
DM587/AI511

Scientific Programming

Linear Algebra with Applications

Multiple Linear Regression

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Calculus Approach
Linear Algebra Approach
Other MethodsOutline

1. Calculus Approach

2. Linear Algebra Approach

3. Other Methods

2

Calculus Approach
Linear Algebra Approach
Other MethodsCurve fitting - Linear Regression

• In R2 we are given m points (pairs of numbers) (x1, y1), . . . , (xm, ym)
(For example, they can be temperature in the atmosphere taken at different days of the year
or the cost of houses given their square meters.)

• We want to determine a function f (x) such
that

f (x1) ≈ y1, · · · , f (xm) ≈ ym.

• The type of function (polynomial,
exponential, sine and cosine, ...) may be
suggested by the nature of the problem (the
underlying physical law)
In many cases a polynomial of a certain
degree will be appropriate.

3

Calculus Approach
Linear Algebra Approach
Other MethodsIn Python

#!/usr/bin/python
import numpy as np
import matplotlib.pyplot as plt

np.set_printoptions(precision=3)

m=101
x = np.linspace(0, 1, m)
y = x**3-7*x+np.random.exponential(1,m) # the unknown target function

plt.plot(x, y, '.')
plt.xlabel('x'); plt.ylabel('y')

plt.show()

The script produces two arrays x and y .
The ith elements of these arrays give us the ith point, (xi , yi).

4

Calculus Approach
Linear Algebra Approach
Other MethodsHouse Price Example

Size in m2 Price in thousands DKK
45 800
60 1200
61 1400
70 1600
74 1750
80 2100
90 2000


(x1, y1)
(x2, y2)

...

...
(xm, ym)

⇝


(45, 800)
(60, 1200)
(61, 1400)
(70, 1600)
(74, 1750)
(80, 2100)
(90, 2000)


f (x) = −489.76 + 29.75x

x ŷ y

45 848.83 800
60 1295.03 1200
61 1324.78 1400
70 1592.5 1600
74 1711.48 1750
80 1889.96 2100
90 2187.43 2000

5

Calculus Approach
Linear Algebra Approach
Other MethodsMachine Learning Model

6

Calculus Approach
Linear Algebra Approach
Other MethodsOutline

1. Calculus Approach

2. Linear Algebra Approach

3. Other Methods

7

Calculus Approach
Linear Algebra Approach
Other MethodsLinear Regression

The first case we consider is fitting a straight line y = a+ bx .
• Given the points (x1, y1), . . . , (xm, ym) we search for the line through them such that the sum

of the squares of the distances of those points from the straight line is minimum, where the
distance from (xi , yi) is measured in the vertical direction (the y -direction).

• More formally, each point i with abscissa xi has the ordinate a+ bxi in the fitted line. The
distance from the actual data (xi , yi) is |yi − a− bxi | and the sum of squares of errors is

q =
m∑
i=1

(yi − a− bxi)
2

• Hence, q depends on a and b, while the values xi and yi are given by the data available. From
calculus we know that the minimum of a function occurs where the partial derivatives are zero.

8

Calculus Approach
Linear Algebra Approach
Other MethodsHouse Price Example


(x1, y1)
(x2, y2)

...

...
(xm, ym)

⇝


(45, 800)
(60, 1200)
(61, 1400)
(70, 1600)
(74, 1750)
(80, 2100)
(90, 2000)


f (x) = −489.76 + 29.75x

x ŷ y

45 848.83 800
60 1295.03 1200
61 1324.78 1400
70 1592.5 1600
74 1711.48 1750
80 1889.96 2100
90 2187.43 2000

q̂ =
∑m

i=1(yi − ŷi)
2

= (800 − 848.83)2

+(1200 − 1295.03)2

+(1400 − 1324.78)2

+(1600 − 1592.5)2

+(1750 − 1711.48)2

+(2100 − 1889.96)2

+(2000 − 2187.43)2 = 97858.86 9

Calculus Approach
Linear Algebra Approach
Other MethodsHouse Price Example

For

f (x) = b + ax

q̂(a, b) =
∑m

i=1(yi − ŷi)
2

= (800 − b − 45 · a)2
+(1200 − b − 60 · a)2
+(1400 − b − 61 · a)2
+(1600 − b − 70 · a)2
+(1750 − b − 74 · a)2
+(2100 − b − 80 · a)2
+(2000 − b − 90 · a)2

10

Calculus Approach
Linear Algebra Approach
Other MethodsDigression: Differentiation

A line L through a point (x0, f (x0))
of f can be described by:

y = m(x − x0) + f (x0)

The derivative is the slope of the line that is
tangent to the curve:

y = f ′(x0)(x − x0) + f (x0)

11

Calculus Approach
Linear Algebra Approach
Other MethodsDigression: Functions of Several Variables

• A function f of n real variables is a rule that assigns a unique real number f (x1, x2, . . . , xn) to
each point (x1, x2, . . . , xn)

Example in R2:

f (x , y) =
√

102 − x2 − y2

x2 + y2 + z2 = 10

12

Calculus Approach
Linear Algebra Approach
Other MethodsDigression: Partial Derivatives

• The first partial derivative of the function f (x , y) with respect to the variables x and y are:

f ′1(x , y) = lim
h→0

f (x + h, y)− f (x , y)

h
=

∂

∂x
f (x , y)

f ′2(x , y) = lim
k→0

f (x , y + k)− f (x , y)

k
=

∂

∂y
f (x , y)

• Their value in a point (x0, y0) is given by:

f ′1(x0, y0) =

(
∂

∂x
f (x , y)

) ∣∣∣∣∣
(x0,y0)

f ′2(x0, y0) =

(
∂

∂y
f (x , y)

) ∣∣∣∣∣
(x0,y0)

13

Calculus Approach
Linear Algebra Approach
Other MethodsSolution

Remembering that a and b are our variables in the fitting problem, a necessary condition for q to
be minimum is

∂q

∂a
= −2

m∑
i=1

(yi − a− bxi) = 0

∂q

∂b
= −2

m∑
i=1

xi (yi − a− bxi) = 0

We can rewrite as:{
am + b

∑
xi =

∑
yi

a
∑

xi + b
∑

x2
i =

∑
xiyi

How to we solve this?
It is a System of Linear Equations!

14

Calculus Approach
Linear Algebra Approach
Other MethodsIn Python

a_11 = len(x)
a_12 = sum(x)
a_22 = sum(x**2)
b_1 = sum(y)
b_2 = sum(x*y)

A = np.array([[a_11, a_12],[a_12,a_22]])
b = np.array([b_1, b_2])

coeff = np.linalg.solve(A,b)

plt.plot(x, y, '.')
plt.plot([0,1],[coeff[0], coeff[0] + coeff[1]*1])
plt.show()

15

Calculus Approach
Linear Algebra Approach
Other MethodsFitting a polynomial curve

• We can generalize the polynomial y = b0 + b1x to a polynomial of degree k

p(x) = b0 + b1x + · · ·+ bkx
k

where k ≤ m − 1. Then q takes the form

q =
m∑
i=1

(yi − p(xi))
2

and depends on k + 1 parameters b0, · · · , bk .

• As before the setting of the parameters that yields the minimum q can be found via partial
derivatives.

16

Calculus Approach
Linear Algebra Approach
Other MethodsSolution

The necessary condition for q to be minimum gives a k + 1 system of linear equations:

∂q

∂b0
= 0

∂q

∂b1
= 0

...
∂q

∂bk
= 0

For k = 3, the system we obtain is (summations are all from 1 to m):
b0m + b1

∑
xi + b2

∑
x2
i +b3

∑
x3
i =

∑
yi

b0
∑

xi + b1
∑

x2
i + b2

∑
x3
i +b3

∑
x4
i =

∑
xiyi

b0
∑

x2
i + b1

∑
x3
i + b2

∑
x4
i +b3

∑
x5
i =

∑
x2
i yi

b0
∑

x3
i + b1

∑
x4
i + b2

∑
x5
i +b3

∑
x6
i =

∑
x3
i yi

How do we solve this?
17

Calculus Approach
Linear Algebra Approach
Other MethodsIn Python

a_0 = len(x)
a_1 = sum(x)
a_2 = sum(x**2)
a_3 = sum(x**3)
b_0 = sum(y)
a_4 = sum(x**4)
b_1 = sum(x*y)
a_5 = sum(x**5)
b_2 = sum((x**2)*y)
a_6 = sum(x**6)
b_3 = sum((x**3)*y)

A = np.array([[a_0, a_1, a_2,a_3],
[a_1,a_2,a_3,a_4],
[a_2,a_3,a_4,a_5],
[a_3,a_4,a_5,a_6]

])
b = np.array([b_0,b_1,b_2,b_3])

coeff = np.linalg.solve(A,b)

18

Calculus Approach
Linear Algebra Approach
Other MethodsIn Python

Create a callable object for the polynomial f(x) = (x-1)(x-2) = x^2 - 3x + 2.
>>> print(f = np.poly1d([1, -3, 2]))

2
1 x - 3 x + 2
Evaluate f(x) for several values of x in a single function call.
>>> f([1, 2, 3, 4])
array([0, 0, 2, 6])

P=np.poly1d(coeff[::-1])
print(P)
3 2
#-1.242 x + 3.445 x - 8.828 x + 1.333

plt.plot(x, y, '.')
xx = np.linspace(0.0, 1.0, 50)
plt.plot(xx, P(xx), '-')
plt.title('Polynomial of order 3');
plt.show()

19

Calculus Approach
Linear Algebra Approach
Other MethodsOutline

1. Calculus Approach

2. Linear Algebra Approach

3. Other Methods

20

Calculus Approach
Linear Algebra Approach
Other MethodsUsing Linear Algebra

• We generalize the method to the space Rn.

• several inputs that influence outputs
inputs (x1, . . . , xn): independent variables, predictors, features
outputs y : dependent variables, responses

• Examples:
The price of a house may depend on the square meters but also on the distance from city
center and the year of construction.
The temperature on the ground may depend, beside on the day of the year, also on the
latitude and maybe, in the case of global warming, on the development through years.

21

Calculus Approach
Linear Algebra Approach
Other MethodsUsing Linear Algebra

• We assume that the variable y is related to x ∈ Rn linearly, so for some constants b0 and b:

y = b0 + bTx

• Given the set of m points (y1, x1,), . . . , (ym, xm) in the ideal case, we have that yi = b0 + bxi ,
for all i = 1, . . . ,m. In matrix form:

1 x1,1 · · · x1,k
1 x2,1 · · · x2,k
...

...
1 xm,1 · · · xm,k



b0
b1
...
bk

 =


y1
y2
...
ym


This can be written as Az = y to emphasize that z are our unknowns and A and y are given.

22

Calculus Approach
Linear Algebra Approach
Other Methods

• In general we cannot expect to find a vector z ∈ Rn+1 for which Az equals y . Why?
• Instead we can look for a vector z for which Az is closest to y .
• For each z ∈ Rn+1 we can form the residual

r(z) = y − Az

Recalling the definition of the norm or length of a vector, the distance between y and Az is
given by

∥ r(z) ∥=∥ y − Az ∥

• Minimizing ∥ r(z) ∥ is equivalent to minimize ∥ r(z) ∥2. So what we need is for Az to be the
closest point of the form Aẑ to y . That is, Az has to be the closest point in R(A) to y .

• Hence, a vector ẑ will be the one that minimizes ∥ y − Az ∥2 if and only if p = Aẑ is the
vector in R(A) that is closest to y .

• The vector p is said to be the projection of y onto R(A).
23

• It follows that

r(ẑ) ∈ R(A)⊥

that is, r(ẑ) lays on the subspace of Rm that is the orthogonal complement of R(A).
(Def. If W is a subspace of Rn, then the set of all vectors in Rn that are orthogonal to every
vector in W is called the orthogonal complement of W and is denoted by the symbol W⊥.)

r(̂z)y

p R(A)

x

y

z

y ∈ R3 and A is a 3 × 2 matrix of rank 2.

Calculus Approach
Linear Algebra Approach
Other Methods

• To proceed we need another fact. For an m × (n + 1) matrix A,

R(A)⊥ = N(AT),

that is, the orthogonal complement of the range of a matrix A is the null space of the
transpose of the matrix A.

Proof:
• A vector w that belongs to R(A) belongs to the linear span of A, ie, it is a linear combination of

the columns of the matrix A.
• A vector v that belongs to R(A)⊥, must therefore be orthogonal to each column of the matrix A.
• Consequently AT v = 0. Thus, v must be an element of N(AT) and hence N(AT) = R(A)⊥.

25

Calculus Approach
Linear Algebra Approach
Other Methods

• Thus we have

r(ẑ) ∈ N(AT)

This leads to a (n + 1)× (n + 1) system of linear equations in the z variables. The systems is
actually the same as the one derived earlier via calculus.

Proof: Since r(z) = y − Az we have

AT (y − Az) = 0

Thus to solve the least square system of Az = y we have to solve the normal equations:

ATy = ATAz

Remembering that we are solving in the z variables we have a system of size (n+ 1)× (n+ 1)
because A is of size m × (n + 1) and therefore ATA is of size (n + 1)× (n + 1).

26

Calculus Approach
Linear Algebra Approach
Other Methods

• If A is an m × (n + 1) matrix of rank (n + 1), then the system at the previous point has a
unique solution:

ẑ = (ATA)−1ATy

(Hint: assume that ATAu = 0 has only the trivial solution u = 0.)

Under the assumption that ATAu = 0 has only the trivial solution u = 0 then the matrix ATA
is non-singular and hence invertible and the solution unique.

27

Calculus Approach
Linear Algebra Approach
Other MethodsIn Python

In polynomial regression, the m × (n + 1) matrix A is called a Vandermonde matrix
(a matrix with entries aij = xn+1−j

i , j = 1..n + 1).
NumPy’s np.vander() is a convenient tool for quickly constructing a Vandermonde matrix, given the
values xi , i = 1..m, and the number of desired columns (n + 1).

>>> print(np.vander([2, 3, 5], 2))
[[2 1] # [[2**1, 2**0]
[3 1] # [3**1, 3**0]
[5 1]] # [5**1, 5**0]]

>>> print(np.vander([2, 3, 5, 4], 3))
[[4 2 1] # [[2**2, 2**1, 2**0]
[9 3 1] # [3**2, 3**1, 3**0]
[25 5 1] # [5**2, 5**1, 5**0]
[16 4 1]] # [4**2, 4**1, 4**0]

28

Calculus Approach
Linear Algebra Approach
Other MethodsIn Python

A = np.vander(x,4)

coeff = np.linalg.solve(A,y) ## Error!! Why?

B = A.T @ A
z = np.linalg.inv(B) @ A.T @ y

coeff = np.linalg.lstsq(A, y)[0]
np.allclose(z,coeff)

f=np.poly1d(coeff)
plt.plot(x, y, 'o', label='Original data', ↪→

↪→markersize=2)
plt.plot(x, f(x), 'r', label='Fitted line')
plt.legend()
plt.show()

⇝ However, we still need to invert a
matrix :(

29

Calculus Approach
Linear Algebra Approach
Other MethodsGram-Schmidt Orthogonalization Process

Theorem Every nonzero
finite-dimensional inner
product space has an
orthonormal basis.

30

Calculus Approach
Linear Algebra Approach
Other MethodsGram-Schmidt Orthogonalization Process

Hence:

Gram-Schmidt Orthogonalization To convert a basis {u1,u2, . . . ,ur} into an orthogonal basis
{v1, v2, . . . , vr}, perform the following computations:

Step 1. v1 = u1

Step 2. v2 = u2 − ⟨u2,v1⟩
∥v1∥2 v1

Step 3. v3 = u3 − ⟨u3,v1⟩
∥v1∥2 v1 − ⟨u3,v2⟩

∥v2∥2 v2

Step 4. v4 = u4 − ⟨u4,v1⟩
∥v1∥2 v1 − ⟨u4,v2⟩

∥v2∥2 v2 − ⟨u4,v3⟩
∥v3∥2 v3

...
r steps

Additional Step: To convert the orthogonal basis into an orthonormal basis {q1,q2, . . . ,qr},
normalize the orthogonal basis vectors.

31

Calculus Approach
Linear Algebra Approach
Other MethodsQR Decomposition

• If A is an m × n matrix with linearly independent column vectors, and if Q is the matrix that
results by applying the Gram-Schmidt process to the column vectors of A, what relationship, if
any, exists between A and Q?

• A and Q can be written in partitioned forms as:

A =
[
u1 | u2 | . . . | un

]
and Q =

[
q1 | q2 | . . . | qn

]

• u1,u2, . . . ,ur are expressible in terms of the vectors {q1,q2, . . . ,qn} as:

u1 = ⟨u1, q1⟩q1 + ⟨u1, q2⟩q2 + . . .+ ⟨u1, qn⟩qn

u2 = ⟨u2, q1⟩q1 + ⟨u2, q2⟩q2 + . . .+ ⟨u2, qn⟩qn

...
un = ⟨un, q1⟩q1 + ⟨un, q2⟩q2 + . . .+ ⟨un, qn⟩qn

32

Calculus Approach
Linear Algebra Approach
Other MethodsQR Decomposition

u1 = ⟨u1, q1⟩q1 + ⟨u1, q2⟩q2 + . . .+ ⟨u1, qn⟩qn

u2 = ⟨u2, q1⟩q1 + ⟨u2, q2⟩q2 + . . .+ ⟨u2, qn⟩qn

...
un = ⟨un, q1⟩q1 + ⟨un, q2⟩q2 + . . .+ ⟨un, qn⟩qn

In matrix form:

[
u1 | u2 | . . . | un

]
=

[
q1 | q2 | . . . | qn

]

⟨u1, q1⟩ ⟨u2, q1⟩ . . . ⟨un, q1⟩
⟨u1, q2⟩ ⟨u2, q2⟩ . . . ⟨un, q2⟩

...
⟨u1, qn⟩ ⟨u2, qn⟩ . . . ⟨un, qn⟩


A = QR

33

Calculus Approach
Linear Algebra Approach
Other MethodsQR Decomposition


⟨u1, q1⟩ ⟨u2, q1⟩ . . . ⟨un, q1⟩
⟨u1, q2⟩ ⟨u2, q2⟩ . . . ⟨un, q2⟩

...
⟨u1, qn⟩ ⟨u2, qn⟩ . . . ⟨un, qn⟩


From Gram-Schmidt, for j ≥ 2 the vector qj is orthogonal to u1,u2, . . . ,uj−1.


⟨u1, q1⟩ ⟨u2, q1⟩ . . . ⟨un, q1⟩

0 ⟨u2, q2⟩ . . . ⟨un, q2⟩
...
0 0 . . . ⟨un, qn⟩



34

Calculus Approach
Linear Algebra Approach
Other MethodsQR Decomposition

Theorem If A is an m × n matrix with linearly independent column vectors, then A can be
factored as

A = QR

where Q is an m × n matrix with orthonormal column vectors, and R is an n × n invertible upper
triangular matrix.

35

Calculus Approach
Linear Algebra Approach
Other MethodsFast Computation of the Normal Equations

• If A is full rank (which it usually is in applications) its QR decomposition provides an efficient
way to solve the normal equations.

• Let A = QR be the reduced QR decomposition of A, so Q is m × n with orthonormal columns
and R is n × n, invertible, and upper triangular.

• Since QTQ = I , and since RT is invertible, the normal equations can be reduced as follows:

ATAẑ = ATy

(QR)TQR ẑ = (QR)Ty

RTQTQR ẑ = RTQTy

RTR ẑ = RTQTy

R ẑ = QTy

• Thus ẑ is the least squares solution to Az = y if and only if R ẑ = QTy .

• Since R is upper triangular, this equation can be solved quickly with back substitution.
36

Calculus Approach
Linear Algebra Approach
Other MethodsBest Approximation

The problem of finding the vector on a space that “best approximates” a given vector y , where by
“best approximation”, we just mean closest, comes up again and again:

• in least-squares,

• image compression,

• in principal component analysis, another data analysis technique, and

• in latent semantic analysis, an information retrieval technique.

37

Calculus Approach
Linear Algebra Approach
Other MethodsFitting a Circle

Suppose the set of m points {(xi , yi)}mi=1 are arranged in a nearly circular pattern. The general
equation of a circle with radius r and center (c1, c2) is

(x − c1)
2 + (y − c2)

2 = r2. (1)

The circle is uniquely determined by r , c1, and c2, so these are the parameters that should be solved
for in a least squares formulation of the problem. However, (1) is not linear in any of these variables.

38

Calculus Approach
Linear Algebra Approach
Other MethodsFitting a Circle

(x − c1)
2 + (y − c2)

2 = r2

x2 − 2c1x + c2
1 + y2 − 2c2y + c2

2 = r2

x2 + y2 = 2c1x + 2c2y + r2 − c2
1 − c2

2 (2)

The quadratic terms x2 and y2 are acceptable because the points {(xi , yi)}mi=1 are given. To
eliminate the nonlinear terms in the unknown parameters r , c1, and c2, define a new variable
c3 = r2 − c2

1 − c2
2 . Then for each point (xi , yi), (2) becomes

2c1xi + 2c2yi + c3 = x2
i + y2

i .

These m equations are linear in c1, c2, and c3, and can be written as the linear system
2x1 2y1 1
2x2 2y2 1
...

...
...

2xm 2ym 1


 c1
c2
c3

 =


x2
1 + y2

1
x2
2 + y2

2
...

x2
m + y2

m

 . (3)

39

Calculus Approach
Linear Algebra Approach
Other MethodsFitting a Circle

After solving for the least squares solution, r can be recovered with the relation r =
√
c2
1 + c2

2 + c3.

Plotting a circle is best done with polar coordinates. Using the same variables as before, the circle
can be represented in polar coordinates by setting

x = r cos(θ) + c1, y = r sin(θ) + c2, θ ∈ [0, 2π]. (4)

To plot the circle, solve the least squares system for c1, c2, and r , define an array for θ, then use
(4) to calculate the coordinates of the points of the circle.

40

Calculus Approach
Linear Algebra Approach
Other MethodsIn Python

Load some data and construct the matrix A and the vector b.
>>> xk, yk = np.load("circle.npy").T
>>> A = np.column_stack((2*xk, 2*yk, np.ones_like(xk)))
>>> b = xk**2 + yk**2

Calculate the least squares solution and solve for the radius.
>>> c1, c2, c3 = la.lstsq(A, b)[0]
>>> r = np.sqrt(c1**2 + c2**2 + c3)

Plot the circle using polar coordinates.
>>> theta = np.linspace(0, 2*np.pi, 200)
>>> x = r*np.cos(theta) + c1
>>> y = r*np.sin(theta) + c2
>>> plt.plot(x, y) # Plot the circle.
>>> plt.plot(xk, yk, 'k*') # Plot the data points.
>>> plt.axis("equal")

41

Calculus Approach
Linear Algebra Approach
Other MethodsIn Python

4 2 0 2 4 6 8 10

2

0

2

4

6

42

Calculus Approach
Linear Algebra Approach
Other MethodsOutline

1. Calculus Approach

2. Linear Algebra Approach

3. Other Methods

43

Calculus Approach
Linear Algebra Approach
Other MethodsSolution of Systems of Linear Equations

Methods for solving systems of linear equations:

• Gaussian-Jordan elimination

• QR decomposition

• Numerical methods (aka iterative methods)

• LU decomposition (only for square matrices)

44

Calculus Approach
Linear Algebra Approach
Other MethodsIterative Methods

• A matrix A is said to be ill conditioned if relatively small changes in the entries of A can cause
relatively large changes in the solutions of Ax = b.

• A is said to be well conditioned if relatively small changes in the entries of A result in relatively
small changes in the solutions of Ax = b.

• Reaching RREF as in Gauss-Jordan requires more computation and more numerical instability
hence disadvantageous.

• Gauss elimination is a direct method: the amount of operations can be specified in advance.
Indirect or Iterative methods work by iteratively improving approximate solutions until a
desired accuracy is reached. Amount of operations depends on the accuracy required. (way to
go if the matrix is sparse)

45

Calculus Approach
Linear Algebra Approach
Other MethodsGauss-Seidel Iterative Method

Example

x1 − 0.25x2 − 0.25x3 = 50
−0.25x1 + x2 − 0.25x4 = 50
−0.25x1 + x3 − 0.25x4 = 25

− 0.25x2 − 0.25x3 + x4 = 25

x1 = 0.25x2 + 0.25x3 + 50
x2 = 0.25x1 + 0.25x4 + 50
x3 = 0.25x1 + 0.25x4 + 25
x4 = 0.25x2 + 0.25x3 + 25

We start from an approximation, eg, x (0)
1 = 100, x (0)

2 = 100, x (0)
3 = 100, x (0)

4 = 100, and use the equations
above to find a perhaps better approximation:

x
(1)
1 = 0.25x (0)

2 + 0.25x (0)
3 + 50.00 = 100.00

x
(1)
2 = 0.25x (1)

1 + 0.25x (0)
4 + 50.00 = 100.00

x
(1)
3 = 0.25x (1)

1 + 0.25x (0)
4 + 25.00 = 75.00

x
(1)
4 = 0.25x (1)

2 + 0.25x (1)
3 + 25.00 = 68.75

46

Calculus Approach
Linear Algebra Approach
Other Methods

x
(2)
1 = 0.25x (1)

2 + 0.25x (1)
3 + 50.00 = 93.750

x
(2)
2 = 0.25x (2)

1 + 0.25x (1)
4 + 50.00 = 90.625

x
(2)
3 = 0.25x (2)

1 + 0.25x (1)
4 + 25.00 = 65.625

x
(2)
4 = 0.25x (2)

2 + 0.25x (2)
3 + 25.00 = 64.062

47

Calculus Approach
Linear Algebra Approach
Other MethodsSummary

1. Calculus Approach

2. Linear Algebra Approach

3. Other Methods

48

	Calculus Approach
	Linear Algebra Approach
	Other Methods

