DM587 — Scientific Programming

From Random Polygon to Ellipse

0.4 -

0.2 A

0.0 A

_0.2 .

~0.4

-0.4 -0.2 0.0 0.2 0.4

Slides by Daniel Merkle
daniel@imada.sdu.dk

Iterative Methods

; * |terative methods for

* Finding roots

05 * Finding matrix inverse

* Solving systems of linear equations

X2 . LN
0 0.25 X,0.5 0.75 1

0.5

John von Neumann Lecture

Established in 1959, the prize honors John von Neumann, a founder of modern computing. The lecture is

awarded annually for distinguished contributions to applied mathematics and for the effective
communication of these ideas to the community.

Prize Description

The John von Neumann Lecture is awarded annually to one individual for outstanding and distinguished contributions to the field of applied
mathematics and for the effective communication of these ideas to the community. It is one of SIAM’s most distinguished prizes as well as an

important lecture at the SIAM Annual Meeting.

The 2018 winner: Charles Francis Van Loan

The topic of this lecture is based on his speech
when receiving the award (Sept 2018).

18

Linear Algebra Applications

Based on: : :
Intro Programming with Matlab (2008)
A.N. Elmachtoub, C.F. Van Loan (2010), From random polygon to
ellipse: an eigenanalysis, SIAM Rev. 52, 151-170. !
John von Neumann prize lecture, Sept 2018, for C.F. van Loan Intro Matrix Computations (2009)
!

SIAM Review (2010)

!

SIAM News (2018)

Display a sequence of polygons where each
polygon is obtained from its predecessor by
connecting the midpoints of its sides.

Let the original polygon be random.

09

08

0.7

06

05

03

02

01

21

09

08

07

06

05

04

03

02

0.1

0.1

0.2

03

04

0s

22

09

08

07

0s

04

02

0.1

03

04

0s

06

07

23

09

07

05

04

03

02

0.1

0.1

02

03

04

05

07

08

08

07

06

05

04

03

02

01

01

02

03

04

24

One Step in Vector Terminology

Assume the following five points define a close polygon: (z1,%1), (x2,¥2), (z3,¥3), (%4, y4), (5,Ys5)

1 T1 + o Y1 Y1 + Y2

T 1| 2 + I3 Yo 1| Y2 + Y3

T3 = = | T3+ x4 Y3 = = | Y3 T Y4

~ 2 ~ 2

T4 T4+ Ts Ya Y4 + Ys
T . T5 +T1 | Y5 Y5 + U1

One Step in Matrix Terminology

)

<)

1
T2
T3
T4

L5

AN

Y1

AN

Y2

AN

Y3

AN

Y4

AN

Ys

DY | —

DN | =

T1+ T2
T2 + T3
T3+ T4
T4+ Ts
Ts5 + T

Y1 + Y2
Y2 + Y3
Y3 + Ya
Ya + Ys

Ys + Y1 _

DO | =

DN | =

0 O O =

O O O =

OO O = -

OO O = =

OO = = O

OO = = O

O = = O O

O = = O O

——_— O O O

—— O O O

Y1
Y2
Y3
Ya
Ys

M5£13

26

In general

27

M,x

M,y

1

1
0

0
0

A First Try length=1,i.e., z© = (le)

In

|21, = Z 22 =1
1<i<n

Algorithm 1
Input: Unit 2-norm n-vectors 9 and y(?).
Display Py = P(z?), y(9)).

tor = 1,2, ..
% Compute Py = P(z(®),y*)) from Pp_; = Pz, yk-1)

m(k) — Mnx(k_l)
y(k) — Mny(k_l)
Display Pk.

end

28

Not too interesting ...

0.4 1

0.2 1

0.0

—0.2 A

~0.4

-0.4 -0.2 0.0 0.2 0.4

The points seem to converge to a point. Not too surprisingly, it’s the centroid of the input points.

29

Centroid remains unchanged

Centroid:

€T.’B

n
B 1
.’BI—E.’BZ':—
n “ mn
1=1

As eTMn — el'it holds:
el +(k)

mn

eTyy(k)

n

Y

BTMH.’EUC_I)

mn

eTMny(k—l)

1 n
= 22w =

oT o (k—1)

T

eTy(k=1)

€T.’IJ

n

30

L0 _ | M
A Second Try (;)

Algorithm 2
Input: Unit 2-norm n-vectors (9 and y®) whose components sum to zero.
Display Py = P(z(®), y(0).
fork=1,2,...
% Compute Py = P(z*), y*)) from Pr_1 = P(z(kF~1), 4k-1)
f= Mua®D, 2® = f/| f,
g = May®* Y, y® = g/lgl,

Display Pk.
end

31

0.4 1
0.2
Nd_—7
NS/,
“,\\ 73!2“";;“
0.0 1 BN
=\
T
—-0.2 1
—-0.4 1
-0.4 -0.2 0.0 0.2 0.4
0.4
0.2 A
0.0 1
_0.2 =
_04 -
-0.4 -0.2 0.0 0.2 0.4

0.4 1

0.2 A1

0.0 A

-0.2 1

~0.4 1

0.4 1

0.2 1

0.0 1

-0.2

-0.4

-0.4

-0.2

0.4

-0.4

0.4

0.4 1

0.2 1

0.0 1

—-0.2 1

—0.4

-0.4 -0.2 0.0 0.2

What’s happening???

0.4

32

0.4

0.2 1

0.0 4

—0.2 4

—0.4 4

X

Py

oS

N

0.0

-0.2

-0.4

0.4 A

Three test runs

0.0 1

-0.2 14

-0.4

0.4

0.2

T
0.4

T
0.0

T
-0.2

T
-0.4

T
0.2

0.4 1

0.2 A

0.0 A

—-0.21

~0.4 1

-0.2

-0.4

0.4

0.2

0.0

33

0.4 4

0.2

0.0 1

—-0.2 1

—0.4

-0.2

-0.4

0.4

0.2

0.0

0.4

0.2

0.0

-0.2

-0.4

0.4 1

0.2

0.0

-0.2 4

—-0.4 4

0.4 4

0.2

0.0 1

—-0.21

-0.44

-0.2

-0.4

0.4

0.2

0.0

0.4

0.2 A

0.0 1

—-0.2 4

—0.44

-0.4 -0.2 0.0 0.2 0.4

0.4 4

0.2 4

0.0 4

—-0.2 1

—0.4

-0.4

-0.2 0.0 0.2 0.4

The points seem to converge to an ellipse with a 45-degree tilt

=B =

What is the limiting ellipse and why the 45-degree tilt?

How long does it take to “converge”?

Does it always converge?

What is the inverse of the repeated polygon averaging process, and does it

always exist?

Experimental Mathematics

34

The ellipse can be computed in advance

Example: Polygon with 101 points

Step 1 Step 100 Step 500

-0.4 -0.2 0.0 0.2 0.4 04 02 0.0 02 04 -0.4 -0.2

Pre-Computation of the ellipse

Background:

The analysis is not trivial, and requires
* an understanding of the eigen-system of the matrix M
* decomposition techniques (SVD- and Schur- decomposition)

* Interested?
e Watch the von Neumann Price Lecture from Charles F. Van Loan

* Read the (not so easy parts of the) paper
“From Random Polygon to Ellipse: An Eigenanalysis”, Adam N. ElImachtoub and Charles F. van
Loan

Pre-Computation of the ellipse

For a polygon with n points, define vectors ¢ and s as follows (they form an orthonormal basis)

0
21 /n
A1 /n

2(n —'1)7r/’n,

2/n

cos(71)
cos(7z)

cos(Tn)

sin(7)
sin(7y)

sin (7,)

37

Pre-Computation of the “ellipse”

The polygon converges (at even steps) to the closed polygon defined by vector u'® and v©

u® = cos(8,)c + sin(6y,)s

v(® = cos(0y)c + sin(By)s

where
T,.(0) T ,.(0)
cos(0y) = ¢t sin(f,) = il
\/(CTx(O))er(STQ;(O))z \/(CT:L.(O))Q_'_(ST:U(O))Q
oL 4,(0) - gL'4,(0)
cos(f,) = d sin(f,) = /

V()2 + (sTy(®)2

Proof: paper! (Note, TYPO in paper)

\/(C:Ty(o))2 + (STy(O))Z'

38

Pre-Computation of the ellipse

Also in the paper: An understanding of the shape of the ellipse in terms of o1 and o2 :

39

Backwards in Time?

Generating Polygons P_1,P_», ...

x = rand(n,1); x = x - mean(x); x = x/norm(x)
y = rand(n,1); y = y - mean(y); y = y/norm(y)
fork=1,2,...

x = inv(M)*x; x = x/norm(x)

y = inv(M)*y; y = y/norm(y)

end
1 1 0 0 0] 1 -1 1 -1 1]
;101100 1 1 -1 1 -1
M==>-|0011F:2©0 Mt=1]-1 1 1 -1 1
21000 1 1 1 -1 1 1 -1
1 0 0 0 1| -1 1 -1 1 1

Example: n=51 points. WTH?

0.4 + 0.4 -

0.2 4 0.2 1

—0.2 A —0.2 A

—0.4 A —0.4
—6.4 —(IJ.2 OiO 0i2 0i4 —6.4 —6.2 OtO 0i2 OI.4

Does M1 always exist? No! Only for odd n.

[For intuition on the non-existence of the inverse for even n, chose 4 random points (assume time step t)
and try to infer 4 points (time t-1) which led to the 4 points at time t. After being successful, try to find
another 4 points which can lead to the same 4 points. After being successful, what does this tell us about the
inverse of M?]

An important note of caution

Algorithm 2

Input: Unit 2-norm n-vectors £ and y(o) whose components sum to zero.
Display Py = P(z(?), ().

fork=1,2,...

% Compute Py, = P(z*),y*)) from Py_; = P(z*~1), yk-1)
f = M0, 2® = p| 1],
g = Mny(k_l)’ y(k) = g/l g ”2

Display Pk.
end

0.4 1

0.2 1

0.0 1

—0.2 1

-0.4

0.4 -

0.2

0.0

-0.2

-0.4 1

0.4 1

0.2 1

0.0 1

—0.2 1

—0.4 -

0.4 1

0.2 1

0.0 1

—0.2 A

—0.4 -

	Slide 16: DM587 – Scientific Programming From Random Polygon to Ellipse
	Slide 17: Iterative Methods
	Slide 18
	Slide 19: Linear Algebra Applications
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: One Step in Vector Terminology
	Slide 26: One Step in Matrix Terminology
	Slide 27: In general
	Slide 28: A First Try
	Slide 29: Not too interesting …
	Slide 30: Centroid remains unchanged
	Slide 31: A Second Try
	Slide 32: What’s happening???
	Slide 33: Three test runs
	Slide 34
	Slide 35: The ellipse can be computed in advance
	Slide 36: Pre-Computation of the ellipse
	Slide 37: Pre-Computation of the ellipse
	Slide 38: Pre-Computation of the “ellipse”
	Slide 39: Pre-Computation of the ellipse
	Slide 40: Backwards in Time?
	Slide 41: Example: n=51 points. WTH?
	Slide 42: An important note of caution
	Slide 43: A Second Try

