
Department of Mathematics and Computer ScienceUniversity of Southern Denmark, Odense November 10, 2021Marco Chiarandini

DM561 – Linear Algebra with Applications
1 Notes on Linear Regression
In curve fitting in R2 we are given m points (pairs of numbers) (x1, y1), . . . , (xm, ym) and we want todetermine a function f (x) such that

f (x1) ≈ y1, · · · , f (xm) ≈ ym.

The type of function (for example, polynomials, exponential functions, sine and cosine functions) may besuggested by the nature of the problem (the underlying physical law, for instance), and in many casesa polynomial of a certain degree will be appropriate.Let’s assume we have a set of data collected by some measurements. For example, they can be tem-perature in the atmosphere taken at different days of the year or the cost of houses given their squaremeters.For carrying out the computation we will simulate the set of points using the following Python script.
#!/usr/bin/python

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(2019)

np.set_printoptions(precision=3)

m=101

x = np.linspace(0, 1, m)

y = x**3-7*x+np.random.exponential(1,m)

plt.plot(x, y, ’.’)

#plt.axis.xlabel=(’x’)

#plt.axis.Axis.ylabel=(’x’)

plt.show()

print(x)

print(y)

The script produces two arrays x and y. The ith elements of these arrays give us the ith point, (xi, yi).An example of collected points is shown in Figure 1.
1.1 Linear functionThe first case we consider is fitting a straight line y = a + bx . Clearly, there is no line that passesthrough all the points at the same time. However, we can search for the line that minimizes the distancefrom all the points. More precisely, given the points (x1, y1), . . . , (xm, ym) we search for the line suchthat the sum of the squares of the distances of those points from the straight line is minimum, wherethe distance from (xi, yi) is measured in the vertical direction (the y-direction).Formally, each point i with abscissa xi has the ordinate a + bxi in the fitted line. The distance from theactual data (xi, yi) is thus |yi − a − bxi| and the sum of squares is

q = m∑
i=1 (yi − a − bxi)2

1

DM561

Figure 1: An example of points generated by the Python script plotted on the plane xy.
Hence, q depends on a and b whose values we are trying to determine, while the values xi and yiare given being the coordinates of the points available. From calculus we know that the minimum of afunction occurs where the partial derivatives are zero.
Task: Calculate the partial derivatives and find a and b with the help of Python. Report the symbolicderivations, the code you wrote and a plot that shows the points you generated and the line you fitted.The code must be short and use as much as possible matrix calculations by means of numpy or scipyarrays.[Hint: you can look up in Wikipedia for an explanation of partial derivatives. In short, the partialderivatives of q with respect to the variables a and b, denoted ∂q

∂a and ∂q
∂b , are, respectively, the derivativesof q with respect to a and b while the other variable is considered like a constant.]

Solution:A necessary condition for q to be minimum is
∂q
∂a = −2 m∑

i=1 (yi − a − bxi) = 0
∂q
∂b = −2 m∑

i=1 xi(yi − a − bxi) = 0
We can rewrite as: {

am + b
∑

xi = ∑
yi

a
∑

xi + b
∑

x2
i = ∑

xiyiwhich is a system of linear equations in the variables [a, b]. Hence, the solution to this systems givesthe values of a and b that minimize the square distance.
Task 1

a_11 = len(x)

a_12 = sum(x)

a_22 = sum(x**2)

b_1 = sum(y)

b_2 = sum(x*y)

A = np.array([[a_11, a_12],[a_12,a_22]])

b = np.array([b_1, b_2])

a_11 = len(x)

2

DM561

Figure 2:
a_12 = sum(x)

a_22 = sum(x**2)

b_1 = sum(y)

b_2 = sum(x*y)

A = np.array([[a_11, a_12],[a_12,a_22]])

coeff = np.linalg.solve(A,b)

y = coeff[0] + coeff[1]*x

plt.plot(x, y, ’.’)

plt.plot([0,1],[coeff[0],sum(coeff)])

plt.show()

The resulting plot is reported in Figure 2.
1.2 Polynomial FunctionLet us now try to obtain a better fit by using a second order polynomial approximation. We cangeneralize the polynomial y = ax + b to a polynomial of degree k

p(x) = b0 + b1x + · · ·+ bkxk

where k ≤ m− 1. Then q takes the form
q = m∑

i=1 (yi − p(xi))2
and depends on k + 1 parameters b0, · · · , bk . As before the setting of the parameters that yields theminimum q can be found via partial derivatives.

3

DM561
For the case of a second order polynomial, ie, for k = 2, calculate the partial derivatives and find theparameters b0, · · · , b2 with the help of Python. Report the symbolic derivations, the code you wroteand a plot that shows the points you generated and the cubic curve you fitted. The code must be shortand use as much as possible matrix calculations by means of numpy or scipy arrays.Discuss which of the two curves fitted, the straight line and the second order polynomial, yields thebest model for the points.
Solution:The necessary condition for q to be minimum gives a k + 1 system of linear equations:

∂q
∂b0 = 0
∂q
∂b1 = 0...
∂q
∂bk

= 0
For k = 3 the system we obtain is (summations are all from 1 to m):

b0m + b1∑ xi + b2∑ x2
i +b3∑ x3

i = ∑
yi

b0∑ xi + b1∑ x2
i + b2∑ x3

i +b3∑ x4
i = ∑

xiyi
b0∑ x2

i + b1∑ x3
i + b2∑ x4

i +b3∑ x5
i = ∑

x2
i yi

b0∑ x3
i + b1∑ x4

i + b2∑ x5
i +b3∑ x6

i = ∑
x3

i yi

which is a system of linear equations in the variables [b0, . . . , bk]. Hence, the solution to this systemsgives the values of [b0, . . . , bk] that minimize the square distance.
Task 2

a_0 = len(x)

a_1 = sum(x)

a_2 = sum(x**2)

a_3 = sum(x**3)

b_1 = sum(y)

a_4 = sum(x**4)

b_2 = sum(x*y)

a_5 = sum(x**5)

b_3 = sum((x**2)*y)

a_6 = sum(x**6)

b_4 = sum((x**3)*y)

A = np.array([[a_0, a_1, a_2,a_3],

[a_1,a_2,a_3,a_4],

[a_2,a_3,a_4,a_5],

[a_3,a_4,a_5,a_6]

])

coeff = np.linalg.solve(A,[b_1,b_2,b_3,b_4])

P=np.poly1d(coeff[::-1])

print(P)

plt.plot(x, y, ’.’)

xx = np.linspace(0.0, 1.0, 50)

plt.plot(xx, P(xx), ’-’)

4

DM561

Figure 3:
#plt.axhline(y=0)

plt.title(’Polynomial of order 3’);

plt.show()

The resulting plot is reported in Figure 3.We see that the third degree polynomial fits better the points since the line has more degree of freedom.The decision about which fitting is the best may depend on the application and on the knowledge aboutthe underlying model. If it is known that there is a linear correspondence between the variables thenthe model to use is the linear. Otherwise, a third degree might be better provided that it does notoverfit the data. Cross validation is a technique used in statistical learning to avoid overfitting.
1.3 Linear Algebra ApproachIn the previous points we moved forward to a solution using calculus. Now we take a different approachusing linear algebra and we will show that we reach the same result. In doing this we generalize themethod to the space Rn. This is useful, for example, in tasks of machine learning where one is interestedin learning from data the type of dependency of a variable y on some predictor variables x1, . . . , xn. Forexample, the temperature on the ground may depend, beside on the day of the year, also on the latitudeand maybe, in the case of global warming, on the development through years. The price of a house maydepend on the square meters but also on the distance from city center and the year of construction.We assume that the variable y is related to x ∈ Rn linearly, so for some constants b0 and b, y = b0+bT x.Given the set of m points in the ideal case we have that yi = b0 + bxi, for all i = 1, . . . , m. In matrixform: 

1 x1,1 · · · x1,k1 x2,1 · · · x2,k... ...1 xm,1 · · · xm,k




b0
b1...
bk

 =


y1
y2
. . .
ym


This can be written as Az = y.Considering the same set of data in R2 from point 1 of this Task try to find z in Python. Report whathappens and explain why it is so.

5

DM561

r(ẑ)y

p R(A)
x

y

z

Figure 4: y ∈ R2 and A is a 3× 2 matrix of rank 2.
Solution:

Task 4

A = np.column_stack([np.ones(101),x])

np.linalg.solve(A,y)

Python will complain that the matrix is not square. The system is overdetermined.In general we cannot expect to find a vector z ∈ Rn+1 for which Az equals y. Instead we can look for avector z for which Az is closest to y.For each z ∈ Rn+1 we can form the residual

r(z) = y− Az

Recalling the definition of the norm or length of a vector, the distance between y and Az is given by∥∥r(z)∥∥ = ∥∥y− Az
∥∥

Minimizing ∥∥r(z)∥∥ is equivalent to minimize ∥∥r(z)∥∥2. So what we need is for Az to be the closest pointof the form Au (for a generic vector u ∈ Rn+1) to y. That is, Az has to be the closest point in R(A) to y.Thus a vector ẑ will be the one that minimizes ∥∥y− Az
∥∥2 if and only if p = Aẑ is the vector in R(A) thatis closest to y. The vector p is said to be the projection of y onto R(A). It follows that

r(ẑ) ∈ R(A)⊥
that is, r(ẑ) lays on the subspace of Rm that is the orthogonal complement of R(A). These facts areexplained visually in Figure 4 for the case of R2 but they can be proved to hold in more general termsfor Rn.To proceed we need another fact. For an m× (n + 1) matrix A,

R(A)⊥ = N(AT),
that is, the orthogonal complement of the range of a matrix A is the null space of the transpose of thematrix A.The proof of this fact is as follows:A vector w that belongs to R(A) belongs to the linear span of A, ie, it is a linear combination of thecolumns of the matrix A. A vector v that belongs to R(A), must therefore be orthogonal to each columnof the matrix A. Consequently AT v = 0. Thus, v must be an element of N(AT) and hence N(AT) = R(A)⊥.Thus we have

r(ẑ) ∈ N(AT)
6

DM561
Show that this leads to a (n + 1)× (n + 1) system of linear equations in the z variables. The system isactually the same as the one derived earlier via calculus.
Solution:Since r(ẑ) = y− Az we have

AT (y− Az) = 0Thus to solve the least square system of Az = y we have to solve
AT y = AT Az

Remembering that we are solving in the z variables we have a system of size (n + 1)× (n + 1) because
A is of size m× (n + 1) and therefore AT A is of size (n + 1)× (n + 1).
Task: Show that if A is an m× (n +1) matrix of rank (n +1), then the system at the previous point hasa unique solution:

ẑ = (AT A)−1AT y(Hint: assume that AT Au = 0 has only the trivial solution u = 0.)
Solution:Under the assumption that AT Au = 0 has only the trivial solution u = 0 then the matrix AT A is non-singular and hence invertible and the solution unique.
Task Use the formula derived above to find the least square linear regression of point (a). Compareyour result with the result you would obtain by using the function from numpy: numpy.linalg.lstsq.
Solution:In Python, the least square solution as derived here to our original data can be computed as:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html

A = np.vstack([np.ones(len(x)), x]).T

b_0, b_1 = np.linalg.lstsq(A, y)[0]

print(b_0, b_1)

Plot the data along with the fitted line:

plt.plot(x, y, ’o’, label=’Original data’, markersize=10)

plt.plot(x, b_1*x + b_0, ’r’, label=’Fitted line’)

plt.legend()

plt.show()

1.4 Other Applications of Linear RegressionWe now turn to another application in which we know that the data sampled come from a circle. Forexample, in image processing from a medical application we may collect the data regarding points of abone and we want to determine the circumference of the bone.The parametric equations for a circle with center (3, 1) and radius 2 are
x = 3 + 2 cos t
y = 1 + 2 sin t

We simulate a few points in Python by adding some noise to the points from a circle in correspondenceof t ∈ {0.0, 0.5, 1.0, . . . , 5.0, 5.5}:

7

DM561
#!/usr/bin/python

import numpy as np

import matplotlib.pyplot as plt

CPRN = 3 # your CPR number

np.random.seed(CPRN)

np.set_printoptions(precision=3)

t=np.arange(0,6,0.5)

x=3+2*np.cos(t)+0.3*np.random.rand(len(t))

y=1+2*np.sin(t)+0.3*np.random.rand(len(t))

plt.plot(x, y, ’.’)

plt.show()

Write in your report the symbolic derivations that lead to finding the center c and radius r of the circlethat gives the best q that fits to the points, ie,:
x = c1 + r cos(t)
y = c2 + r sin(t)

Solve the model you found in Python. Report the code and the plot of the points and the fitted circle.
Solution:The circle can be written as (x − c1)2 + (y − c2)2 = r2
Solving in y we obtain

y = ±√r2 − (x − c1)2 + c2Then the least squares gives:
q =∑(yi ±

√
r2 − (xi − c1)2 + c2)which we need to optimize in r2, c1, c2. This leads to a non linear system of equations that is notconvenient for us.Luckily, we are given the points by means of their radial coordinate t rather than just with the (x, y)coordinates. (This is seldom the case since it implies knowing a priori the model that we are actuallytrying to find.)Let’s then try to minimize the squared distance of the points from the circle in the parameters r2, c1, c2:

q = m∑
i=1
[(xi − c1 − r cos(ti))2 + (yi − c2 − r sin(ti))2]

= m∑
i=1
[(xi − c1)2 + r2 cos2(ti)− 2(xi − c1)(r cos(ti)) + (yi − c2)2 + r2 sin2(ti)− 2(yi − c2)(r sin(ti))]

= m∑
i=1
[(xi − c1)2 − 2(xi − c1)(r cos(ti)) + (yi − c2)2 − 2(yi − c2)(r sin(ti)) + r2]

∂q
∂r = m∑

i=1 [−2(xi − c1) cos(ti)− 2(yi − c2) sin(ti) + 2r] = 0
∂q
∂c1 = m∑

i=1 [−2(xi − c1) + 2(r cos(ti))] = 0
∂q
∂c2 = m∑

i=1 [−2(yi − c2) + 2(r sin(ti))] = 0
8

DM561

Figure 5:
Luckily, this gives rise to a linear system: m

∑cos(ti) ∑sin(ti)∑cos(ti) m 0∑sin(ti) 0 m

 r
c1
c2
 = ∑ xi cos(ti) + yi sin(ti)∑

xi∑
yi


Solving it we find r, c1, c2.

m=len(x)

A = np.array([[m,np.sum(np.cos(t)),np.sum(np.sin(t))],

[np.sum(np.cos(t)),m,0],

[np.sum(np.sin(t)),0,m]]

)

b = np.array([np.sum(x*np.cos(t)+y*np.sin(t)),

np.sum(x),

np.sum(y)])

rcc = np.linalg.solve(A,b)

print(rcc)

t=np.arange(0,2*np.pi,0.1)

xx=rcc[1]+rcc[0]*np.cos(t)

yy=rcc[2]+rcc[0]*np.sin(t)

plt.plot(x, y, ’.’)

plt.plot(xx,yy,’-’)

plt.show()

The result is shown in Figure 5.

9

	Notes on Linear Regression

