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Eig lue Theory Appli

Eigenvalues and Eigenvectors Page Rank Algorthm

Definition
Let A be a square matrix.

® The number ) is said to be an eigenvalue of A if for some non-zero vector x,

Ax = \x

® Any non-zero vector x for which this equation holds is called
eigenvector for eigenvalue \ or
eigenvector of A corresponding to eigenvalue A




. - . Eig lue Theory Applicati
Diagonalization Poge Rank Algorthm
Recall: Square matrices are similar if there is an invertible matrix P such that P~1AP = M.

Definition (Diagonalizable matrix)

The matrix A is diagonalizable if it is similar to a diagonal matrix; that is,
if there is a diagonal matrix D and an invertible matrix P such that P~1AP = D

Example

7 —15
A=)
How was such a matrix P found?

When is a matrix diagonalizable?




Summary

® Characteristic polynomial and characteristic equation of a matrix
® cigenvalues, eigenvectors, diagonalization

® finding eigenvalues and eigenvectors

® eigenspace

® diagonalize a diagonalizable matrix

® conditions for digonalizability

® diagonalization as a change of basis, similarity

® geometric effect of linear transformation via diagonalization
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Eig lue Theory Appli

Uses of Diagonalization Poge Rank Algorthm

find powers of matrices

® solving systems of simultaneous linear difference equations

Markov chains

PageRank algorithm



Eig lue Theory Applicati

Powers of Matrices Sl

A" = AAA- - A
—_——

n times

If we can write: P~1AP = D then A = PDP~1
A" = AAA.--A
—_—

n times
= (PDP~Y)(PDP~Y)(PDP~Y) ... (PDP™Y)
n times
= PD(P~*P)D(P~tP)D(P~*P)..-DP~!
=PDDD---D P
N—_———

n times

— pD"P~1

then closed formula to calculate the power of a matrix.



Eig lue Theory A

Difference equations Page Rark Algorith

e A difference equation is an equation linking terms of a sequence to previous terms, eg:
Xep1 = 5x; — 1

is a first order difference equation.

® 2 first order difference equation can be fully determined if we know the first term of the
sequence (initial condition)

® 3 solution is an expression of the terms x;

X4l = aXy —> Xy = atXO



Eig lue Theory Appli

System of Difference equations Pege Rank Algorithm
Suppose the sequences x; and y; are related as follows:
XO:l.,yo:lfortZO

Xey1 = Ix¢ — 15y,
Y41 = 2x; — 4y:

Coupled system of difference equations.

Let then x,.1 = Ax; and xo = [1,1]" and
— | 7 15
Xt = _
' L’J A= [2 4}
Then:
X1 = AXO
xo = Ax; = A(Axp) = A?xg
x3 = Axz = A(A%x0) = A’xo Power sequence generated by A

x; = Alxg
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- g lue Theory Applicati
Markov Chains

® Suppose two supermarkets compete for customers in a region with 20000 shoppers.
® Assume no shopper goes to both supermarkets in a week.

® The table gives the probability that a shopper will change from one to another supermarket:
From A From B From none

To A 0.70 0.15 0.30
To B 0.20 0.80 0.20
To none 0.10 0.05 0.50

(note that probabilities in the columns add up to 1)

® Suppose that at the end of week 0 it is known that 10000 went to A, 8000 to B and 2000 to
none.

® Can we predict the number of shoppers at each supermarket in any future week t7 And the
long-term distribution?
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ig lue Theory Appli

Formulation as a system of difference equations:

® | et x; be the percentage of shoppers going in the two supermarkets or none

® then we have the difference equation:

X; = AXp_1
0.70 0.15 0.30 Xt
A= 10.20 0.80 0.20] , Xt = |Vt
0.10 0.05 0.50 Z;

® a Markov chain (or process) is a closed system of a fixed population distributed into n
different states, transitioning between the states during specific time intervals.

® The transition probabilities are known in a transition matrix A (coefficients all non-negative +
sum of entries in the columns is 1)

® state vector x;, entries sum to 1.
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Eig lue Theory Appli
Page Rank Algorithm

A solution is given by (assuming A is diagonalizable):

x: = Alxg = (PD'P~1)xo
let xo = Pzo and zg = P~ 'xg = [by b2+ by " be the representation of xp in the basis of
eigenvectors, then:

Xt = PD'P71xg = byA\ivy + bo\svo + - + by,

Th.: if Ais the transition matrix of a regular Markov chain, then A = 1 is an eigenvalue of
multiplicity 1 and all other eigenvalues satisfy [A\| < 1

Xy = bl(l)tvl -+ b2(0.6)tV2 S R bn(0.4)tv,,

lim, oo 1* =1, lim;,. 0.6° = 0 hence the long-term distribution is

3 0.375
1 0.125
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Eig lue Theory Appli

Page Rank Algorithm

Theory

Definition
A stochastic process is any sequence of experiments for which the outcome at any stage depends

on chance.
A Markov process is a stochastic process with the following properties:

1. The set of possible outcomes or states is finite

2. The probability of the next outcome depends only on the previous outcome

3. The probabilities are constant over time:

Xep1 = AXy A transition matrix

14



ig lue Theory Appli

Theory

Definitions:

Non-negative matrices are matrices with exclusively non-negative real numbers as elements.
Positive matrices are matrices with exclusively positive real numbers as elements.

The eigenvalues of a real square matrix A are in the general case complex numbers that make
up the spectrum of the matrix.

The exponential growth rate of the matrix powers A% as k — oo is controlled by the
eigenvalue of A with the largest absolute value (modulus).

If the distinct eigenvalues of a matrix A are A1, Ao, ..., Ak, and if |A{| is larger than
Aol ..., [Ak|, then \q is called a dominant eigenvalue of A.

Any eigenvector corresponding to a dominant eigenvalue is called a dominat eigenvector of A.

The Perron—Frobenius theorem (next slide) describes the properties of the dominant eigenvalue and
of the corresponding eigenvectors when A is a non-negative real square matrix. In the next slide we
focus only on a restricted case, the case of positive square martices.
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ig Theory Appli

Theory

Theorem (Perron’s Theorem)

If A is a positive n x n matrix, then A has a positive real eigenvalue r with the following properties:
1. r is simple root of the charachteristic equation
2. r has a positive eigenvector x

3. If \ is any other eigenvealue of A, then |\| < r.

(The theorem is a special case of a more general theorem due to Frobenius on irreducible
non-negative matrices.)

® |f A is square stochastic and all its entries are positive, it follows from Perron’s theorem that
A1 = 1 is an eigenvalue of A and the remaining eigenvalues satisfy [A\;j| <1 for j =2 ... n.

® Consequences of Perron’s theorem on Markov chains (next two slides):
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Eig lue Theory Appli

Theory Page Rank Algorithm

Definition

A matrix such that all its entries are non-negative and the sum of the entries over the columns is 1
is called a stochastic matrix.

Definition

A stochastic matrix A is said to be regular if A or some positive power of A has all positive entries.
A Markov chain whose transition matrix is regular is said to be a regular Markov chain.

Theorem
If A is the transition matrix for a regular Markov chain, then:
1. There is a unique probability vector q such that Aq = q.

2. For any initial probability vector xq, the sequence of state vectors
k
Xo,AXo,...,A X0

converges to q.
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Eig lue Theory A

Theory Page Rank Algorithm

Theorem
If a Markov chain with an n x n transition matrix A converges to a steady state vector x, then
1. x is a probability vector

2. A\ = 1 is an eigenvalue of A and x is an eigenvector belonging to \q

18



Outline

2. Page Rank Algorithm

Eigenvalue Theory Applications
Page Rank Algorithm
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Page Rank Algorithm Page Renk Algorithm

® The PageRank algorithm is one way of ranking the nodes in a graph by importance

® Brin, S.; Page, L. (1998). "The anatomy of a large-scale hypertextual Web search engine".
Computer Networks and ISDN Systems. 30: 107-117.

® Currently, PageRank is not the only algorithm used by Google to order search results, but it is
the first algorithm that was used by the company, and it is the best-known.

20



The M Odel Page Rank Algorithm

Let's consider a Tiny-Web: nodes are pages and arcs are hyperlinks.

Adiacency matrix of a directed graph

oo

to

o n T o
=
O O O O T
—HOFR,O o
O OO o

(another convention with “from” on rows and “to” on
columns is more frequent but less convenient here)

If n users start on random pages in the network and click on a link every 5 minutes, which page in
the network will have the most views after an hour?
Which will have the fewest?
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Eigenvalue Theory Applications
The Model S

In nodes with no outgoing link (dangling pages), the surfer would stand. Unrealistic. ~~ modify
each sink in the graph by adding arcs from the sink to every node in the graph (random jumps).

. Adiacency matrix

a b ¢ d

a 0 1 0 O
A”:b 1 1 1 0
c 1 1 0 1

d 1 1 1 0

22



The Model

Eigenvalue Theory Applications

Page Rank Algorithm

® let x;(k) be the likelihood that a particular internet user is surfing webpage k at time t.

® users reaching / at t + 1 are those that in t where in an adjacent node and chose the link to /

® we assume outgoing links are chosen with equal likelihood

® thus, x;+1(/) can be computed by counting the number of links pointing to page /, weighted

by the total number of outgoing links for each node.

Example:

Xt+1(3) :%Xt(b),

xer1(a) = Oxe(a) + ~xe(b) + 0xe(€) + 0xe(d),

4
1

Xe41(b) = }xt(a) + = x:(b) + }Xt

3 4

n

. 5 x())
Xt+l(/) = ZAUﬁ
j=1 Zk:l Agj

2

(¢) + 0x:(d).
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. . Eigenvalue Theory Applications
A More Realistic Model Page Rank Algorithrn

Let € € [0, 1] be the probability that a user follows one of the outgoing links at step t (damping
factor) and 1 — ¢ that he jumps at random.

n

xe1(i) = €Z( IS > +(1_€)_ %Xt(j)

User stayed interested and User got bored and
clicked a link on the current page chose a random page

In matrix terms:
~ 1.+
Xt+1 = EAXt + (1 — 6)711 Xt7
n

where x, = [x:(1),x:(2),....x(n)]", 1 is a vector of n ones, and A is the n x n matrix with entries

24



For our example:

)
I

Z117

o N T w

QO 0 T w

a

1/3
1/3
1/3

b
1/4
1/4
1/4
1/4

1/4
1/4
1/4
1/4

C

1/2

1/2

b
1/4
1/4
1/4
1/4

O OO o

1/4
1/4
1/4
1/4

1/4
1/4
1/4
1/4

Eigenvalue Theory Applications
Page Rank Algorithm

o~ 1
Xey1 = (EA+ (1-— e)n11T> X¢
_ ~ 1.+
A=€eA+(1—-¢)-11
n

all terms of A are nonegative and all its
columns sum up to 1, ie, A is a positive
stochastic matrix

Xep1 = Ax;

is a regular Markov chain

25



Eigenvalue Theory Applications

Computing the Rankings Pege Rank Algorithm

® |et's define the page rank of node i as the steady state of the Markov chain:

x(i) = tILrgC x¢ (7).

1. If x exists, then taking the limit as ¢t — oo of both sides of the Markov chain gives the

following:
. . N 1 T
tILngo x(t+1) = tILrgo {eAx(t) +(1- e);ll x(t)}
~ 1
x=eAx+ (1 —¢€)=11Tx because convergent then x;11 = x;
n
. 1 _ _
(IeA(le)n11T>x0 117x = 1 since th(/):l

~ 1—
</ — eA) x = ‘1 ~ a system of linear equations!
n

27



Page Rank Algorithm

- - A A l-eqqT
2. Alternatively, setting A = ¢A + = <11

® x is an eigenvector of A corresponding to the eigenvalue \ = 1.

® since the columns of A sum to 1, and because the entries of_/z\ are strictly positive, Perron’s
theorem guarantees that A\ = 1 is the unique eigenvalue of A of largest magnitude, and that

the corresponding eigenvector x is unique up to scaling (ie, it can be found negative and
rescaled to positive).

® x can be rescaled (for example with norm 1 (L;) x/|[[x||1) so that it represents the desired
PageRank probability vector.
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. Eigenvalue Theory Applications
An lterative Method e i Ao

® Solving the system of linear equations above or finding the eigenvalues/eigenvectors is feasible
for small networks, but they are not efficient strategies for very large systems.

3. lterative technique (Power Method):
1. Start with t = 0 and an initial guess xq. Set xo = Xo/||xo]|2-

2. Compute x;;1 with
normalization in 1. and 2. with

Xei1 = <e/a+ (1- E)111T> X; L.l, L, L is helpful to avoi.d explo-
n tion of values and numerical pro-
blems but if dominant eigenvalue

Xer1 = Xer1/|[Xer1]2 is 1 normalization is not needed

and set t « t+1
3. if || x¢ — x¢—1 ||2 is sufficiently small got to 4., otherwise go to 2.

4. normalize with norm 1, since x must be a probability distribution.

29



Eigenvalue Theory Applications

PageRank on Weighted Graphs Page Rank Algorithm

If hyperlinks to page b are clicked on more frequently than hyperlinks to page c, the edge to node
b should be given more weight than the edge to node c.

1

a b ¢ d

a 0 0 0 O

19

c 1 0 0 2

d 1 0 2 0

2 2

oStg IR
A— b 1/2 1/4 1/3 0
c 1/4 1/4 0 1
d 1/4 1/4 2/3 0

The columns of A still sum to 1. Thus A — 6Z+ 1—;‘HT is still positive stochastic, so we can

expect a unique x to exist.
30



Python: Networkx Page Rank Algorithm

® |t represents graphs internally with dictionaries, thus taking full advantage of the sparsity in a
graph.

® The base class for directed graphs is called nx.DiGraph.

® Nodes and edges are usually added or removed incrementally with the following methods.

Method | Description

) | Add a single node.

) | Add a list of nodes.

) | Add an edge between two nodes, adding the nodes if needed.
) | Add multiple edges (and corresponding nodes as needed).
)

)

)

)

add edges from

remove edge
remove edges from
remove node
remove nodes from

Remove a single edge (no nodes are removed).
Remove multiple edges (no nodes are removed).
Remove a single node and all adjacent edges.
Remove multiple nodes and all adjacent edges.

—~ e~ A~ |~~~



Eigenvalue Theory Applications

Exa m p I e Page Rank Algorithm

>>> import networkx as nx

# Initialize an empty directed graph.
>>> DG = nx.DiGraph()

# Add the directed edges (nodes are added automatically).

>>> DG.add_edge('a', 'b', weight=2) --> b (adds nodes a and b)
>>> DG.add_edge('a', 'c', weight=1) --> ¢ (adds node c)

>>> DG.add_edge('a', 'd', weight=1) d (adds node d)

>>> DG.add_edge('c', 'b', weight=1) -->b

>>> DG.add_edge('c', 'd', weight=2) ->d

>>> DG.add_edge('d', 'c', weight=2) c

H OH OH OHF O
Qa0 0 p o
|
|
Vv
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Networkx

Page Rank Algorithm

® nx.Digrah object can be queried for information about the nodes and edges.

® Dictionary-like indexing to access node and edge attributes, such as the weight of an edge.

Method

Description

Return True if A is a node in the graph.
Return True if there is an edge from A to B.
Iterate through the edges.

Iterate through the nodes.

Return the number of nodes.

Return the number of edges.
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Example

# Check the nodes and edges.

>>> DG.has_node('a')

True

>>> DG.has_edge('b', 'a')

False

>>> 1ist(DG.nodes())

[*a', 'b', 'c', 'd']

>>> 1ist(DG.edges())

[(ta', 'B'), ('a', 'c'), ('a', 'd"), ('c¢', 'b"),

# Change the weight of the edge (a, b) to 3.
>>> DG['a'l['b'] ["weight"] += 1

>>> DG['a']['b'] ["weight"]

3

Idl)’

('dl’

Eigenvalue Theory Applications
Page Rank Algorithm

ICI)]
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Page Rank Algorithm

PageRank in Networkx

® NetworkX efficiently implements several graph algorithms.

® The function nx.pagerank() computes the PageRank values of each node iteratively with
sparse matrix operations.

® This function returns a dictionary mapping nodes to PageRank values

# Calculate the PageRank values of the graph.
>>> nx.pagerank (DG, alpha=0.85) # alpha is the damping factor (epsilon).
{'a': 0.08767781186947843,

'b': 0.23613138394239835,

'c': 0.3661321209576019,

'd': 0.31005868323052127}
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Eigenvalue Theory Applications

S U mm a I'y Page Rank Algorithm

1. Eigenvalue Theory Applications

2. Page Rank Algorithm
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