO —+H OO

o - O O O

SO o —H O

OO O O

— o O O O



Improvement(s)




Improved Graph Isomorphism Check:

1 0 0 0 0
0 1 0 0 O
0 1 1 1 O
0 0 0 0 1
0 1 1 1 O

Always a good idea:
Reduce the size of the search tree

Significantly smaller number of possible
permutation matrices!

O O OO

— O = =|o

_ O =[O

— O = =|o

(enRian) fan) Nanll

o O o o

— Ol O O

_ O = O O

— O~ O

_— o o o O

— OO O

_—o O = O

O RO O

S = O OO

— P(PB)"

No branching for first row!
Consider all (3) possibilities for row 2.

OO oo C oo o

——_

oo o o

_ O IRIOoO O

_ o O O O

— o O O O

—_ OO O

— O~ O O

O = O OO

— ORIV O

_—o O = O

O O = O

o RIOIO O

SO R O OO

Consider all (3) possibilities
for row 3.

oS OO O
o OO O
_ o o OO
— O = O
O R O O O

vertex 4 of B cannot be
mapped to vertex 2 of A
and to vertex 3 of A



Applications wikipedial

Graphs are commonly used to encode structural information in many fields, including computer vision and pattern recognition,
and graph matching, i.e., identification of similarities between graphs, is an important tools in these areas. In these areas graph

i iem nrahlam | i [39]
isomorphi Crnh matemne 1S known as the exact graph matching.

In cheminformatics and in mathematical chemistry, graph isomorphism testing is used to identify a chemical compound within a
chemical database.[?! Also, in organic mathematical chemistry graph isomorphism testing is useful for generation of molecular
graphs and for computer synthesis.

Chemical database search is an example of graphical data mining, where the graph canonization approach is often used.l*! In
particular, a number of identifiers for chemical substances, such as SMILES and InChl, designed to provide a standard and
human-readable way to encode molecular information and to facilitate the search for such information in databases and on the
web, use canonization step in their computation, which is essentially the canonization of the graph which represents the
molecule.

In electronic design automation graph isomorphism is the basis of the Layout Versus Schematic (LVS) circuit design step, which

is a verification whether the elecitric circuits represented by a circuit schematic and an integrated circuit layout are the same.[4?]

28



State-of-the-Art Implementation for Checking for Graph Isomorphism

State-of-the-art approaches to test if two graphs are isomorphic can compute an answer for graphs with
thousands of nodes in milliseconds. If you are interested, see for example here
https://dl.acm.org/doi/10.1145/3356020 for a very nice visualization accompanying this scientific paper, see
https://jakobandersen.github.io/graph canon vis/

Advanced Comment: Find a canonical representation G=(V,E) V={12,...,n}

Given a representation G € R find a new representation C(G), a Isomorphic graphs, different representations.

1 2 1
canonical form, such that:
4 4
> It represents the same model: C(G) = G 3 3 5
T . . . 2 4 3
» All canonicalized isomorphic representations are the same: c c c
/ I~ . n r 1 2
VG € R, G=G: C(G ) B C(G) Adjacency matrix representation:

1234
1

1

1
Example: Chose the “smallest” adjacency matrix representation 11 21
4]1

1
2
3
g g 4
As the canonical representation.

1
111

Subgraph Isomorphism

Theformula 4 — P (pB)Tcan also be used to check if a graph H is a subgraph of graph G.

This will be discussed in the exercise session, the slides will be included in this document.


https://dl.acm.org/doi/10.1145/3356020
https://jakobandersen.github.io/graph_canon_vis/

Applications

Approx. 70 mio. chemical
compounds are know.

e Howto find themin
databases?

* How to name them?

*  Where to buy them?

* How to curate databases
of compounds?

See also
https://math.stackexchange.c

om/questions/120408/what-
are-the-applications-of-the-
isomorphic-graphs for a nice
list of the endless application
scenarios of isomorphism
checking.

c

& https://www.sigmaaldrich.com/catalog/search/substructure/SubstructureSearchPage ) %¢ P”

Substructure Search Results X -+

Order Center | S~ Denmark
KB [~A

ORDER™ v

SIGMA-ALDRICH' is non NMEBRCUK

Hello. Sign in.
ACCOUNT v~

OO iy

View Products

INDUSTRIES v SUPPORT v

oo

PRODUCTSv  SERVICES v

View Products

View Products

NH2 CHj NO,

Double-Click on the diagram to Modify

New Search
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https://math.stackexchange.com/questions/120408/what-are-the-applications-of-the-isomorphic-graphs
https://math.stackexchange.com/questions/120408/what-are-the-applications-of-the-isomorphic-graphs
https://math.stackexchange.com/questions/120408/what-are-the-applications-of-the-isomorphic-graphs
https://math.stackexchange.com/questions/120408/what-are-the-applications-of-the-isomorphic-graphs

Subgraph Isomorphism ( -> Exercises)

Formally, let G = (V, E) be any graph, and let S C V be any subset of vertices
of G.

The subgraph H is a graph whose vertex set is S and whose edge set consists
of (not necessarily all) edges in E that have both endpoints in S.

The induced subgraph H is a graph whose vertex set is S and whose edge set
consists of all the edges in E that have both endpoints in S.

H G H G

S —_— —
— — T—

A [

— — - — — =
_— — _—

Obviously H is a subgraph of G (see left figure). Is it also an induced subgraph of H? Yes! (right)



Powers of the Adjacency Matrix

1 2 3 4 5 6
O 1/0 1 0 0 1 0
< 1o 10000
A:4000011
511 1.0 1 0 0

o 6\0 0 0 1 0 O

AP = A x A... x A is called the k-th power of the adjacency matrix
N——— ———

k times



S O i O N =

SR = O W DN

Theorem:
If G is a graph with adjacency matrix A, and vertices
with indices 1,...,n then for each positive integer k

the ij-th entry of A"
1S

the number of different walks using exactly k£ edges
from node 7 to node 3

3 45 6 1 2 3 45 6 1 2 3
1 1.1 0) 1(241141\ 1 /8 7 4
01 1 0 2[4 2 31 5 1 2|7 12 2
101 0| 5_3[130110f , 3|42 3
02 0 0 41110 4 2 45 6 1
10 3 1 514 5 1 4 2 0 517 7 5
00 1 1) 6\1 102 0 0/ 6\1 1 1

ODN O — O Ot =

DO Ot J 3 Ot

p—t
=~ o

=~ O = =
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Algorithm for All-Pairs Shortest Path

Weighted Graph G with weights on edges:

 What is the distance (=length of the
shortest path) between Aand L ?

17

Generalization:

 What are the distances of
ALL paths (=lengths of ALL
shortest paths) between all
pairs of nodes?

... ahd how can we find all
these distances?

35



The Edge Weight Matrix W

Example:
1 2 3 4 5 6
1 ( 0 1 o0 oo 2 oo\
2 1 0 2 oo 4 o
W — 31 oo 2 0 oo oo 3
41 00 o0 oo 0 6 1
b1 2 4 o 6 0 o
6 Koo oo 3 1 oo 0 )
weights are depicted in red
Definition:

(the weight of the edge (i,7) if the edge (¢,7) exists

o . Note: Matrix W has entries

Wi; =40 if1=7 corresponding to infinity, as it might

| OO else be ImpF)S§Ib|e to reach vertex j from
vertex ivia 1 edge.

Interpretation:
W;; is the distance from vertex ¢ to vertex j using maximally 1 edge

We assume all weights are not
negative, i.e., larger or equal to O.



A modified Matrix-Matrix Multiplication

1
1
3

— N O
DN =~ DO
N O DO
Ot DN W
|
o DN DO
=~ QO O
o = DO

1
© | 4

1
MON=R

Definition:
Tij = mmk{mzk + nkj}

Note: this operation is very similar to the
standard matrix-matrix multiplication: however,
. for computation of the ij-th entry the
Example: S o
: multiplication is replaced by addition, and
33 — m1n{3 + 3, 1+ 2, 2+ 5} =3 addition is replaced by the minimum operation.




Theorem:
If G is a weighted graph with edge weight matrix W,
and vertices with indices 1,...,n then for each positive
integer k

the ij-thentry of WY =W oW o ...0W
———

k times

1S
the length of the shortest path from 2 to j
using maximally k& edges
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Consider the two vertices with index 5 and 3 in W#

Shortest Path using maximally 4 edges:

5->1->2->3 (distance 5)

1 2 3 4 5 6

1 2 3 4 5 6

3 4 5 6
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1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

10 1 oo oo 2 10 1 3 8 2 o 1{0 1 3 8 2 6 1{0 1 3 7 2 6 1{0 1 3 7 2 6
211 0 2 oo 4 o 211 0 2 10 3 5 211 0 2 6 3 5 211 0 2 6 3 5 211 0 2 6 3 5
W:3 o 2 0 oo oo 3 W2:3 3 2 0 4 6 3 W3:3 3 2 0 4 5 3 W4:3 32 0 4 5 3 W5:3 3 2 0 4 5 3
4100 o0 0o 0 6 1 418 10 4 0 6 1 418 6 4 0 6 1 417 6 4 0 6 1 417 6 4 0 6 1

51 2 4 oo 6 0 o0 512 3 6 6 0 7 512 3 5 6 0 7 512 3 5 6 0 7 512 3 5 6 0 7

6 \ococ oo 3 1 oo O 6 \co 5 3 1 7 O 6\6 5 3 1 7 0 6\6 5 3 1 7 0 6\6 5 3 1 7 O

WAW LW LW *=W°=W°= . ..

Which value of k is necessary, in order to have W¥
contain all the pairwise distances of all vertexes?

Answer: n — 1 (which is identical to |V| — 1)

Assume all edge weights are not negative. The number of edges needed for a shortest path can
maximally be n-1, where n is the number of vertices in the graph. If the path would go via n edges,
then you would have to visit at least one vertex twice, but then the path cannot be a shortest path
anymore. Obviously W* = W™~1 for all k>n-1.




Lemma:
If G is a weighted graph with edge weight matrix W,

and vertices with indices 1,...,n then

the ij-thentry of Wl =WoWo...0W
—/_/

n — 1 times

1S
the distance from ¢ to j

D := W™ ! is called the distance matrix of the graph G.



Computation of the Distance Matrix by Repeated Squaring

((
(/ \ \ ( )

w2 = (W o W)
wn—l = (WoW)oW |oW oW |o...0W ——
N’ W2
W2 N _/
— \"

\ 0z . T/ )

Ws / D

o _ W (2k)

k matrix-matrix multiplication are needed (namely

squaring a matrix k times) in order to compute the
n-2 matrix-matrix multiplication are needed in matrix W(Q’“)

order to compute the distance matrix D = Wn~1

2%has to be larger or equal to n-1, or equivalently,
k has to be larger or equal to log,(n — 1)

Example: Consider a graph G with 101 vertices. In order to compute the distance matrix D = W 190, the left
approach needs to make 99 matrix-matrix multiplications. The right approach (called repeated squaring)
requires only 7 matrix-matrix multiplications, as 27 = 128, and D = W 128 = 100



Another Application of the Distance Matrix:
Predicting Boiling Points of Paraffins

In 1947 Harry Wiener defined the Wiener-Index of a graph G in order to predict the
boiling point of different paraffins. He used the graph representation G of the
carbon backbone of a molecule with n carbon atoms and calculated the Wiener-
Index the sum of all distances between all pairs of vertexes, i.e.

i=1 j=1

He predicted the boiling point tgz to be

ta = to ~ (3 (un = W(G)) +55- (m —»))

with to = 745.42 - log, o (n + 4.4) — 689.4
1

’wOZE-(n—I—l)-n-(n—l)

Po=n—3
p = the number of shortest paths i — ... — j of length 3 in G with 7 < )

= half of the number of entries ”3” in the distance matrix D



Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

CHs,

H3C CHj

CHsx

The chemical compound

1 2 345 6

1{0 21 2 2 3)
ol2 01 2 2 3
by 311011 2
42 210 21
512 2 12 0 3

6\3 32 1 3 0)

Distance Matrix

[
H g H
H—O_ / g\
/  XC H
H | ' .C'/H
H—{C
Sy
H

The carbon backbone

WG) = £33 Dy — 28

i=1 j=1
to = 68.72
w0:%-5'6-7:35
pp=6—-—3=3
p=3

1 2 3 4 5 6
4 6 1 (O oo 1 oo o oo\
1 21 o0 O 1 oo o0 o
3 W— 31 1 1 0 1 1 oo
4100 0o 1 0 oo 1
5 5l oo o0 1 oo 0 o
2 6 \oo oo oo 1 o O/
Graph G Edge Weight Matrix

Note: Depending on how you chose to label your graph, the edge
weight matrix might look different. This won’t matter for the

subsequent calculations.
98 \

P

tg = to— (E(’wo —W(G)) +5.5- (po —p))

98
= 68.72— ;- (35-28) = 5.5-(3-3)

\ = 49.66 /

Calculation of Wiener Index and other parameters,
as well as the resulting boiling point prediction.




Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

CHs,

Predicted Boiling Point: ¢t = 49.66

H;C CHj
Real Boiling Point: #%$* ~ 49.7 — 50.

CHsx

The prediction of boiling points of paraffins based on the Wiener-Index of the
corresponding molecular graph is amazingly accurate. Try it yourself (see
exercises)! Intuitively, the Wiener-Index quantifies the “compactness” of a graph
(or molecule). Long single chained molecules with n carbons have a larger
Wiener-Index than molecules that contain many branches. Long molecules tend
to align nicely, and have usually a higher boiling point.
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