DM587 — Scientific Programming

From Random Polygon to Ellipse
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Iterative Methods

; * |terative methods for

* Finding roots

05 * Finding matrix inverse

* Solving systems of linear equations
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John von Neumann Lecture

Established in 1959, the prize honors John von Neumann, a founder of modern computing. The lecture is

awarded annually for distinguished contributions to applied mathematics and for the effective
communication of these ideas to the community.

Prize Description

The John von Neumann Lecture is awarded annually to one individual for outstanding and distinguished contributions to the field of applied
mathematics and for the effective communication of these ideas to the community. It is one of SIAM’s most distinguished prizes as well as an

important lecture at the SIAM Annual Meeting.

The 2018 winner: Charles Francis Van Loan

The topic of this lecture is based on his speech
when receiving the award (Sept 2018).
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Linear Algebra Applications

Based on: : :
Intro Programming with Matlab (2008)
A.N. Elmachtoub, C.F. Van Loan (2010), From random polygon to
ellipse: an eigenanalysis, SIAM Rev. 52, 151-170. !
John von Neumann prize lecture, Sept 2018, for C.F. van Loan Intro Matrix Computations (2009)
!

SIAM Review (2010)

!

SIAM News (2018)



Display a sequence of polygons where each
polygon is obtained from its predecessor by
connecting the midpoints of its sides.

Let the original polygon be random.
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One Step in Vector Terminology

Assume the following five points define a close polygon: (z1,%1), (x2,¥2), (z3,¥3), (%4, y4), (5,Ys5)

1 T1 + o Y1 Y1 + Y2

T 1| 2 + I3 Yo 1| Y2 + Y3

T3 = = | T3+ x4 Y3 = = | Y3 T Y4

~ 2 ~ 2

T4 T4+ Ts Ya Y4 + Ys
T . T5 +T1 | Y5 Y5 + U1




One Step in Matrix Terminology
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In general
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A First Try length=1,i.e., z© = ( le )

In

|21, = Z 22 =1
1<i<n

Algorithm 1
Input: Unit 2-norm n-vectors 9 and y(?).
Display Py = P(z?), y(9)).

tor = 1,2, ..
% Compute Py = P(z(®),y*)) from Pp_; = Pz, yk-1)

m(k) — Mnx(k_l)
y(k) — Mny(k_l)
Display Pk.

end
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Not too interesting ...
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The points seem to converge to a point. Not too surprisingly, it’s the centroid of the input points.
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Centroid remains unchanged

Centroid:

€T.’B

n
B 1
.’BI—E.’BZ':—
n “ mn
1=1

As eTMn — el'it holds:
el +(k)

mn

eTyy(k)

n

Y

BTMH.’EUC_I)

mn

eTMny(k—l)

1 n
= 22w =

oT o (k—1)

T

eTy(k=1)

€T.’IJ

n

30



L0 _ | M
A Second Try ( ; )

Algorithm 2
Input: Unit 2-norm n-vectors (9 and y®) whose components sum to zero.
Display Py = P(z(®), y(0).
fork=1,2,...
% Compute Py = P(z*), y*)) from Pr_1 = P(z(kF~1), 4k-1)
f= Mua®D, 2® = f/| f,
g = May®* Y, y® = g/lgl,

Display Pk.
end
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What’s happening???
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Three test runs
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The points seem to converge to an ellipse with a 45-degree tilt

=B =

What is the limiting ellipse and why the 45-degree tilt?

How long does it take to “converge”?

Does it always converge?

What is the inverse of the repeated polygon averaging process, and does it

always exist?

Experimental Mathematics
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The ellipse can be computed in advance

Example: Polygon with 101 points

Step 1 Step 100 Step 500

-0.4 -0.2 0.0 0.2 0.4 04 02 0.0 02 04 -0.4 -0.2



Pre-Computation of the ellipse

Background:

The analysis is not trivial, and requires
* an understanding of the eigen-system of the matrix M
* decomposition techniques (SVD- and Schur- decomposition)

* Interested?
e Watch the von Neumann Price Lecture from Charles F. Van Loan

* Read the (not so easy parts of the) paper
“From Random Polygon to Ellipse: An Eigenanalysis”, Adam N. ElImachtoub and Charles F. van
Loan



Pre-Computation of the ellipse

For a polygon with n points, define vectors ¢ and s as follows (they form an orthonormal basis)

0
21 /n
A1 /n

2(n —'1)7r/’n,

2/n

cos(71)
cos(7z)

cos(Tn)

sin(7 )
sin(7y)

sin (7, )
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Pre-Computation of the “ellipse”

The polygon converges (at even steps) to the closed polygon defined by vector u'® and v©

u® = cos(8,)c + sin(6y,)s

v(® = cos(0y)c + sin(By)s

where
T,.(0) T ,.(0)
cos(0y) = ¢t sin(f,) = il
\/(CTx(O))er(STQ;(O))z \/(CT:L.(O))Q_'_(ST:U(O))Q
oL 4,(0) - gL'4,(0)
cos(f,) = d sin(f,) = /

V()2 + (sTy(®)2

Proof: paper! (Note, TYPO in paper)

\/(C:Ty(o))2 + (STy(O))Z'
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Pre-Computation of the ellipse

Also in the paper: An understanding of the shape of the ellipse in terms of o1 and o2 :
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Backwards in Time?

Generating Polygons P_1,P_», ...

x = rand(n,1); x = x - mean(x); x = x/norm(x)
y = rand(n,1); y = y - mean(y); y = y/norm(y)
fork=1,2,...

x = inv(M)*x; x = x/norm(x)

y = inv(M)*y; y = y/norm(y)

end
1 1 0 0 0] 1 -1 1 -1 1]
;101100 1 1 -1 1 -1
M==>-|0011F:2©0 Mt=1]-1 1 1 -1 1
21000 1 1 1 -1 1 1 -1
1 0 0 0 1| -1 1 -1 1 1




Example: n=51 points. WTH?
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Does M1 always exist? No! Only for odd n.

[ For intuition on the non-existence of the inverse for even n, chose 4 random points (assume time step t)
and try to infer 4 points (time t-1) which led to the 4 points at time t. After being successful, try to find
another 4 points which can lead to the same 4 points. After being successful, what does this tell us about the
inverse of M? ]



An important note of caution

Algorithm 2

Input: Unit 2-norm n-vectors £ and y(o) whose components sum to zero.
Display Py = P(z(?), ().

fork=1,2,...

% Compute Py, = P(z*),y*)) from Py_; = P(z*~1), yk-1)
f = M0, 2® = p| 1],
g = Mny(k_l)’ y(k) = g/l g ”2

Display Pk.
end
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