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C ross E ntro py M ethod Continuous Optimization CEM

Key idea: use rare event-simulation and importance sampling to proceed
towards good solutions

@ generate random solution samples according to a specified
mechanism

@ update the parameters of the random mechanism to produce a
better “sample”
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Notation:

@ S finite set of states
@ f real valued performance functions on S
® maxses f(s) =~* = f(s*) (our problem)

o {p(s,0)|0 € O} family of discrete probability mass function on
seS

° Eolf(s)] = Xes f()p(5,0)

We are interested in the probability that f(s) is greater than some
threshold ~ under the probability p(-, 6*):

C=Pr(f(s) =) =Y _I{f(s) = }p(s.0') = Eg [I{f(s) > 7}]

if this probability is very small then we call {f(s) >~} a rare event

Model Based Metaheuristics CEM

e How to determine g7
Best choice would be:
~ I{f(s) = y}p(x,0)

g (s) = l ,

as substituting £ = + Zf\il I{f(s;) > 7}p(f’9,) = /.
But ¢ is unknwon.

@ It is convinient to choose g from {p(-,0)}

@ Choose the parameter @ such that the difference of g = p(-,0) to g*
is minimal

@ Cross entropy or Kullback Leibler distance, measure of the distance
between two probability distribution functions,

)

Dig,g) = By {ln

Model Based Metaheuristics CEM

Estimation

(=" 1{f(s) 2 V}p(s.0") = Eor [1{f(s) = 7}]

Monte-Carlo simulation:

@ draw a random sample
e compute unbiased estimator of /: ¢ = + Efil I{f(s;) >~}
o if probability to sample I{f(s;) > v} the estimation is not accurate

Importance sampling:
@ use a different probability function g on S to sample the solutions

o 0=, I{f(s) 2 1}28g(s) = B, [I{f(s) > 7} 20)]

@ compute unbiased estimator of /:

p(s,0")
g(s)

= ) =)

Model Based Metaheuristics CEM

@ Generalizing to probability density functions and Lebesque integrals
winD(g,) = min [ g"(5)lng"()ds — [ ¢"(s)Ingls, 6)ds
@ Minimizing the distance by means of sampling estimation leads to:

5 p(s,0)
6 = argmaxgy Egr I{f(s;) = V}p(S, 0"

In p(s, 0)

stochastic program (convex).
In some cases can be solved in closed form (eg, exponential,
Bernoulli).

@ Same result can be obtained by maximum likelihood estimation over
the solutions s; with performance > ~

N
L= mgxiﬂlp(si, 0)
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e Estimation via stochastic counterpart: Cross Entropy Method (CEM):
N Define 8. Set t = 1
n 1 pSi, 0/ 0
0:argmaX9NZI{f(si) 27)}%111])(5@,9) . _
i—1 p(si, 0") while termination criterion is not satisfied do
where s1,..., sy is a random sample from p(-,0"). generate a sample (s1, S2,...sy) from the pdf p(-;60:_1)

set 7; equal to the (1 — p)-quantile with respect to f

@ But still problems with sampling due to rare events. (7 = sTA=PIND)
Solution: Two-phase iterative approach: _
PR N use the same sample (s1, S2,...,Sn) to solve the stochastic program
e construct a sequence of levels 71,72, ...,7:
e construct a sequence of parameters 51, 52, ey ét

0, = argmax 3 3 Iy(s,)<5,) Inp(si 0)

such that 7; is close to optimal i=1
and 6, assigns maximal probability to sample high quality solutions
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Example: TSP

@ Solution representation: permutation representation

o Termination criterion: if for some ¢ > d with, e.g., d =5, @ Probabilistic model: matrix P where p;; represents probability of

Ve =1 = = Vi ~ R R vertex j after vertex i
o Smoothed Updating: 6; = a0’; + (1 — a)6;—1 with 0.4 < o < 0.9 @ Tour construction: specific for tours
0’y from the stochastic counterpart Define PV = Pand X; = 1. Let k=1
o Parameters: while k. <n —1 do
o N = cn, n size of the problem (number of choices available for each obtain P*+1) from P(*) by setting the Xj,-th column of P(*)
solution component to decide) to zero and normalizing the rows to sum up to 1.
°oc>1(5<c<10); Generate X}, 1 from the distribution formed by the Xj-th row of
e p=0.01 for n > 100 and p ~ In(n)/n for n < 100 pk)
setk=k+1

@ Update: take the fraction of times transition i to j occurred in those
paths the cycles that have f(s) <~
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@ Rosenbrock’s banana function
flz,y) = (1 —2)* +100(y — 2%)*
Global minimum at (x,y) = (1,1) where f(z,y) =0

Multidimensional extension is

N-1
f@)= 3" [(1—a)? +100(z;41 —2?)?] Ve € RV,
i=1
Global minimum at (z1,...,zy5) = (1,...,1)

@ Rastrigin's
@ Schwefel's
@ Sphere

Continue at: http://www.cs.bham.ac.uk/research/projects/ecb/
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@ We look at unconstrained optimization of continuous, non-linear,
non-convex, non-differentiable functions

e Many applications above all in statistical estimation, (eg, likelihood
estimation)

e Typically few variables (curse of dimensionality)

Smooth Functions ol B et e Nmerical Analyi
Differentiable

Gradient Descent f(x) decreases
fastest moving in the direction of
the negative gradient of f Hence,

Xnt1 = Xn — YV f(Xn)

converges for appropriate ¢ and for
Y > 0 small enough numbers.

@ Problem is choosing ~

Secant Method
If only one-dimension and f hard to
differentiate:

z — LTy — Tp—1
T () — f(@na)

Numerical Analysis
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Continuous Optimization

Twice differentiable

Newton’s method in one dimension
Taylor expansion of f(x):

F@+ Az) = f@) + f/(2) Az + %f”(:c)AxQ,

attains its extremum when Ax solves the linear equation:

s 1 a7/ "()+ f"(z)Az =0  andf’(z) >0
i ) ne F() + () (@)
T/

AV / / Yoy . . .
00”&%;} e A Hence, if x( is chosen appropriately, the sequence below converges to x*

{ J )

i
;/I;/
i O Pt = T )

i
i l:,':

,n>0

\ Newton’s method generalized to several dimensions
N\ first derivative «—— gradient V f(x),
reciprocal of the second derivative «— inverse of Hessian matrix, H f(x)

Xnt1 = Xn — [H[(%,)] 'V f(%5), 7> 0.

Model Based Metaheuristics
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@ Newton's method converges much faster towards a local maximum
or minimum than gradient descent.

@ However, finding the inverse of the Hessian may be an expensive
operation, so approximations may be used instead
Quasi-Newton methods

o Conjugate Gradient [Fletcher and Reeves (1964)]

e BFGS (variable metric algorithm) [Broyden, Fletcher, Goldfarb and
Shanno (1970)]



