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Eigenvalue Theory Applications
Page Rank AlgorithmEigenvalues and Eigenvectors

Definition
Let A be a square matrix.
• The number λ is said to be an eigenvalue of A if for some non-zero vector x ,

Ax = λx

• Any non-zero vector x for which this equation holds is called
eigenvector for eigenvalue λ or
eigenvector of A corresponding to eigenvalue λ
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Recall: Square matrices are similar if there is an invertible matrix P such that P−1AP = M.

Definition (Diagonalizable matrix)

The matrix A is diagonalizable if it is similar to a diagonal matrix; that is,
if there is a diagonal matrix D and an invertible matrix P such that P−1AP = D

Example

A =

[
7 −15
2 −4

]

P =

[
5 3
2 1

]
P−1 =

[
−1 3
2 −5

]

P−1AP = D =

[
1 0
0 2

]
How was such a matrix P found?

When is a matrix diagonalizable?
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• Characteristic polynomial and characteristic equation of a matrix

• eigenvalues, eigenvectors, diagonalization

• finding eigenvalues and eigenvectors

• eigenspace

• diagonalize a diagonalizable matrix

• conditions for digonalizability

• diagonalization as a change of basis, similarity

• geometric effect of linear transformation via diagonalization
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• find powers of matrices

• solving systems of simultaneous linear difference equations

• Markov chains

• PageRank algorithm
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An = AAA · · ·A︸ ︷︷ ︸
n times

If we can write: P−1AP = D then A = PDP−1

An = AAA · · ·A︸ ︷︷ ︸
n times

= (PDP−1)(PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
n times

= PD(P−1P)D(P−1P)D(P−1P) · · ·DP−1

= P DDD · · ·D︸ ︷︷ ︸
n times

P−1

= PDnP−1

then closed formula to calculate the power of a matrix.
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• A difference equation is an equation linking terms of a sequence to previous terms, eg:

xt+1 = 5xt − 1

is a first order difference equation.

• a first order difference equation can be fully determined if we know the first term of the
sequence (initial condition)

• a solution is an expression of the terms xt

xt+1 = axt =⇒ xt = atx0
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Suppose the sequences xt and yt are related as follows:
x0 = 1, y0 = 1 for t ≥ 0

xt+1 = 7xt − 15yt
yt+1 = 2xt − 4yt

Coupled system of difference equations.

Let

xt =
[
xt
yt

] then xt+1 = Axt and x0 = [1, 1]T and

A =

[
7 −15
2 −4

]
Then:

x1 = Ax0
x2 = Ax1 = A(Ax0) = A2x0
x3 = Ax2 = A(A2x0) = A3x0
...

xt = Atx0

Power sequence generated by A
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• Suppose two supermarkets compete for customers in a region with 20000 shoppers.

• Assume no shopper goes to both supermarkets in a week.

• The table gives the probability that a shopper will change from one to another supermarket:
From A From B From none

To A 0.70 0.15 0.30
To B 0.20 0.80 0.20
To none 0.10 0.05 0.50

(note that probabilities in the columns add up to 1)

• Suppose that at the end of week 0 it is known that 10000 went to A, 8000 to B and 2000 to
none.

• Can we predict the number of shoppers at each supermarket in any future week t? And the
long-term distribution?
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Formulation as a system of difference equations:

• Let xt be the percentage of shoppers going in the two supermarkets or none
• then we have the difference equation:

xt = Axt−1

A =

0.70 0.15 0.30
0.20 0.80 0.20
0.10 0.05 0.50

 , xt =

xtyt
zt


• a Markov chain (or process) is a closed system of a fixed population distributed into n

different states, transitioning between the states during specific time intervals.
• The transition probabilities are known in a transition matrix A (coefficients all non-negative +

sum of entries in the columns is 1)
• state vector xt , entries sum to 1.
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• A solution is given by (assuming A is diagonalizable):

xt = Atx0 = (PDtP−1)x0

• let x0 = Pz0 and z0 = P−1x0 =
[
b1 b2 · · · bn

]T be the representation of x0 in the basis of
eigenvectors, then:

xt = PDtP−1x0 = b1λ
t
1v1 + b2λ

t
2v2 + · · ·+ bnλ

t
nvn

• Th.: if A is the transition matrix of a regular Markov chain, then λ = 1 is an eigenvalue of
multiplicity 1 and all other eigenvalues satisfy |λ| < 1

• xt = b1(1)tv1 + b2(0.6)tv2 + · · ·+ bn(0.4)tvn

• limt→∞ 1t = 1, limt→∞ 0.6t = 0 hence the long-term distribution is

q = b1v1 = 0.125

3
4
1

 =

0.375
0.500
0.125
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Definition
A stochastic process is any sequence of experiments for which the outcome at any stage depends
on chance.
A Markov process is a stochastic process with the following properties:

1. The set of possible outcomes or states is finite

2. The probability of the next outcome depends only on the previous outcome

3. The probabilities are constant over time:

xt+1 = Axt A transition matrix
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Definitions:

• Non-negative matrices are matrices with exclusively non-negative real numbers as elements.
• Positive matrices are matrices with exclusively positive real numbers as elements.
• The eigenvalues of a real square matrix A are in the general case complex numbers that make

up the spectrum of the matrix.
• The exponential growth rate of the matrix powers Ak as k →∞ is controlled by the

eigenvalue of A with the largest absolute value (modulus).
• If the distinct eigenvalues of a matrix A are λ1, λ2, . . . , λk , and if |λ1| is larger than
|λ2|, . . . , |λk |, then λ1 is called a dominant eigenvalue of A.

• Any eigenvector corresponding to a dominant eigenvalue is called a dominat eigenvector of A.

The Perron–Frobenius theorem (next slide) describes the properties of the dominant eigenvalue and
of the corresponding eigenvectors when A is a non-negative real square matrix. In the next slide we
focus only on a restricted case, the case of positive square martices.
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Theorem (Perron’s Theorem)

If A is a positive n× n matrix, then A has a positive real eigenvalue r with the following properties:
1. r is simple root of the charachteristic equation
2. r has a positive eigenvector x
3. If λ is any other eigenvealue of A, then |λ| < r .

(The theorem is a special case of a more general theorem due to Frobenius on irreducible
non-negative matrices.)

• If A is square stochastic and all its entries are positive, it follows from Perron’s theorem that
λ1 = 1 is an eigenvalue of A and the remaining eigenvalues satisfy |λj | ≤ 1 for j = 2, . . . , n.

• Consequences of Perron’s theorem on Markov chains (next two slides):
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Definition
A matrix such that all its entries are non-negative and the sum of the entries over the columns is 1
is called a stochastic matrix.

Definition
A stochastic matrix A is said to be regular if A or some positive power of A has all positive entries.
A Markov chain whose transition matrix is regular is said to be a regular Markov chain.

Theorem
If A is the transition matrix for a regular Markov chain, then:

1. There is a unique probability vector q such that Aq = q.
2. For any initial probability vector x0, the sequence of state vectors

x0,Ax0, . . . ,A
kx0

converges to q.
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Theorem
If a Markov chain with an n × n transition matrix A converges to a steady state vector x , then

1. x is a probability vector
2. λ1 = 1 is an eigenvalue of A and x is an eigenvector belonging to λ1
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• The PageRank algorithm is one way of ranking the nodes in a graph by importance

• Brin, S.; Page, L. (1998). "The anatomy of a large-scale hypertextual Web search engine".
Computer Networks and ISDN Systems. 30: 107–117.

• Currently, PageRank is not the only algorithm used by Google to order search results, but it is
the first algorithm that was used by the company, and it is the best-known.
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Let’s consider a Tiny-Web: nodes are pages and arcs are hyperlinks.

a

b c

d

Adiacency matrix of a directed graph

A =

from
a b c d


a 0 0 0 0
b 1 0 1 0

to c 1 0 0 1
d 1 0 1 0

(another convention with “from” on rows and “to” on
columns is more frequent but less convenient here)

If n users start on random pages in the network and click on a link every 5 minutes, which page in
the network will have the most views after an hour?
Which will have the fewest?
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In nodes with no outgoing link (dangling pages), the surfer would stand. Unrealistic. ⇝ modify
each sink in the graph by adding arcs from the sink to every node in the graph (random jumps).

a

b c

d

Adiacency matrix

Ã =

a b c d


a 0 1 0 0
b 1 1 1 0
c 1 1 0 1
d 1 1 1 0
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• Let xt(k) be the likelihood that a particular internet user is surfing webpage k at time t.

• users reaching i at t + 1 are those that in t where in an adjacent node and chose the link to i

• we assume outgoing links are chosen with equal likelihood

• thus, xt+1(i) can be computed by counting the number of links pointing to page i , weighted
by the total number of outgoing links for each node.

Example:

xt+1(a) =
1
4
xt(b),

xt+1(b) =
1
3
xt(a) +

1
4
xt(b) +

1
2
xt(c).

xt+1(a) = 0xt(a) +
1
4
xt(b) + 0xt(c) + 0xt(d),

xt+1(b) =
1
3
xt(a) +

1
4
xt(b) +

1
2
xt(c) + 0xt(d).

xt+1(i) =
n∑

j=1

Ãij
xt(j)∑n
k=1 Ãkj

.
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Let ϵ ∈ [0, 1] be the probability that a user follows one of the outgoing links at step t (damping
factor) and 1− ϵ that he jumps at random.

xt+1(i) = ϵ

n∑
j=1

(
Ãij

xt(j)∑n
k=1 Ãkj

)
︸ ︷︷ ︸
User stayed interested and

clicked a link on the current page

+(1− ϵ)
n∑

j=1

1
n
xt(j)︸ ︷︷ ︸

User got bored and
chose a random page

In matrix terms:

xt+1 = ϵÂxt + (1− ϵ)
1
n
11Txt ,

where xt = [xt(1), xt(2), . . . , xt(n)]T, 1 is a vector of n ones, and Â is the n× n matrix with entries

Âij =
Ãij∑

k=1 Ãkj

.
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For our example:

Â =

a b c d


a 0 1/4 0 0
b 1/3 1/4 1/2 0
c 1/3 1/4 0 1
d 1/3 1/4 1/2 0

1
n
11T =

a b c d


a 1/4 1/4 1/4 1/4
b 1/4 1/4 1/4 1/4
c 1/4 1/4 1/4 1/4
d 1/4 1/4 1/4 1/4

xt+1 =

(
ϵÂ+ (1− ϵ)

1
n
11T
)

xt

Ā = ϵÂ+ (1− ϵ)
1
n
11T

all terms of Ā are nonegative and all its
columns sum up to 1, ie, Ā is a positive
stochastic matrix

xt+1 = Āxt

is a regular Markov chain
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• Let’s define the page rank of node i as the steady state of the Markov chain:

x(i) = lim
t→∞

xt(i).

1. If x exists, then taking the limit as t →∞ of both sides of the Markov chain gives the
following:

lim
t→∞

x(t + 1) = lim
t→∞

[
ϵÂx(t) + (1− ϵ)

1
n
11Tx(t)

]
x = ϵÂx + (1− ϵ)

1
n
11Tx because convergent then xt+1 = xt(

I − ϵÂ− (1− ϵ)
1
n
11T
)

x = 0 11Tx = 1 since
∑
i

xt(i) = 1

(
I − ϵÂ

)
x =

1− ϵ

n
1 ⇝ a system of linear equations!
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2. Alternatively, setting Ā = ϵÂ+ 1−ϵ
n 11T

(
I − Ā

)
x = 0

Āx = x

• x is an eigenvector of Ā corresponding to the eigenvalue λ = 1.

• since the columns of Ā sum to 1, and because the entries of Ā are strictly positive, Perron’s
theorem guarantees that λ = 1 is the unique eigenvalue of Ā of largest magnitude, and that
the corresponding eigenvector x is unique up to scaling (ie, it can be found negative and
rescaled to positive).

• x can be rescaled (for example with norm 1 (L1) x/∥x∥1) so that it represents the desired
PageRank probability vector.
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• Solving the system of linear equations above or finding the eigenvalues/eigenvectors is feasible
for small networks, but they are not efficient strategies for very large systems.

3. Iterative technique (Power Method):
1. Start with t = 0 and an initial guess x0. Set x0 = x0/∥x0∥2.

2. Compute xt+1 with

xt+1 =

(
ϵÂ+ (1− ϵ)

1
n
11T
)

xt

xt+1 = xt+1/∥xt+1∥2
and set t ← t + 1

3. if ∥ xt − xt−1 ∥2 is sufficiently small got to 4., otherwise go to 2.

4. normalize with norm 1, since x must be a probability distribution.

normalization in 1. and 2. with
L1, L2L∞ is helpful to avoid explo-
tion of values and numerical pro-
blems but if dominant eigenvalue
is 1 normalization is not needed
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If hyperlinks to page b are clicked on more frequently than hyperlinks to page c , the edge to node
b should be given more weight than the edge to node c .

a

b c

d

2

1

1
1

1

22
2

1
1

A =

a b c d


a 0 0 0 0
b 2 0 1 0
c 1 0 0 2
d 1 0 2 0

Â =

a b c d


a 0 1/4 0 0
b 1/2 1/4 1/3 0
c 1/4 1/4 0 1
d 1/4 1/4 2/3 0

The columns of Â still sum to 1. Thus Ā = ϵÂ+ 1−ϵ
n 11T is still positive stochastic, so we can

expect a unique x to exist.
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• It represents graphs internally with dictionaries, thus taking full advantage of the sparsity in a
graph.

• The base class for directed graphs is called nx.DiGraph.

• Nodes and edges are usually added or removed incrementally with the following methods.

Method Description
add_node() Add a single node.

add_nodes_from() Add a list of nodes.
add_edge() Add an edge between two nodes, adding the nodes if needed.

add_edges_from() Add multiple edges (and corresponding nodes as needed).
remove_edge() Remove a single edge (no nodes are removed).

remove_edges_from() Remove multiple edges (no nodes are removed).
remove_node() Remove a single node and all adjacent edges.

remove_nodes_from() Remove multiple nodes and all adjacent edges.
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>>> import networkx as nx

# Initialize an empty directed graph.
>>> DG = nx.DiGraph()

# Add the directed edges (nodes are added automatically).
>>> DG.add_edge('a', 'b', weight=2) # a --> b (adds nodes a and b)
>>> DG.add_edge('a', 'c', weight=1) # a --> c (adds node c)
>>> DG.add_edge('a', 'd', weight=1) # a --> d (adds node d)
>>> DG.add_edge('c', 'b', weight=1) # c --> b
>>> DG.add_edge('c', 'd', weight=2) # c --> d
>>> DG.add_edge('d', 'c', weight=2) # d --> c

a

b c

d

2
1

1
1

1

22
2

11
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• nx.Digrah object can be queried for information about the nodes and edges.

• Dictionary-like indexing to access node and edge attributes, such as the weight of an edge.

Method Description
has_node(A) Return True if A is a node in the graph.

has_edge(A, B) Return True if there is an edge from A to B.
edges() Iterate through the edges.
nodes() Iterate through the nodes.

number_of_nodes() Return the number of nodes.
number_of_edges() Return the number of edges.
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# Check the nodes and edges.
>>> DG.has_node('a')
True
>>> DG.has_edge('b', 'a')
False
>>> list(DG.nodes())
['a', 'b', 'c', 'd']
>>> list(DG.edges())
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('c', 'b'), ('c', 'd'), ('d', 'c')]

# Change the weight of the edge (a, b) to 3.
>>> DG['a']['b']["weight"] += 1
>>> DG['a']['b']["weight"]
3
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• NetworkX efficiently implements several graph algorithms.

• The function nx.pagerank() computes the PageRank values of each node iteratively with
sparse matrix operations.

• This function returns a dictionary mapping nodes to PageRank values

# Calculate the PageRank values of the graph.
>>> nx.pagerank(DG, alpha=0.85) # alpha is the damping factor (epsilon).
{'a': 0.08767781186947843,
'b': 0.23613138394239835,
'c': 0.3661321209576019,
'd': 0.31005868323052127}
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