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Course Presentation

I Communication media
I Blackboard (for private communications)

Mail, Fora, Blog, Grades, Documents (photocopies),
I Web-site http://www.imada.sdu.dk/~marco/DM87/

Lecture plan, Syllabus, Links, Exam documents
I 40 hours of lectures + work at the exam project
I Schedule:

1. Lectures:
Mondays 12:00-13:45, Thursdays 8:15-10:00
Weeks 5-10, 13-16
Last lecture (preliminary date): Thursday, April 17

2. Exam: June
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Course Content

I Review of Optimization Methods:
I Mathematical Programming,
I Constraint Programming,
I Heuristics
I Problem Specific Algorithms (Dynamic Programming, Branch and

Bound)
I Introduction to Scheduling, Terminology, Classification.

I Single Machine Models
I Parallel Machine Models
I Flow Shops and Flexible Flow Shops
I Job Shops, Open Shops

I Introduction to Timetabling, Terminology, Classification
I Interval Scheduling, Reservations
I Educational Timetabling
I Workforce and Employee Timetabling
I Transportation Timetabling

I Introduction to Vehicle Routing, Terminology, Classification
I Capacited Vehicle Routing
I Vehicle Routing with Time Windows

Evaluation

Final Assessment (10 ECTS)
I Oral exam: 30 minutes + 5 minutes defense project

meant to assess the base knowledge
I Group project:

free choice of a case study among few proposed ones
Deliverables: program + report
meant to assess the ability to apply
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Course Material

I Literature
I Text book: M.L. Pinedo, Planning and Scheduling in Manufacturing and

Services; Springer Series in Operations Research and Financial
Engineering, 2005. (388 DKK)

I Supplementary book: M.L. Pinedo, Scheduling: Theory, Algorithms, and
Systems; 2nd ed., Prentice Hall, 2002.

I Supplementary book: P. Toth, D. Vigo, eds. The Vehicle Routing
Problem, SIAM Monographs on Discrete Mathematics and Applications,
Philadelphia, 2002.

I Supplementary Articles: will be indicated during the course
I Slides
I Class exercises (participatory)
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Useful Previous Knowledge for this Course

I Algorithms and data structures
I Programming A and B
I Networks and Integer Programming
I Heuristics for Optimization
I Software Methodologies and Engineering
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Course Goals and Project Plan

How to Tackle Real-life Optimization Problems:
I Formulate (mathematically) the problem
I Model the problem and recognize possible similar problems
I Search in the literature (or in the Internet) for:

I complexity results (is the problem NP-hard?)
I solution algorithms for original problem
I solution algorithms for simplified problem

I Design solution algorithms
I Test experimentally with the goals of:

I configuring
I tuning parameters
I comparing
I studying the behavior (prediction of scaling and deviation from optimum)
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Scheduling

I Manufacturing
I Project planning
I Single, parallel machine and job shop systems
I Flexible assembly systems

Automated material handling (conveyor system)
I Lot sizing
I Supply chain planning

I Services⇒ different algorithms
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Problem Definition

Constraints

Objectives

ResourcesActivities

Problem Definition
Given: a set of jobs J = {J1, . . . , Jn} that have to be processed
by a set of machinesM = {M1, . . . ,Mm}

Find: a schedule,
i.e., a mapping of jobs to machines and processing times
subject to feasibility and optimization constraints.

Notation:
n, j, k jobs
m, i, h machines
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Visualization

Scheduling are represented by Gantt charts

I machine-oriented
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...
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Data Associated to Jobs

I Processing time pij
I Release date rj
I Due date dj (called deadline, if strict)
I Weight wj

I A job Jj may also consist of a number nj of operations
Oj1, Oj2, . . . , Ojnj and data for each operation.

I Associated to each operation a set of machines µjl ⊆M

Data that depend on the schedule (dynamic)
I Starting times Sij
I Completion time Cij, Cj
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Problem Classification

A scheduling problem is described by a triplet α | β | γ.

I α machine environment (one or two entries)
I β job characteristics (none or multiple entry)
I γ objective to be minimized (one entry)

[R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979):
Optimization and approximation in deterministic sequencing and scheduling:
a survey, Ann. Discrete Math. 4, 287-326.]
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The α | β | γα | β | γα | β | γ Classification Scheme

Machine Environment α1α2α1α2α1α2 | β1 . . . β13 | γ

I single machine/multi-machine (α1 = α2 = 1 or α2 = m)
I parallel machines: identical (α1 = P), uniform pj/vi (α1 = Q),

unrelated pj/vij (α1 = R)
I multi operations models: Flow Shop (α1 = F), Open Shop (α1 = O),

Job Shop (α1 = J), Mixed (or Group) Shop (α1 = X)

Single Machine Flexible Flow Shop
(α = FFc)

Open, Job, Mixed Shop
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The α | β | γα | β | γα | β | γ Classification Scheme

Job Characteristics α1α2 |β1 . . . β13β1 . . . β13β1 . . . β13 | γ

I β1 = prmp presence of preemption (resume or repeat)
I β2 precedence constraints between jobs (with α = P, F)

acyclic digraph G = (V,A)

I β2 = prec if G is arbitrary
I β2 = {chains, intree, outtree, tree, sp-graph}

I β3 = rj presence of release dates
I β4 = pj = p preprocessing times are equal
I (β5 = dj presence of deadlines)
I β6 = {s-batch, p-batch} batching problem
I β7 = {sjk, sjik} sequence dependent setup times
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The α | β | γα | β | γα | β | γ Classification Scheme

Job Characteristics (2) α1α2 |β1 . . . β13β1 . . . β13β1 . . . β13 | γ

I β8 = brkdwn machines breakdowns
I β9 = Mj machine eligibility restrictions (if α = Pm)
I β10 = prmu permutation flow shop
I β11 = block presence of blocking in flow shop (limited buffer)
I β12 = nwt no-wait in flow shop (limited buffer)
I β13 = recrc Recirculation in job shop
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The α | β | γα | β | γα | β | γ Classification Scheme

Objective (always f(Cj)) α1α2 | β1β2β3β4 |γγγ

I Lateness Lj = Cj − dj

I Tardiness Tj = max{Cj − dj, 0} = max{Lj, 0}
I Earliness Ej = max{dj − Cj, 0}

I Unit penalty Uj =

{
1 if Cj > dj
0 otherwise
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The α | β | γα | β | γα | β | γ Classification Scheme

Objective α1α2 | β1β2β3β4 |γγγ

I Makespan: Maximum completion Cmax = max{C1, . . . , Cn}

tends to max the use of machines
I Maximum lateness Lmax = max{L1, . . . , Ln}

I Total completion time
∑
Cj (flow time)

I Total weighted completion time
∑
wj · Cj

tends to min the av. num. of jobs in the system, ie, work in progress, or
also the throughput time

I Discounted total weighted completion time
∑
wj(1− e−rCj)

I Total weighted tardiness
∑
wj · Tj

I Weighted number of tardy jobs
∑
wjUj

All regular functions (nondecreasing in C1, . . . , Cn) except Ei
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The α | β | γα | β | γα | β | γ Classification Scheme

Other Objectives α1α2 | β1β2β3β4 |γγγ

Non regular objectives

I Min
∑
w ′jEj +

∑
w"jTj (just in time)

I Min waiting times
I Min set up times/costs
I Min transportation costs

Exercises

Scheduling Tasks in a Central Processing Unit (CPU) [Ex. 1.1.3, textbook]

I Multitasking operating system

I Schedule time that the CPU devotes to the different programs

I Exact processing time unknown but an expected value might be known

I Each program has a certain priority level

I Minimize the time expected sum of the weighted completion times for all
tasks

I Tasks are often sliced into little pieces. They are then rotated such that
low priority tasks of short duration do not stay for ever in the system.
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Exercises

Gate Assignment at an Airport [Ex. 1.1.2, textbook]

I Airline terminal at a airport with dozes of gates and hundreds of arrivals
each day.

I Gates and Airplanes have different characteristics

I Airplanes follow a certain schedule

I During the time the plane occupies a gate, it must go through a series of
operations

I There is a scheduled departure time (due date)

I Performance measured in terms of on time departures.
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Solutions

Distinction between
I sequence
I schedule
I scheduling policy

Feasible schedule
A schedule is feasible if no two time intervals overlap on the same machine,
and if it meets a number of problem specific constraints.

Optimal schedule
A schedule is optimal if it minimizes the given objective.

27

Classes of Schedules

Nondelay schedule
A feasible schedule is called nondelay if no machine is kept idle while an
operation is waiting for processing.
There are optimal schedules that are nondelay for most models with regular
objective function.

Active schedule
A feasible schedule is called active if it is not possible to construct another
schedule by changing the order of processing on the machines and having at
least one operation finishing earlier and no operation finishing later.
There exists for Jm||γ (γ regular) an optimal schedule that is active.
nondelay ⇒ active
active 6⇒ nondelay

Semi-active schedule
A feasible schedule is called semi-active if no operation can be completed
earlier without changing the order of processing on any one of the machines.
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Part II

Complexity hierarchies, PERT, Mathematical
Programming
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Complexity Hierarchy

A problem A is reducible to B if a procedure for B can be used also for A.

Ex: 1||
∑
Cj ∝ 1||

∑
wjCj

Complexity hierarchy describes relationships between different scheduling
problems.

Interest in characterizing the borderline: polynomial vs NP-hard problems
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Problems Involving Numbers

Partition

I Input: finte set A and a size s(a) ∈ Z+ for each a ∈ A
I Question: is there a subset A ′ ⊆ A such that∑

a∈A ′
s(a) =

∑
a∈A−A ′

s(a)?

3-Partition

I Input: set A of 3m elements, a bound B ∈ Z+, and a size s(a) ∈ Z+

for each a ∈ A such that B/4 < s(a) < B/2 and such that∑
a∈A s(a) = mB

I Question: can A be partitioned into m diskoint sets A1, . . . , Am such
that for 1 ≤ i ≤ m,

∑
a∈Ai s(a) = B (note that each Ai must therefore

contain exactly three elements from A)?
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Complexity Hierarchy of Problems



http://www.mathematik.uni-osnabrueck.de/research/OR/class/

Complexity Hierarchy

Elementary reductions for machine environment
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Complexity Hierarchy

Elementary reductions for regular objective functions
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Project Planning
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Project Planning
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Project Planning
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Project Planning
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Linear, Integer, Nonlinear Programming

program = optimization problem

min f(x)
gi(x) = 0, i = 1, 2, . . . , k

hj(x) ≤ 0, j = 1, 2, . . . ,m

x ∈ Rn

general (nonlinear) program (NLP)

min cTx

Ax = a

Bx ≤ b
x ≥ 0
(x ∈ Rn)

linear program (LP)

min cTx

Ax = a

Bx ≤ b
x ≥ 0
(x ∈ Zn)
(x ∈ {0, 1}n)

integer (linear) program (IP, MIP)
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Linear Programming

Linear Program in standard form

min c1x1 + c2x2 + . . . cnxn
s.t. a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...
a21x1 + a22x2 + . . .+ a2nxn = bn
x1, x2, . . . , xn ≥ 0

min cTx

Ax = b

x ≥ 0
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Historic Roots

I 1939 L. V. Kantorovitch: Foundations of linear programming (Nobel
Prize 1975)

I George J. Stigler’s 1945 (Nobel Prize 1982) “Diet Problem”: “the first
linear program”
find the cheapest combination of foods that will
satisfy the daily requirements of a person
Army’s problem had 77 unknowns and 9 constraints.
http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

I 1947 G. B. Dantzig: Invention of the simplex algorithm

I Founding fathers:
I 1950s Dantzig: Linear Programming 1954, the Beginning of IP G.

Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
I 1960s Gomory: Integer Programming
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LP Theory

I Max-Flow Min-Cut Theorem
The maximal (s,t)-flow in a capaciatetd network is equal to the minimal
capacity of an (s,t)-cut

I The Duality Theorem of Linear Programming

max cTx

Ax ≤ b
x ≥ 0

min yTb

yTA ≥ cT
y ≥ 0

If feasible solutions to both the primal and the dual problem in a pair of
dual LP problems exist, then there is an optimum solution to both
systems and the optimal values are equal.
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LP Theory

I Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow)

I The Duality Theorem of Integer Programming

max cTx

Ax ≤ b
x ≥ 0
x ∈ Zn

≤

min yTb

yTA ≥ cT
y ≥ 0
y ∈ Zn
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LP Solvability

I Linear programs can be solved in polynomial time with
the Ellipsoid Method (Khachiyan, 1979)
Interior Point Methods (Karmarkar, 1984, and others)

I Open: is there a strongly polynomial time algorithm for the solution of
LPs?

I Certain variants of the Simplex Algorithm run - under certain conditions
- in expected polynomial time (Borgwardt, 1977...)

I Open: Is there a polynomial time variant of the Simplex Algorithm?
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IP Solvability

I Theorem
Integer, 0/1, and mixed integer programming are NP-hard.

I Consequence
I special cases
I special purposes
I heuristics
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I Algorithms for the solution of nonlinear programs
I Algorithms for the solution of linear programs

I 1) Fourier-Motzkin Elimination (hopeless)
I 2) The Simplex Method (good, above all with duality)
I 3) The Ellipsoid Method (total failure)
I 4) Interior-Point/Barrier Methods (good)

I Algorithms for the solution of integer programs
I 1) Branch & Bound
I 2) Cutting Planes
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Algorithms for nonlinear programming

I Iterative methods that solve the equation and inequality systems
representing the necessary local optimality conditions.

I Steepest descent (Kuhn-Tucker sufficient conditions)

I Newton method

I Subgradient method
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Algorithms for linear programming

The Simplex Method

I Dantzig, 1947: primal Simplex Method
I Lemke, 1954; Beale, 1954: dual Simplex Method
I Dantzig, 1953: revised Simplex Method
I ....
I Underlying Idea: Find a vertex of the set of feasible LP solutions

(polyhedron) and move to a better neighbouring vertex, if possible.
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The simplex method

54

The simplex method
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The simplex method

Hirsch Conjecture
If P is a polytope of dimension n with m facets then every vertex of P can be
reached from any other vertex of P on a path of length at most m-n.

In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.
Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an
n-dimensional polyhedron with m facets is at most m(log n+1).
Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).
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Algorithms for Integer Programming

special „simple" combinatorial optimization problems Finding a:

I minimum spanning tree
I shortest path
I maximum matching
I maximal flow through a network
I cost-minimal flow
I ...

solvable in polynomial time by special purpose algorithms
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Algorithms for Integer Programs

special „hard" combinatorial optimization problems

I traveling salesman problem
I location and routing
I set-packing, partitioning, -covering
I max-cut
I linear ordering
I scheduling (with a few exceptions)
I node and edge colouring
I ...

NP-hard (in the sense of complexity theory)
The most successful solution techniques employ linear programming.
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Algorithms for Integer Programs

I 1) Branch & Bound
I 2) Cutting Planes

Branch & cut, Branch & Price (column generation), Branch & Cut & Price
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Summary

I We can solve today explicit LPs with
I up to 500,000 of variables and
I up to 5,000,000 of constraints routinely

in relatively short running times.
I We can solve today structured implicit LPs (employing column

generation and cutting plane techniques) in special cases with hundreds
of million (and more) variables and almost infinitely many constraints in
acceptable running times. (Examples: TSP, bus circulation in Berlin)

[Martin Grötschel, Block Course at TU Berlin,
“Combinatorial Optimization at Work”, 2005

http://co-at-work.zib.de/berlin/]
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Part III

Mathematical Programming Formulations, Constraint
Programming
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Modeling: Mixed Integer Formulations

I Transportation Problem

I Weighted Bipartite Matching Problem (if m = n⇒ assignment)

Set Covering

min
n∑
j=1

cjxj

n∑
j=1

aijxj ≥ 1 ∀i
xj ∈ {0, 1}

Set Partitioning

min
n∑
j=1

cjxj

n∑
j=1

aijxj = 1 ∀i
xj ∈ {0, 1}

Set Packing

max
n∑
j=1

cjxj

n∑
j=1

aijxj ≤ 1 ∀i
xj ∈ {0, 1}
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Traveling Salesman Problem
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Traveling Salesman Problem
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Traveling Salesman Problem
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Traveling Salesman Problem
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Traveling Salesman Problem
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minimize cTx subject to

0 ≤ xe ≤ 1 for all edges e,∑
(xe : v is am emd of e) = 2 for all cities v,∑

(xe : e has one end in S and one end not in S) ≥ 2
for all nonempty proper subsets S of cities,∑i=3

i=0(
∑

(xe : e has one end in Si and one end not in Si) ≥ 10,
for any comb
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24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu

Modeling: Mixed Integer Formulations

I Formulation for Qm|pj = 1|
∑
hj(Cj) and relation with transportation

problems
I Totally unimodular matrices and sufficient conditions for total

unimodularity i) two ones per column and ii) consecutive 1’s property
I Formulation of 1|prec|

∑
wjCj and Rm||

∑
Cj as weighted bipartite

matching and assignment problems.
I Formulation of set covering, set partitioning and set packing
I Formulation of Traveling Salesman Problem
I Formulation of 1|prec|

∑
wjCj and how to deal with disjunctive

constraints
I Graph coloring
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Special Purpose Algorithms

Dynamic programming
procedure based on divide and conquer

Based on principle of optimality the completion of an optimal sequence of
decisions must be optimal

I Break down the problem in stages at which the decisions take place
I Find a recurrence relation that takes us backward (forward) from one

stage to the previous (next)

In scheduling, this can be typically done only for objectives that are sequence
independent (eg, the makespan).
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Special Purpose Algorithms

Branch and Bound
divide and conquer + lower bounding technique

[Jens Clausen. (2003)]
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Constraint Satisfaction Problem

I Input:

I a set of variables X1, X2, . . . , Xn
I each variable has a non-empty domain Di of possible values
I a set of constraints. Each constraint Ci involves some subset of the

variables and specify the allowed combination of values for that subset.

[A constraint C on variables Xi and Xj, C(Xi, Xj), defines the subset of
the Cartesian product of variable domains Di ×Dj of the consistent
assignments of values to variables. A constraint C on variables Xi, Xj is
satisfied by a pair of values vi, vj if (vi, vj) ∈ C(Xi, Xj).]

I Task:

I find an assignment of values to all the variables {Xi = vi, Xj = vj, . . .}

I such that it is consistent, that is, it does not violate any constraint

If assignments are not all equally good, but some are preferable this is
reflected in an objective function.
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Search Problem

I initial state: the empty assignment {} in which all variables are
unassigned

I successor function: a value can be assigned to any unassigned variable,
provided that it does not conflict with previously assigned variables

I goal test: the current assignment is complete
I path cost: a constant cost

Two search paradigms:
I search tree of depth n
I complete state formulation: local search
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Types of Variables and Values

I Discrete variables with finite domain:
complete enumeration is O(dn)

I Discrete variables with infinite domains:
Impossible by complete enumeration.
Instead a constraint language (constraint logic programming and
constraint reasoning)
Eg, project planning.

Sj + pj ≤ Sk
NB: if only linear constraints, then integer linear programming

I variables with continuous domains
NB: if only linear constraints or convex functions then mathematical
programming
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Types of constraints

I Unary constraints

I Binary constraints (constraint graph)

I Higher order (constraint hypergraph)
Eg, Alldiff()
Every higher order constraint can be reconduced to binary
(you may need auxiliary constraints)

I Preference constraints
cost on individual variable assignments
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General Purpose Solution Algorithms

Search algorithms
tree with branching factor at the top level nd
at the next level (n− 1)d.
The tree has n! · dn even if only dn possible complete assignments.

I CSP is commutative in the order of application of any given set of
action. (the order of the assignment does not influence)

I Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each node
in the search tree.

Backtracking search
depth first search that chooses one variable at a time and backtracks when a
variable has no legal values left to assign.
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Backtrack Search
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Backtrack Search

I No need to copy solutions all the times but rather extensions and undo
extensions

I Since CSP is standard then the alg is also standard and can use general
purpose algorithms for initial state, successor function and goal test.

I Backtracking is uninformed and complete. Other search algorithms may
use information in form of heuristics
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General Purpose backtracking methods

1) Which variable should we assign next, and in what order should its
values be tried?

2) What are the implications of the current variable assignments for the
other unassigned variables?

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

79

Which variable should we assign next, and in what order should its values be
tried?

I Select-Initial-Unassigned-Variable
degree heuristic (reduces the branching factor) also used as tied breaker

I Select-Unassigned-Variable
Most constrained variable (DSATUR) = fail-first heuristic
= Minimum remaining values (MRV) heuristic (speeds up pruning)

I Order-Domain-Values
least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

NB: If we search for all the solutions or a solution does not exists, then the
ordering does not matter.
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What are the implications of the current variable assignments for the other
unassigned variables?

Propagating information through constraints
I Implicit in Select-Unassigned-Variable

I Forward checking (coupled with MRV)

I Constraint propagation
I arc consistency: force all (directed) arcs uv to be consistent: ∃ a value in
D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (MAC, Maintaining Arc Consistency)

Applied repeatedly

I k-consistency: if for any set of k− 1 variables, and for any consistent
assignment to those variables, a consistent value can always be assigned
to any k-th variable.

determining the appropriate level of consistency checking is mostly an
empirical science.
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Arc Consistency Algorithm: AC-3
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Arc Consistency Algorithm: AC-3
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Incomplete Search

General purpose algorithms:
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Limited Discrepancy Search

I A discrepancy is a branch against the value of an heuristic

I Ex: count one discrepancy if second best is chosen
count two discrepancies either if third best is chosen or twice the second
best is chosen

I Explore the tree in order of an increasing number of discrepancies
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Handling special constraints (higher order constraints)

Special purpose algorithms

I Alldiff
I for m variables and n values cannot be satisfied if m > n,
I consider first singleton variables
I propagation based on bipartite matching considerations

I Resource Constraint atmost
I check the sum of minimum values of single domains

delete maximum values if not consistent with minimum values of others.
I for large integer values not possible to represent the domain as a set of

integers but rather as bounds.
Then bounds propagation: Eg,
Flight271 ∈ [0, 165] and Flight272 ∈ [0, 385]

Flight271+ Flight272 ∈ [420, 420]

Flight271 ∈ [35, 165] and Flight272 ∈ [255, 385]
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When a path fails – that is, a state is reached in which a variable has no legal
values can the search avoid repeating this failure in subsequent paths?

Backtracking-Search
I chronological backtracking, the most recent decision point is revisited
I backjumping, backtracks to the most recent variable in the conflict set

(set of previously assigned variables connected to X by constraints).

every branch pruned by backjumping is also pruned by forward checking

idea remains: backtrack to reasons of failure.
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Incomplete Search

General purpose algorithms:
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An Empirical Comparison

Mendian number of consistency checks
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The structure of problems

I Decomposition in subproblems:
I connected components in the constraint graph
I O(dcn/c) vs O(dn)

I Constraint graphs that are tree are solvable in poly time by reverse
arc-consistency checks.

I Reduce constraint graph to tree:
I removing nodes (cutset conditioning: find the smallest cycle cutset. It is

NP-hard but good approximations exist)
I collapsing nodes (tree decomposition)

divide-and-conquer works well with small subproblems
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Optimization Problems

Objective function F(X1, X2, . . . , Xn)

I Solve a modified Constraint Satisfaction Problem by setting a (lower)
bound z∗ in the objective function

I Dichotomic search: U upper bound, L lower bound

M =
U+ L

2
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Constraint Logic Programming

Language is first-order logic.
I Syntax – Language

I Alphabet
I Well-formed Expressions

E.g., 4X + 3Y = 10; 2X - Y = 0
I Semantics – Meaning

I Interpretation
I Logical Consequence

I Calculi – Derivation
I Inference Rule
I Transition System
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Logic Programming

A logic program is a set of axioms, or rules, defining relationships
between objects.

A computation of a logic program is a deduction of consequences of
the program.

A program defines a set of consequences, which is its meaning.

The art of logic programming is constructing concise and elegant
programs that have desired meaning.

Sterling and Shapiro: The Art of Prolog, Page 1.
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Local Search for CSP

I Uses a complete-state formulation: a value assigned to each variable
(randomly)

I Changes the value of one variable at a time

I Min-conflicts heuristic is effective particularly when given a good initial
state.

I Run-time independent from problem size

I Possible use in online settings in personal assignment: repair the
schedule with a minimum number of changes
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Part IV

Constraint Programming, Heuristic Methods
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Metaheuristics for Local Search and Hybrids
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Introduction

Heuristic methods make use of two search paradigms:

I construction rules (extends partial solutions)

I local search (modifies complete solutions)

These components are problem specific and implement informed search.

They can be improved by use of metaheuristics which are general-purpose
guidance criteria for underlying problem specific components.

Final heuristic algorithms are often hybridization of several components.
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Construction Heuristics

(aka Dispatching Rules, in scheduling)
Closely related to search tree techniques
Correspond to a single path from root to leaf

I search space = partial candidate solutions
I search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
While s is not a complete solution:
|| choose a solution component c
b add the solution component to s
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Greedy best-first search
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Greedy best-first search
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I An important class of Construction Heuristics are greedy algorithms
Always make the choice which is the best at the moment.

I Sometime it can be proved that they are optimal
(Minimum Spanning Tree, Single Source Shortest Path,
1||
∑
wjCj, 1||Lmax)

I Other times it can be proved an approximation ratio

I Another class can be derived by the (variable, value) selection rules in
CP and removing backtracking (ex, MRV, least-constraining-values).
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Examples of Dispatching Rules in Scheduling
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Local Search

Example: Local Search for CSP
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Local Search

Components

I solution representation

I initial solution

I neighborhood structure

I acceptance criterion
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Solution Representation

The solution representation determines the search space S

I permutations
I linear (scheduling)
I circular (routing)

I assignment arrays (timetabling)

I sets or lists (timetabling)
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Initial Solution

I Random

I Construction heuristic
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Neighborhood Structure

I Neighborhood structure (relation): equivalent definitions:
I N : S× S→ {T, F}

I N ⊆ S× S
I N : S→ 2S

I Neighborhood (set) of a candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}

I A neighborhood structure is also defined by an operator.
An operator ∆ is a collection of operator functions δ : S→ S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′

Example

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs
from s ′ in at most k solution components
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Acceptance Criterion

The acceptance criterion defines how the neighborhood is searched and which
neighbor is selected.
Examples:

I uninformed random walk

I iterative improvement (hill climbing)

I best improvement
I first improvement
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Evaluation function

I function f(π) : S(π) 7→ R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;

I used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
I Evaluation function: part of LS algorithm.
I Objective function: integral part of optimization problem.
I Some LS methods use evaluation functions different from

given objective function (e.g., dynamic local search).
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Implementation Issues

At each iteration, the examination of the neighborhood must be fast!!

I Incremental updates (aka delta evaluations)
I Key idea: calculate effects of differences between

current search position s and neighbors s ′ on
evaluation function value.

I Evaluation function values often consist of independent contributions of
solution components; hence, f(s) can be efficiently calculated from f(s ′)
by differences between s and s ′ in terms of solution components.

I Special algorithms for solving efficiently the
neighborhood search problem
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Local Optima

Definition:

I Local minimum: search position without improving neighbors w.r.t.
given evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f(s) ≤ f(s ′) for all s ′ ∈ N(s).

I Strict local minimum: search position s ∈ S such that
f(s) < f(s ′) for all s ′ ∈ N(s).

I Local maxima and strict local maxima: defined analogously.
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Example: Iterative Improvement

First improvement for TSP

procedure TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)

∆ = 0;
Improvement=FALSE;
do

for i = 1 to n− 2 do
if i = 1 then n ′ = n− 1 else n ′ = n

for j = i+ 2 to n ′ do
∆ij = d(ci, cj) + d(ci+1, cj+1) − d(ci, ci+1) − d(cj, cj+1)

if ∆ij < 0 then
UpdateTour(s,i,j);
Improvement=TRUE;

end
end

until Improvement==TRUE;
return: a local optimum s ∈ S(π)

end TSP-2opt-first
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Permutations

Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
I πi is the element at position i
I posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π ′ is the composition (π · π ′)i = π ′(π(i))

For each π there exists a permutation such that π−1 · π = ι

∆N ⊂ Π
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Neighborhood Operators for Linear Permutations

Swap operator
∆S = {δiS|1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δ

ij
X |1 ≤ i < j ≤ n}

δ
ij
X(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

Insert operator
∆I = {δ

ij
I |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δ
ij
I (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j

(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j
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Neighborhood Operators for Circular Permutations

Reversal (2-edge-exchange)

∆R = {δ
ij
R |1 ≤ i < j ≤ n}

δ
ij
R (π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δ
ijk
B |1 ≤ i < j < k ≤ n}

δ
ij
B (π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δ
ij
SB|1 ≤ i < j ≤ n}

δ
ij
SB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)
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Neighborhood Operators for Assignments

An assignment can be represented as a mapping
σ : {X1 . . . Xn}→ {v : v ∈ D, |D| = k}:

σ = {Xi = vi, Xj = vj, . . .}

One exchange operator

∆1E = {δil1E|1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ : σ ′(Xi) = vl and σ ′(Xj) = σ(Xj) ∀j 6= i

}
Two exchange operator

∆2E = {δ
ij
2E|1 ≤ i < j ≤ n}

δ
ij
2E

{
σ : σ ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ ′(Xl) = σ(Xl) ∀l 6= i, j
}
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Neighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s : {X}→ {C,C}

(it can also be represented by a bit string)

One addition operator
∆1E = {δv1E|v ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C

′
= C \ v}

One deletion operator
∆1E = {δv1E|v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E|v ∈ C,u ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}
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Construction Heuristics (Extensions)
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Rollout/Pilot Method

Derived from A∗

I Each candidate solution is a collection of m components
s = (s1, s2, . . . , sm).

I Master process add components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

I At the k-th iteration the master process evaluates seemly feasible
components to add based on a look-ahead strategy based on heuristic
algorithms.

I The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

I Sub-heuristics are combined in H(Sk+1) by
I weighted sum
I maximal value

123 124
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Speed-ups:

I halt whenever cost of current partial solution exceeds current upper
bound

I evaluate only a fraction of possible components
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It is optimal if H(Sk) is an

I admissible heuristic: never overestimates the cost to reach the goal
I consistent: h(n) ≤ c(n, a, n ′) + h(n ′); c(n, a, n ′) cost to go from node
n to n ′ with action a

Possible choices for admissible heuristic functions

I optimal solution to an easily solvable relaxed problem
I optimal solution to an easily solvable subproblem
I learning from experience by gathering statistics on state features
I preferred heuristics functions with higher values

(provided they do not overestimate)
I if several heuristics available h1, h2, . . . , hm and not clear which is the

best then:

h(x) = max{h1(x), . . . , hm(x)}
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Beam Search

Possible extension of tree based construction heuristics:
I maintains a set B of bw (beam width) partial candidate solutions

I at each iteration extend each solution from B in fw (filter width)
possible ways

I rank each bw× fw candidate solutions and take the best bw partial
solutions

I complete candidate solutions obtained by B are maintained in Bf

I stop when no partial solution in B is to be extended
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Iterated Greedy

Key idea: use greedy construction

I alternation of Construction and Deconstruction phases
I an acceptance criterion decides whether the search continues from the

new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

131

Greedy Randomized Adaptive Search Procedure (GRASP)

Key Idea: Combine randomized constructive search with subsequent local
search.

Greedy Randomized Adaptive Search Procedure (GRASP):
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary greedy randomized constructive search
||b perform subsidiary local search on s
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Restricted candidate lists (RCLs)

I Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

I RCLs are constructed in each step using a heuristic function h.

I RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

I RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

134

Simulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
While termination condition is not satisfied:
|| While maintain same temperature T according to annealing schedule:
|| || probabilistically choose a neighbor s ′ of s
|| || using proposal mechanism
|| || If s ′ satisfies probabilistic acceptance criterion (depending on T):
|| b s := s ′
b update T according to annealing schedule
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Note:

I 2-stage neighbor selection procedure
I proposal mechanism (often uniform random choice from N(s))
I acceptance criterion (often Metropolis condition)

p(T, s, s ′) :=

{
1 if g(s ′) ≤ f(s)
exp f(s)−f(s ′)

T
otherwise

I Annealing schedule
(function mapping run-time t onto temperature T(t)):

I initial temperature T0
(may depend on properties of given problem instance)

I temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)

I number of search steps to be performed at each temperature
(often multiple of neighborhood size)

I Termination predicate: often based on acceptance ratio,
i.e., ratio of proposed vs accepted steps or number of idle iterations
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Example: Simulated Annealing for the TSP

Extension of previous PII algorithm for the TSP, with

I proposal mechanism: uniform random choice from
2-exchange neighborhood;

I acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [(f(s) − f(s ′))/T ]);

I annealing schedule: geometric cooling T := 0.95 · T with n · (n− 1)
steps at each temperature (n = number of vertices in given graph), T0
chosen such that 97% of proposed steps are accepted;

I termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

I neighborhood pruning (e.g., candidate lists for TSP)
I greedy initialization (e.g., by using NNH for the TSP)
I low temperature starts (to prevent good initial candidate solutions from

being too easily destroyed by worsening steps)
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Tabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

I Associate tabu attributes with candidate solutions or
solution components.

I Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best improving candidate solution s ′ in N ′
|||| update tabu attributes based on s ′
b s := s ′
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Note:
I Non-tabu search positions in N(s) are called

admissible neighbors of s.
I After a search step, the current search position

or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

I Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

I Crucial for efficient implementation:
I keep time complexity of search steps minimal

by using special data structures, incremental updating
and caching mechanism for evaluation function values;

I efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx; x is tabu if
it− itx < tt, where it = current search step number.
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Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

I tt too low ⇒ search stagnates due to inability to escape
from local minima;

I tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)
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Iterated Local Search

Key Idea: Use two types of LS steps:
I subsidiary local search steps for reaching

local optima as efficiently as possible (intensification)
I perturbation steps for effectively

escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:
|| r := s
|| perform perturbation on s
|| perform subsidiary local search on s
|||| based on acceptance criterion,
b keep s or revert to s := r
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Memetic Algorithm

Population based method inspired by evolution

determine initial population sp
perform subsidiary local search on sp
While termination criterion is not satisfied:
|| generate set spr of new candidate solutions
|| by recombination
|||| perform subsidiary local search on spr
|||| generate set spm of new candidate solutions
|| from spr and sp by mutation
|||| perform subsidiary local search on spm
|||| select new population sp from
b candidate solutions in sp, spr , and spm
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Selection

Main idea: selection should be related to fitness

I Fitness proportionate selection (Roulette-wheel method)

pi =
fi∑
j fj

I Tournament selection: a set of chromosomes is chosen and compared
and the best chromosome chosen.

I Rank based and selection pressure
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Recombination (Crossover)
I Binary or assignment representations

I one-point, two-point, m-point (preference to positional bias
w.r.t. distributional bias

I uniform cross over (through a mask controlled by
a Bernoulli parameter p)

I Non-linear representations
I (Permutations) Partially mapped crossover
I (Permutations) mask based

I More commonly ad hoc crossovers are used as this appears to be a
crucial feature of success

I Two off-springs are generally generated
I Crossover rate controls the application of the crossover. May be

adaptive: high at the start and low when convergence
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Example: crossovers for binary representations
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Mutation

I Goal: Introduce relatively small perturbations in candidate solutions in
current population + offspring obtained from recombination.

I Typically, perturbations are applied stochastically and independently to
each candidate solution; amount of perturbation is controlled by
mutation rate.

I Mutation rate controls the application of bit-wise mutations. May be
adaptive: low at the start and high when convergence

I Possible implementation through Poisson variable which determines the
m genes which are likely to change allele.

I Can also use subsidiary selection function to determine subset of
candidate solutions to which mutation is applied.

I The role of mutation (as compared to recombination) in
high-performance evolutionary algorithms has been often underestimated

146

New Population

I Determines population for next cycle (generation) of the algorithm by
selecting individual candidate solutions from current population + new
candidate solutions obtained from recombination, mutation (+
subsidiary local search). (λ, µ) (λ+ µ)

I Goal: Obtain population of high-quality solutions while maintaining
population diversity.

I Selection is based on evaluation function (fitness) of candidate solutions
such that better candidate solutions have a higher chance of ‘surviving’
the selection process.

I It is often beneficial to use elitist selection strategies, which ensure that
the best candidate solutions are always selected.

I Most commonly used: steady state in which only one new chromosome
is generated at each iteration

I Diversity is checked and duplicates avoided
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Ant Colony Optimization

The Metaheuristic
I The optimization problem is transformed into the problem of finding the

best path on a weighted graph G(V, E) called construction graph

I The artificial ants incrementally build solutions by moving on the graph.

I The solution construction process is
I stochastic
I biased by a pheromone model, that is, a set of parameters associated

with graph components (either nodes or edges) whose values are
modified at runtime by the ants.

I All pheromone trails are initialized to the same value, τ0.

I At each iteration, pheromone trails are updated by decreasing
(evaporation) or increasing (reinforcement) some trail levels
on the basis of the solutions produced by the ants
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Ant Colony Optimization

Example: A simple ACO algorithm for the TSP

I Construction graph

I To each edge ij in G associate
I pheromone trails τij
I heuristic values ηij := 1

cij

I Initialize pheromones

I Constructive search:

pij =
[τij]

α · [ηij]β∑
l∈Nki

[τil]α · [ηil]β , α and β are parameters.

I Update pheromone trail levels

τij ← (1− ρ) · τij + ρ · Reward
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Example: A simple ACO algorithm for the TSP (1)

I Search space and solution set as usual (all Hamiltonian cycles in given
graph G).

I Associate pheromone trails τij with each edge (i, j) in G.

I Use heuristic values ηij := 1
cij

I Initialize all weights to a small value τ0 (τ0 = 1).

I Constructive search: Each ant starts with randomly chosen
vertex and iteratively extends partial round trip πk by selecting
vertex not contained in πk with probability

pij =
[τij]

α · [ηij]β∑
l∈Nki

[τil]α · [ηil]β

α and β are parameters.
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Example: A simple ACO algorithm for the TSP (2)

I Subsidiary local search: Perform iterative improvement
based on standard 2-exchange neighborhood on each
candidate solution in population (until local minimum is reached).

I Update pheromone trail levels according to

τij := (1− ρ) · τij +
∑
s∈sp ′

∆ij(s)

where ∆ij(s) := 1/Cs

if edge (i, j) is contained in the cycle represented by s ′, and 0 otherwise.

Motivation: Edges belonging to highest-quality candidate solutions
and/or that have been used by many ants should be preferably used in
subsequent constructions.

I Termination: After fixed number of cycles
(= construction + local search phases).

Part V

Mathematical Programming, Exercises
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How to solve mathematical programs

I Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

I Use a modeling language to convert the theoretical model to a computer
usable representation and employ an out-of-the-box general solver to
find solutions.

I Use a framework that already has many general algorithms available and
only implement problem specific parts, e. g., separators or upper
bounding.

I Develop everything yourself, maybe making use of libraries that provide
high-performance implementations of specific algorithms.

Thorsten Koch
“Rapid Mathematical Programming”

Technische Universität, Berlin, Dissertation, 2004
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How to solve mathematical programs

I Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

Advantages: easy if familiar with the workbench

Disadvantages: restricted, not state-of-the-art
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How to solve mathematical programs

I Use a modeling language to convert the theoretical model to a computer
usable representation and employ an out-of-the-box general solver to
find solutions.

Advantages: flexible on modeling side, easy to use, immediate results, easy
to test different models, possible to switch between different state-of-the-art
solvers

Disadvantages: algoritmical restrictions in the solution process, no upper
bounding possible
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How to solve mathematical programs

I Use a framework that already has many general algorithms available and
only implement problem specific parts, e.g., separators or upper
bounding.

Advantages: allow to implement sophisticated solvers, high performance
bricks are available, flexible

Disadvantages: view imposed by designers, vendor specific hence no trans-
ferability,
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How to solve mathematical programs

I Develop everything yourself, maybe making use of libraries that provide
high-performance implementations of specific algorithms.

Advantages: specific implementations and max flexibility

Disadvantages: for extremely large problems, bounding procedures are more
crucial than branching
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Modeling Languages

Thorsten Koch
“Rapid Mathematical Programming”

Technische Universität, Berlin, Dissertation, 2004
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LP-Solvers

CPLEX http://www.ilog.com/products/cplex
XPRESS-MP http://www.dashoptimization.com
SOPLEX http://www.zib.de/Optimization/Software/Soplex
COIN CLP http://www.coin-or.org
GLPK http://www.gnu.org/software/glpk
LP_SOLVE http://lpsolve.sourceforge.net/

“Software Survey: Linear Programming” by Robert Fourer
http://www.lionhrtpub.com/orms/orms-6-05/frsurvey.html
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ZIBOpt

I Zimpl is a little algebraic Modeling language to translate the
mathematical model of a problem into a linear or (mixed-) integer
mathematical program expressed in .lp or .mps file format which can be
read and (hopefully) solved by a LP or MIP solver.

I Scip is an IP-Solver. It solves Integer Programs and Constraint
Programs: the problem is successively divided into smaller subproblems
(branching) that are solved recursively. Integer Programming uses LP
relaxations and cutting planes to provide strong dual bounds, while
Constraint Programming can handle arbitrary (non-linear) constraints
and uses propagation to tighten domains of variables.

I SoPlex is an LP-Solver. It implements the revised simplex algorithm. It
features primal and dual solving routines for linear programs and is
implemented as a C++ class library that can be used with other
programs (like SCIP). It can solve standalone linear programs given in
MPS or LP-Format.
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Modeling Cycle

H. Schichl. “Models and the history of modeling”.
In Kallrath, ed., Modeling Languages in Mathematical Optimization, Kluwer, 2004.
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Some commands

$ zimpl -t lp sudoku.zpl
$ scip -f sudoku.lp

scip> help
scip> read sudoku.lp
scip> display display
scip> display problem
scip> set display width 120
scip> display statistics
scip> display parameters
scip> set default
scip> set load settings/*/*.set
scip> set load /home/marco/ZIBopt/ziboptsuite-1.00/scip-1.00/settings/

emphasis/cpsolver.set
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Callable libraries
How to construct a problem instance in SCIP

SCIPcreate(), // create a SCIP object
SCIPcreateProb() // build the problem
SCIPcreateVar() // create variables
SCIPaddVar() // add them to the problem
// Constraints: For example, if you want to
// fill in the rows of a general MIP, you have to call
SCIPcreateConsLinear(),
SCIPaddConsLinear()
SCIPreleaseCons() // after finishing.
SCIPsolve()
SCIPreleaseVar() releas variable poiinters

SCIP_CALL() // exception handling

SCIPsetIntParam(scip, "display/memused/status", 0) == set display \
memused status 0
SCIPprintStatistics() == display statistics
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Sudoku into Exact Hitting Set

Exact Covering: Set partitioning with ~c = ~1

I A = 1, 4, 7;
I B = 1, 4;
I C = 4, 5, 7;
I D = 3, 5, 6;
I E = 2, 3, 6, 7;

and
I F = 2, 7.

min
n∑
j=1

yj

n∑
j=1

aijyj = 1 ∀i
yj ∈ {0, 1}

A B C D E F

1
2
3
4
5
6
7

266666664

1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 1 0
1 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 1 0 1 1

377777775

The dual of Exact Covering is the Exact Hitting Set
I A = 1, 2
I B = 5, 6
I C = 4, 5
I D = 1, 2, 3
I E = 3, 4
I F = 4, 5
I G = 1, 3, 5, 6

max
n∑
j=1

xj

n∑
j=1

aijxj = 1 ∀i
xj ∈ {0, 1}

A B C D E F G

1
2
3
4
5
6

2666664
1 0 0 1 0 0 1
1 0 0 1 0 0 0
0 0 0 1 1 0 1
0 0 1 0 1 1 0
0 1 1 0 0 1 1
0 1 0 0 0 0 1

3777775
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Part VI

Constraint Programming in Practice
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Constraint Programming Systems

CP systems must provide reusable services for:

I Variable domains
finite domain integer, finite sets, multisets, intervals, ...

I Constraints
distinct, arithmetic, scheduling, graphs, ...

I Solving
propagation, branching, exploration, ...

I Modelling
variables, values, constraints, heuristics, symmetries, ...
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CP modelling

Greater expressive power than mathematical programming

I constraints involving disjunction can be represented directly

I constraints can be encapsulated (as predicates) and used in the
definition of further constrains

However, CP models can often be translated into MIP model by

I eliminating disjunctions in favor of auxiliary Boolean variables

I unfolding predicates into their definitions

172

CP System Interfaces

Two possible interfaces:

I host language

I libraries
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Modelling Language

I Fundamental difference to LP
I language has structure (global constraints)
I different solvers support different constraints

I In its infancy

I Key questions:
I what level of abstraction?

I solving approach independent: LP, CP, ...?
I how to map to different systems?

I Modelling is very difficult for CP
I requires lots of knowledge and tinkering
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Modelling Languages

I Prolog
I B-Prolog (Prolog based, proprietary)
I CHIP V5 (Prolog based, also includes C++ and C libraries, proprietary)
I Ciao Prolog (Prolog based, Free software: GPL/LGPL)
I ECLiPSe (Prolog based, open source)
I SICStus (Prolog based, proprietary)
I GNU Prolog

I OPL

I Zinc, MiniZinc, FlatZinc
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CP Systems

I Library-based
I CHOCO (free) http://choco.sourceforge.net/

I Kaolog (commercial) http://www.koalog.com/php/index.php

I Gecode (free) www.gecode.org
Programming interfaces Java and MiniZinc, library C++
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CP Systems

I Language-based
I SICStus Prolog (commericial) www.sics.se/sicstus

Prolog language, library

I ECLiPSe (free) www.eclipse-clp.org
Prolog language, library

I Mozart (free) http://www.mozart-oz.org
Oz language

I ILOG CP Optimizer http://www.ilog.com/products/
OPL Language, libraries C/C++/

I CHIP (commercial) http://www.cosytec.com
Prolog language, library C/C++

I G12 Project http://www.g12.cs.mu.oz.au/
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Solving CP

I Compute with possible values
rather than enumerating assignments

I Prune inconsistent values
constraint propagation

I Search
branch: define search tree
explore: explore search tree for solution
branching heuristics
best solution search (in optimization)
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Propagators

CP Systems do not compute constraints extensionally (as a collection of
assignments):

I impractical (space)
I would make difficult to take advantage of structure

A Constraint c is implemented by a set of propagators (also known as
filtering algorithms and narrowing operators).

A propagator p is a function that maps domains to domains. They are
decreasing and monotonic.

A set of propagators implements a constraint c if all p ∈ P are correct for c
and P is checking for c. Notation: P = prop(c)

180

Execution of Propagators

I Execution of propagator p
I narrows domains of variables in var(p)
I signals failure

I Execution computes largest simultaneous fixpoint
I fixpoint: propagators cannot narrow any further
I largest: no solutions lost

I Propagator is either
fix: has reached fixpoint
runnable: not known to have reached fixpoint

I Propagation execution maintains propagator sets
I Propagators know their variables

I to perform domain modifications
I passed as parameters to propagator creation

I Variables know dependent propagators
I to perform efficient computation of dependent propagators
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Global Constraints

I Classic example: x, y, z ∈ {1, 2}, x 6= y, x 6= z, y 6= z

I No solution!

I But: each individual constraint still satisfiable!
no propagation possible!

I Solution: look at several constraints at once
distinct(x,y,z)

I Specialization
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Kinds of symmetries

I Variable symmetry:
permuting variables keeps solutions invariant
{xi → vi} ∈ sol(P)⇔ {xπ(i) → vi} ∈ sol(P)

I Value symmetry: permuting values keeps solutions invariant
{xi → vi} ∈ sol(P)⇔ {xi → π(vi)} ∈ sol(P)

I Variable/value symmetry:
permute both variables and values
{xi → vi} ∈ sol(P)⇔ {xπ(i) → π(vi)} ∈ sol(P)
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Symmetry

I inherent in the problem (sudoku, queens)
I artefact of the model (order of groups)

How can we avoid it?

I ... by model reformulation (eg, use set variables,
I ... by adding constraints to the model

(ruling out symmetric solutions)
I ... during search
I ... by dominance detection
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Reified constraints

I Constraints are in a big conjunction

I How about disjunctive constraints?

A+ B = C ∨ C = 0

I Solution: reify the constraints:

(A+ B = C ⇔ b0) ∧

(C = 0 ⇔ b1) ∧

(b0 ∨ b1 ⇔ true)
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Scheduling Models

I Variable for start-time of task a start(a)

I Precedence constraint:
start(a) + dur(a) ≤ start(b) (a before b)

I Disjunctive constraint:
start(a) + dur(a) ≤ start(b) (a before b)
or
start(b) + dur(b) ≤ start(a) (b before a)
Solved by reification

I Cumulative Constraints (renewable resources)
For tasks a and b on resource R
use(a) + use(b) ≤ cap(R)

or start(a) + dur(a) ≤ start(b)
or start(b) + dur(b) ≤ start(a)
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Propagators for Scheduling

Serialization: ordering of tasks on one machine
I Consider all tasks on one resource

I Deduce their order as much as possible

I Propagators:
I Timetabling: look at free/used time slots

I Edge-finding: which task first/last?

I Not-first / not-last
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Job Shop Problem

I Hard problem!

I 6x6 instance solvable using Gecode
I disjunction by reification

I normal branching

I Classic 10x10 instance not solvable using Gecode!
I specialized propagators (edge-finding) and branchings needed
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Exercise

Write a MiniZinc model for the instance of Resource Constraint Project
Scheduling Problem and solve the instance made available.

An installation of minizinc-0.7 might be sufficient (uses G12 to solve the
problem)

> mzn2fzn --data rcpsp.data rcpsp.mzn
> flatzinc jobshop.fzn

Otherwise, it is possible to use the interface gecode-flatzinc-1.1 for
gecode-2.0.1

> mzn2fzn --data rcpsp.data rcpsp.mzn
> fz jobshop.fzn
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Software Tools

I Modeling languages
interpreted languages with a precise syntax and semantics

I Software libraries
collections of subprograms used to develop software

I Software frameworks
set of abstract classes and their interactions

I frozen spots (remain unchanged in any instantiation of the framework)

I hot spots (parts where programmers add their own code)
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No well established software tool for Local Search:

I the apparent simplicity of Local Search induces to build applications
from scratch.

I crucial roles played by delta/incremental updates which is problem
dependent

I the development of Local Search is in part a craft,
beside engineering and science.

I lack of a unified view of Local Search.
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Software tools for Local Search and Metaheuristics

Tool Reference Language Type
ILOG [?] C++, Java, .NET LS
GAlib [?] C++ GA
GAUL [?] C GA
Localizer++ [?] C++ Modeling
HotFrame [?] C++ LS
EasyLocal++ [?] C++, Java LS
HSF [?] Java LS, GA
ParadisEO [?] C++ EA, LS
OpenTS [?] Java TS
MDF [?] C++ LS
TMF [?] C++ LS
SALSA [?] — Language
Comet [?] — Language

table prepared by L. Di Gaspero
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Separation of Concepts in Local Search Algorithms

implemented in EasyLocal++
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Input (util.h, util.c)

typedef struct {
long int number_jobs; /∗ number of jobs in instance ∗/
long int release_date[MAX_JOBS]; /∗there is no release date for these instances∗/
long int proc_time[MAX_JOBS];
long int weight[MAX_JOBS];
long int due_date[MAX_JOBS];

} instance_type;

instance_type instance;

void read_problem_size (char name[100])
void read_instances (char input_file_name[100])
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State/Solution (util.h)

typedef struct {
long int job_at_pos[MAX_JOBS]; /∗ Gives the job at a certain pos ∗/
long int pos_of_job[MAX_JOBS]; /∗ Gives the position of a specific job ∗/
long int completion_time_job[MAX_JOBS]; /∗ Gives C_j of job j ∗/
long int start_time_job[MAX_JOBS]; /∗ Gives start time of job j ∗/
long int tardiness_job[MAX_JOBS]; /∗ Gives T_j of job j ∗/
long int value; /∗ Objective function value ∗/

} sol_representation;

sol_representation sequence;

Output (util.c)

void print_sequence (long int k)
void print_completion_times ()

State Manager (util.c)

void construct_sequence_random ()
void construct_sequence_canonical ()
long int evaluate ()
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Random Generator (random.h, random.c)

void set_seed (double arg)
double MRG32k3a (void)
double ranU01 (void)
int ranUint (int i, int j)
void shuffle (int *X, int size)

Timer (timer.c)

double getCurrentTime ()
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Your Task on 1||
∑
jwjTj1||

∑
jwjTj1||

∑
jwjTj

1. Implement two basic local search procedures that return a local
optimum:

void ls_swap_first( ) {};
void ls_interchange_first( ) {};

2. Implement the other neighborhood for permutation representation
mentioned at the lecture from one of the two previous neighborhoods.

3. Provide computational analysis of the LS implemented. Consider:
I size of the neighborhood
I diameter of neighborhood
I complete neighborhood examination
I local optima attainment

4. Devise speed ups to reduce the computational complexity of the LS
implemented

5. Improve your heuristic in order to find solutions of better quality. (Hint:
use a construction heuristic and/or a metaheuristic)

Part VIII

Single Machine Models
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Dispatching rules

Distinguish static and dynamic rules.

I Service in random order (SIRO)

I Earliest release date first (ERD=FIFO)
I tends to min variations in waiting time

I Earliest due date (EDD)

I Minimal slack first (MS)
I j∗ = arg minj{max(dj − pj − t, 0)}.
I tends to min due date objectives (T,L)
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I (Weighted) shortest processing time first (WSPT)
I j∗ = arg maxj{wj/pj}.
I tends to min

∑
wjCj and max work in progress and

I Loongest processing time first (LPT)
I balance work load over parallel machines

I Shortest setup time first (SST)
I tends to min Cmax and max throughput

I Least flexible job first (LFJ)
I eligibility constraints

211



I Critical path (CP)
I first job in the CP
I tends to min Cmax

I Largest number of successors (LNS)

I Shortest queue at the next operation (SQNO)
I tends to min idleness of machines

212 213

When dispatching rules are optimal?

214

Composite dispatching rules

Why composite rules?
I Example: 1 | |

∑
wjTj:

I WSPT, optimal if due dates are zero
I EDD, optimal if due dates are loose
I MS, tends to minimize T

ä The efficacy of the rules depends on instance factors
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Instance characterization
I Job attributes: {weight, processing time, due date, release date}

I Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible }

Possible instance factors:

θ1 = 1−
d̄

cmax
(due date tightness)

θ2 =
dmax − dmin

cmax
(due date range)

θ3 =
s̄

p̄
(set up time severity)

(estimated Ĉmax =
∑n
j=1 pj + ns̄)
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I Dynamic apparent tardiness cost (ATC)

Ij(t) =
wj

pj
exp

(
−
max(dj − pj − t, 0)

Kp̄

)
I Dynamic apparent tardiness cost with setups (ATCS)

Ij(t, l) =
wj

pj
exp

(
−
max(dj − pj − t, 0)

K1p̄

)
exp

(
−sjk

K2s̄

)
after job l has finished.
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Summary

I Scheduling classification

I Solution methods

I Practice with general solution methods
I Mathematical Programming
I Constraint Programming
I Heuristic methods
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Remainder on Scheduling

Objectives:
Look closer into scheduling models and learn:

I special algorithms

I application of general methods

Cases:
I Single Machine

I Parallel Machine

I Permutation Flow Shop

I Job Shop

I Resource Constrained Project Scheduling
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Summary

Single Machine Models:

I Cmax is sequence independent

I if rj = 0 and hj is monotone in Cj then optimal schedule is nondelay
and has no preemption.
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1 | |
∑
wjCj1 | |

∑
wjCj1 | |

∑
wjCj

[Total weighted completion time]

I Theorem: The weighted shortest processing time first (WSPT) rule is
optimal.

Extensions to 1 | prec |
∑
wjCj

I in the general case strongly NP-hard

I chain precedences:
process first chain with highest ρ-factor up to, and included, job with
highest ρ-factor.

I poly also for tree and sp-graph precedences
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Extensions to 1 | rj, prmp |
∑
wjCj

I in the general case strongly NP-hard

I preemptive version of the WSPT if equal weights

I however, 1 | rj |
∑
wjCj is strongly NP-hard
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1 | prec| Lmax1 | prec| Lmax1 | prec| Lmax

[maximum lateness]

I generalization: hmax = max{h(C1), h(C2), . . . , h(Cn)}

I Solved by backward dynamic programming in O(n2):

J set of jobs already scheduled;
Jc set of jobs still to schedule;
J ′ ⊆ Jc set of schedulable jobs

Step 1: Set J = ∅, Jc = {1, . . . , n} and J ′ the set of all jobs with no
successor

Step 2: Select j∗ such that j∗ = argminj∈J ′ {hj
(∑

k∈Jc pk
)
};

add j∗ to J; remove j∗ from Jc; update J ′.
Step 3: If Jc is empty then stop, otherwise go to Step 2.

I For 1 | | Lmax Earliest Due Date first
I 1|rj|Lmax is instead strongly NP-hard
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1 | |
∑
hj(Cj)1 | |

∑
hj(Cj)1 | |

∑
hj(Cj)

I generalization of
∑
wjTj hence strongly NP-hard

I efficient (forward) dynamic programming algorithm O(2n)

J set of job already scheduled;

V(J) =
∑
j∈J hj(Cj)

Step 1: Set J = ∅, V(j) = hj(pj), j = 1, . . . , n

Step 2: V(J) = minj∈J
(
V(J− {j}) + hj

(∑
k∈J pk

))
Step 3: If J = {1, 2, . . . , n} then V({1, 2, . . . , n}) is optimum,

otherwise go to Step 2.
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1 | sjk | Cmax1 | sjk | Cmax1 | sjk | Cmax

[Makespan with sequence-dependent setup times]

I general case is NP-hard (traveling salesman reduction).

I special case:

parameters aj, bj for job j with

sjk ∝ |ak − bj|

[Gilmore and Gomory, 1964] give a O(n2) algorithm
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I assume b0 ≤ b1 ≤ . . . ≤ bn (k > j and bk ≥ bj)

I one-to-one correspondence with solution of
TSP with n+ 1 cities
city 0 has a0, b0
start at b0 finish at a0

I tour representation φ : {0, 1, . . . , n} 7→ {0, 1, . . . , n}

(permutation map, single linked array)

I Hence,

min c(φ) =

n∑
i=1

ci,φ(i) (1)

φ(S) 6= S ∀S ⊂ V (2)

I find φ∗ by ignoring (2)
make φ∗ a tour through swaps
(swap chosen solving a min spanning tree and applied in a certain order)
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I Interchange δjk

δjk(φ) = {φ ′ | φ ′(j) = φ(k), φ(k) = φ(j), φ ′(l) = φ(l), ∀l 6= j, k}

I Cost

cφ(δjk) = c(δjk(φ)) − c(φ)

= ‖ [bj, bk] ∩ [aφ(j), aφ(k)] ‖

I Theorem: Let φ∗ be a permutation that ranks the a that is k > j
implies aφ(k) ≥ aφ(j) then

c(φ∗) = min
φ
c(φ)

.

I Lemma: If φ is a permutation consisting of cycles C1, . . . , Cp and δjk

is an interchange with j ∈ Cr and k ∈ Cs, r 6= s, then δjk(φ) contains
the same cycles except that Cr and Cs have been replaced by a single
cycle containing all their nodes.
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I Theorem: Let δj1k1 , δj2k2 , . . . , δjpkp be the interchanges
corresponding to the arcs of a spanning tree of Gφ∗ . The arcs may be
taken in any order. Then φ ′,

φ ′ = δj1k1 ◦ δj2k2 ◦ . . . ◦ δjpkp(φ∗)

is a tour.

I The p− 1 interchanges can be found by greedy algorithm
(similarity to Kruskal for min spanning tree)

I Lemma: There is a minimum spanning tree in Gφ∗ that contains only
arcs δj,j+1.

I Generally, c(φ ′) 6= c(δj1k1) + c(δj2k2) + . . .+ c(δjpkp).
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I

node j in φ is of

{
Type I, if bj ≤ aφ(j)

Type II, otherwise

interchange jk is of

{
Type I, if lower node of type I
Type II, if lower node of type II

I Order:
interchanges in Type I in decreasing order
interchanges in Type II in increasing order

I Apply to φ∗ interchanges of Type I and Type II in that order.

I Theorem: The tour found is a minimal cost tour.
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Resuming the final algorithm [Gilmore and Gomory, 1964]:

Step 1: Arrange bj in order of size and renumber jobs so that
bj ≤ bj+1, j = 1, . . . , n.

Step 2: Arrange aj in order of size.

Step 3: Define φ by φ(j) = k where k is the j+ 1-smallest of the aj.

Step 4: Compute the interchange costs cδj,j+1 , j = 0, . . . , n− 1

cδj,j+1 = ‖ [bj, bj+1] ∩ [aφ(j), aφ(i)] ‖

Step 5: While G has not one single component, Add to Gφ the arc of
minimum cost c(δj,j+1) such that j and j+ 1 are in two
different components.

Step 6: Divide the arcs selected in Step 5 in Type I and II.
Sort Type I in decreasing and Type II increasing order of index.
Apply the relative interchanges in the order.
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Summary

Single Machine Models:

1 | |
∑
wjCj : weighted shortest processing time first is optimal

1 | prec| Lmax : dynamic programming in O(n2)

1 | |
∑
hj(Cj) : dynamic programming in O(2n)

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)
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Part IX

Single and Parallel Machine Models
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1 | |
∑
wjCj : weighted shortest processing time first is optimal

1 | prec| Lmax : backward dynamic programming in O(n2) [Lawler, 1973]

1 | rj, (prec) | Lmax branch and bound

1 | |
∑
jUj Moore’s algorithm

1 | |
∑
wjTj branch and Bound, Dynasearch

1 | |
∑
hj(Cj) : dynamic programming in O(2n)

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

Pm | prmp| Cmax Linear Programming, dispatching rules
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1 | |
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1 | sjk | Cmax1 | sjk | Cmax1 | sjk | Cmax

[Makespan with sequence-dependent setup]
Resuming the final algorithm [Gilmore and Gomory, 1964]:

Step 1: Arrange bj in order of size and renumber jobs so that
bj ≤ bj+1, j = 1, . . . , n.

Step 2: Arrange aj in order of size.

Step 3: Define φ by φ(j) = k where k is the j+ 1-smallest of the aj.

Step 4: Compute the interchange costs cδj,j+1 , j = 0, . . . , n− 1

cδj,j+1 = ‖ [bj, bj+1] ∩ [aφ(j), aφ(i)] ‖

Step 5: While G has not one single component, Add to Gφ the arc of
minimum cost c(δj,j+1) such that j and j+ 1 are in two
different components.

Step 6: Divide the arcs selected in Step 5 in Type I and II.
Sort Type I in decreasing and Type II increasing order of index.
Apply the relative interchanges in the order.
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1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax

[Maximum lateness with release dates]

I Strongly NP-hard (reduction from 3-partition)

I might have optimal schedule which is not non-delay

I Branch and bound algorithm (valid also for 1 | rj, prec | Lmax)
I Branching:

schedule from the beginning (level k, n!/(k− 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J

{max (t, rl) + pl} J jobs to schedule, t current time

I Lower bounding: relaxation to preemptive case for which EDD is optimal
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Branch and Bound
S root of the branching tree

1 LIST := {S};
2 U:=value of some heuristic solution;
3 current_best := heuristic solution;
4 while LIST 6= ∅
5 Choose a branching node k from LIST;
6 Remove k from LIST;
7 Generate children child(i), i = 1, . . . , nk, and calculate corresponding

lower bounds LBi;
8 for i:=1 to nk
9 if LBi < U then
10 if child(i) consists of a single solution then
11 U:=LBi;
12 current_best:=solution corresponding to child(i)
13 else add child(i) to LIST
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1 | |
∑
jUj1 | |

∑
jUj1 | |

∑
jUj

[Number of tardy jobs]

I [Moore, 1968] algorithm in O(n logn)

I Add jobs in increasing order of due dates
I If inclusion of job j∗ results in this job being completed late

discard the scheduled job k∗ with the longest processing time

I 1 | |
∑
jwjUj is a knapsack problem hence NP-hard
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1 | |
∑
wjTj1 | |

∑
wjTj1 | |

∑
wjTj

[single-machine total weighted tardiness]

I 1 | |
∑
Tj is hard in ordinary sense, hence admits a pseudo polynomial

algorithm (dynamic programming)

I 1 | |
∑
wjTj strongly NP-hard

I branch and bound
I time indexed integer program
I dynaserach
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Branch and bound
I Branching:

I work backward in time
I elimination criterion:

if pj ≤ pk and dj ≤ dk and wj ≥ wk then there is an optimal schedule
with j before k

I Lower Bounding:
relaxation to preemptive case
transportation problem

min
n∑
j=1

Cmax∑
t=1

cjtxjt

s.t.
Cmax∑
t=1

xjt = pj, ∀j = 1, . . . , n

n∑
j=1

xjt ≤ 1, ∀t = 1, . . . , Cmax

xjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax

[Pan and Shi, 2007]’s lower bounding through time indexed
Stronger but computationally more expensive

min
n∑
j=1

T−pj∑
t=1

hj(t+ pj)yjt

s.t.
T−pj∑
t=1

yjt = 1, ∀j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

yjt ≤ 1, ∀t = 1, . . . , Cmax

yjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax
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Dynasearch
I Two interchanges δjk and δlm are independent

if max{j, k} < min{l,m} or min{l, k} > max{l,m}.

I The dynasearch neighborhood is obtained by a series of independent
interchanges

I It has size 2n−1 − 1 but a best move can be found in O(n3).

I It yields in average better results than the interchange neighborhood
alone.

I Searched by dynamic programming
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I state (k, π)

I πk is the partial sequence at state (k, π) that has min
∑
wT

I πk is obtained from state (i, π){
appending job π(k) after π(i) i = k− 1

appending job π(k) and interchanging π(i+ 1) and π(k) 0 ≤ i < k− 1

I F(π0) = 0; F(π1) = wπ(1)

(
pπ(1) − dπ(1)

)+;

F(πk) = min


F(πk−1) +wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F(πi) +wπ(k)

(
Cπ(i) + pπ(k) − dπ(k)

)+
+

+
∑k−1
j=i+2wπ(j)

(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(j)

)+
+

+wπ(i+1)

(
Cπ(k) − dπ(i+1)

)+
}
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I The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F(πn) is found by backtrack.

I Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F(πtn) = F(π

(t−1)
n ), for iteration t).

I Speedups:
I pruning with considerations on pπ(k) and pπ(i+1)

I maintainig a string of late, no late jobs
I ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F(π

(t−1)
k ) = F(π

(t−2)
k ) for k = 1, . . . , ht and at iter t no need to consider

i < ht.
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Dynasearch, refinements:

I [Grosso et al. 2004] add insertion moves to interchanges.

I [Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).
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Performance:
I exact solution via branch and bound feasible up to 40 jobs

[Potts and Wassenhove, Oper. Res., 1985]

I exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

I dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]
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Complexity resume

Single machine, single criterion problems 1 | | γ1 | | γ1 | | γ:

Cmax P
Tmax P
Lmax P
hmax P∑
Cj P∑
wjCj P∑
U P∑
wjUj weakly NP-hard∑
T weakly NP-hard∑
wjTj strongly NP-hard∑
hj(Cj) strongly NP-hard
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Extensions

Non regular objectives
I 1 | dj = d |

∑
Ej +

∑
Tj

I In an optimal schedule,
I early jobs are scheduled according to LPT
I late jobs are scheduled according to SPT
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Multicriteria scheduling
Resolution process and decision maker intervention:

I a priori methods (definition of weights, importance)
I goal programming
I weighted sum
I ...

I interactive methods

I a posteriori methods (Pareto optima)
I lexicographic with goals
I ...
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Outline

20. Single Machine Models

21. Parallel Machine Models
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Pm | | CmaxPm | | CmaxPm | | Cmax (without Preemption)

Pm | | Cmax LPT heuristic, approximation ratio: 43 − 1
3m

P∞ | | Cmax CPM

Pm | prec | Cmax strongly NP-hard, LNS heuristic (non optimal)

Pm | pj = 1,Mj | Cmax LFJ-LFM heuristic (if Mj are nested, then LFJ is
optimal)
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Pm | prmp| CmaxPm | prmp| CmaxPm | prmp| Cmax

Not NP hard:

I Linear Programming, xij: time job j in machine i

I Construction based on lower bound

LWB = max

p1,
n∑
j=1

pj

m


I Dispatching rule: longest remaining processing time (LRPT)

optimal in discrete time
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Qm | prmp| CmaxQm | prmp| CmaxQm | prmp| Cmax

I Construction based on

LWB = max

{
p1

v1
,
p1 + p2

v1 + v2
, . . . ,

∑n
j=1 pj∑m
j=1 vj

}

I Dispatching rule: longest remaining processing time on the fastest
machine first (processor sharing)
optimal in discrete time
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Part X

Parallel Machine and Flow Shop Models
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Outline

22. Resume and Extensions on Single Machine Models

23. Parallel Machine Models

24. Flow Shop
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Outline

22. Resume and Extensions on Single Machine Models

23. Parallel Machine Models

24. Flow Shop
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Complexity resume

Single machine models

1 | | Cmax P
1 | sjk | Cmax P Gilmore and Gomory’s alg. in O(n2)
1 | | Tmax P
1 | | Lmax P
1 | prec| Lmax P Lawler’s alg. (Backward dyn. progr.) in O(n2)
1 | rj, (prec) | Lmax strongly NP-hard Branch and Bound
1 | | hmax P
1 | |
∑
Cj P

1 | |
∑
wjCj P WSPT

1 | |
∑
U P Moore’s algorithm

1 | |
∑
wjUj weakly NP-hard

1 | |
∑
T weakly NP-hard

1 | |
∑
wjTj strongly NP-hard Branch and Bound, Dynasearch

1 | |
∑
hj(Cj) strongly NP-hard Dynamic programming in O(2n)
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Branch and Bound

[Jens Clausen (1999). Branch and Bound Algorithms
- Principles and Examples.]

I Eager Strategy:
based on the bound value of the subproblems
1. select a node
2. branch
3. for each subproblem compute bounds and compare with current best

solution
4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

I Lazy Strategy:
often used when selection criterion for next node is max depth
1. select a node
2. compute bound
3. branch
4. store the new nodes together with the bound of the processed node
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Components
I Initial good feasible solution (heuristic) – might be crucial!
I Bounding function
I Strategy for selecting
I Branching
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Bounding

min
s∈P

g(s) ≤
{

mins∈P f(s)
mins∈S g(s)

}
≤ min
s∈S

f(s)

P: candidate solutions; S ⊆ P feasible solutions

I relaxation: mins∈P f(s)
I solve (to optimality) in P but with g
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Strategy for selecting next subproblem

I best first
(combined with eager strategy)

I breadth first
(memory problems)

I depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds combined
with branching on the node with the largest difference in bound between
the children)
(it seems to perform best)
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Branch and bound vs backtracking

I = a state space tree is used to solve a problem.

I 6= branch and bound does not limit us to any particular way of traversing
the tree (backtracking is depth-first)

I 6= branch and bound is used only for optimization problems.

Branch and bound vs A∗

I = In A∗ the admissible heuristic mimics bounding

I 6= In A∗ there is no branching. It is a search algorithm.

I 6= A∗ is best first
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Dynasearch
I Two interchanges δjk and δlm are independent

if max{j, k} < min{l,m} or min{l, k} > max{l,m}.

I The dynasearch neighborhood is obtained by a series of independent
interchanges

I It has size 2n−1 − 1 but a best move can be found in O(n3).

I It yields in average better results than the interchange neighborhood
alone.

I Searched by dynamic programming
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I state (k, π)

I πk is the partial sequence at state (k, π) that has min
∑
wT

I πk is obtained from state (i, π){
appending job π(k) i = k− 1

appending job π(k) and interchanging π(i+ 1) and π(k) 0 ≤ i < k− 1

I F(π0) = 0; F(π1) = wπ(1)

(
pπ(1) − dπ(1)

)+;

F(πk) = min


F(πk−1) +wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F(πi) +wπ(k)

(
Cπ(i) + pπ(k) − dπ(k)

)+
+

+
∑k−1
j=i+2wπ(j)

(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(k)

)+
+

+wπ(i+1)

(
Cπ(k−1) − pπ(i+1) + pπ(k) − dπ(k)

)+
}
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I The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F(πn) is found by backtrack.

I Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F(πtn) = F(π

(t−1)
n ), for iteration t).

I Speedups:
I pruning with considerations on pπ(k) and pπ(i+1)

I maintaining a string of late, no late jobs
I ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F(π

(t−1)
k ) = F(π

(t−2)
k ) for k = 1, . . . , ht and at iter t no need to consider

i < ht.
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Dynasearch, refinements:

I [Grosso et al. 2004] add insertion moves to interchanges.

I [Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).
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Performance:
I exact solution via branch and bound feasible up to 40 jobs

[Potts and Wassenhove, Oper. Res., 1985]

I exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

I dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]
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Extensions

Non regular objectives
I 1 | dj = d |

∑
Ej +

∑
Tj

I In an optimal schedule,
I early jobs are scheduled according to LPT
I tardy jobs are scheduled according to SPT
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Multicriteria scheduling
Resolution process and decision maker intervention:

I a priori methods (definition of weights, importance)
I goal programming
I weighted sum
I ...

I interactive methods

I a posteriori methods (Pareto optima)
I lexicographic with goals
I ...
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22. Resume and Extensions on Single Machine Models

23. Parallel Machine Models
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Pm | | CmaxPm | | CmaxPm | | Cmax (without Preemption)

Pm | | Cmax LPT heuristic, approximation ratio: 43 − 1
3m

P∞ | prec | Cmax CPM

Pm | prec | Cmax strongly NP-hard, LNS heuristic (non optimal)

Pm | pj = 1,Mj | Cmax LFJ-LFM (optimal if Mj are nested)
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Pm | prmp| CmaxPm | prmp| CmaxPm | prmp| Cmax

Not NP hard:

I Linear Programming, xij: time job j in machine i

I Construction based on LWB = max
{
p1,
∑n
j=1

pj
m

}
I Dispatching rule: longest remaining processing time (LRPT)

optimal in discrete time
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Qm | prmp| CmaxQm | prmp| CmaxQm | prmp| Cmax

I Construction based on

LWB = max

{
p1

v1
,
p1 + p2

v1 + v2
, . . . ,

∑n
j=1 pj∑m
j=1 vj

}

I Dispatching rule: longest remaining processing time on the fastest
machine first (processor sharing)
optimal in discrete time
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Outline

22. Resume and Extensions on Single Machine Models

23. Parallel Machine Models

24. Flow Shop
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Flow Shop

I Buffer limited, unlimited

I Permutation Flow Shop

I Directed graph representation

I Cmax computation (critical path length)
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Exact Solutions

I Theorem: There always exist an optimum without sequence change in
the first two and last two machines.
(hence F2 | | Cmax and F3 | | Cmax are permutation flow shop)

I F2 | | Cmax: Johnson’s rule (1954)
I Set I: p1j < p2j, order in increasing p1j, SPT(1)

I Set II: p2j < p1j, order in decreasing p2j, LPT(2)

I F3 | | Cmax is strongly NP-hard
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Fm | prmu, pij = pj | Cmax

[Proportionate permutation flow shop]

I Theorem: Cmax =
∑n
j=1 pj + (m− 1)max(p1, . . . , pn) and is

sequence independent

I Generalization to include machines with different speed: pij = pj/vi

Theorem:
if the first machine is the bottleneck then LPT is optimal.
if the last machine is the bottleneck then SPT is optimal.
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Construction Heuristics for Fm | prmu | Cmax

Slope heuristic
I schedule in decreasing order of Aj = −

∑m
i=1(m− (2i− 1))pij

Campbell, Dudek and Smith’s heuristic (1970)
extension of Johnson’s rule to when permutation is not dominant

I recursively create 2 machines 1 and m− 1

p ′ij =

i∑
k=1

pkj p ′′ij =

m∑
k=m−i+1

pkj

and use Johnson’s rule
I repeat for all m− 1 possible pairings
I return the best for the overall m machine problem
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Nawasz, Enscore, Ham’s heuristic (1983)

I Step 1: order in decreasing
∑m
j=1 pij

I Step 2: schedule the first 2 jobs at best
I Step 3: insert all others in best position

Implementation in O(n2m)

Framinan, Gupta, Leisten (2004) examined 177 different arrangements of jobs
in Step 1 and concluded that the NEH arrangement is the best one for Cmax.
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Metaheuristics for Fm | prmu | Cmax

Iterated Greedy [Ruiz, Stützle, 2007]

I Destruction: remove d jobs at random

I Construction: reinsert them with NEH heuristic in the order of removal

I Local Search: insertion neighborhood
(first improvement, whole evaluation O(n2m))

I Acceptance Criterion: random walk, best, SA-like

Performance on up to n = 500×m = 20 :
I NEH average gap 3.35% in less than 1 sec.

I IG average gap 0.44% in about 360 sec.
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Tabu Search

[Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]

I Cmax expression through critical path

I Block Bk, definition

I Internal block BIntk , definition

I Theorem: Let π, π ′ ∈ Π, if π ′ has been obtained from π by an
interchange of jobs so that Cmax(π ′) < Cmax(π) then in π ′:

I a) at least one job j ∈ Bk precedes job π(uk−1), k = 1, . . . ,m

I b) at least one job j ∈ Bk succeeds job π(uk), k = 1, . . . ,m
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I Insert neighborhood

I Tabu search requires a best strategy. How to search efficiently?

I Theorem: (Elimination Criterion) If π ′ is obtained by π by a “block
insertion” then Cmax(π ′) ≤ Cmax(π).

I Define good moves:
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I Use of lower bounds in delta evaluations:

Dka(x) =

{
pπ(x),k+1 − pπ(uk),k+1 x 6= uk−1

pπ(x),k+1 − pπ(uk),k+1 + pπ(uk−1+1,k − pπ(x),k x = uk−1

Cmax(δx(π)) ≥ Cmax(π) +Dka(x)

I Prohibition criterion:
an insertion δx,uk is tabu if it restores the realtive order of π(x) and
π(x+ 1).

I Tabu length: TL = 6+
[
n
10m

]
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I Perturbation

I perform all interchanges among all the blocks that have D < 0
I activated after MaxIdleIter idle iterations
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Tabu Search: the final algorithm:

Initialization : π = π0, C∗ = Cmax(π), set iteration counter to zero.
Searching : Create URk and ULk (set of non tabu moves)
Selection : Find the best move according to lower bound D.

Compute Cmax(δ(π)). Apply move.
If improving compare with C∗ and in case update.
Else increase number of idle iterations.

Stop criterion : Exit if MaxIter iterations are done.
Perturbation : Apply perturbation if MaxIdleIter done.
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Part XI

Flow Shop and Job Shop Models
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25. Flow Shop

26. Job Shop
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Outline

25. Flow Shop

26. Job Shop
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Resume

Permutation Flow Shop:

I Directed graph representation and Cmax computation

I Johnson’s rule for F2 | | Cmax

I Construction heuristics:
I Slope heuristic
I Campbell, Dudeck and Smith’s heuristic
I Nawasz, Enscore and Ham’s heuristic
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Outline

25. Flow Shop

26. Job Shop
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Jm | | Cmax

[Job shop makespan]
Given:

I J = {1, . . . ,N} set of jobs

I M = {1, . . . ,m} set of machines

I Jj = {Oij | i = 1, . . . , nj} set of operations for each job

I O1j → O2j → . . .→ Onj,j precedences (without loss of generality)

I pij processing times of operations Oij

I µij ∈ {M1, . . . ,Mm} with µij 6= µi+1,j eligibility for each operations
(one machine per operation)

I without repetition and with unlimited buffers
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Task:
I Find a schedule S = (Sij), indicating the starting times of Oij,

such that:
it is feasible, that is,

I Sij + pij ≤ Si+1,j for all Oij → Oi+1,j

I Sij + pij ≤ Suv or Suv + puv ≤ Sij for all operations with µij = µuv.

and has minimum makespan.

A schedule can be also represented by an m-tuple π = (π1, π2, . . . , πm)
where πi defines the processing order on machine i.

Then a semi-active schedule is found by computing the feasible earliest start
time for each operation in π.
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I Often simplified notation: N = {1, . . . , n} denotes the set of operations

I Disjunctive graph representation: G = (N,A, E)

I vertices N: operations with two dummy operations 0 and n+ 1 denoting
“start” and “finish”.

I directed arcs A, conjunctions
I undirected arcs E, disjunctions
I length of (i, j) in A is pi
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I A complete selection corresponds to choosing one direction for each arc
of E.

I A complete selection that makes D acyclic corresponds to a feasible
schedule and is called consistent.

I Complete, consistent selection ⇔ semi-active schedule (feasible earliest
start schedule).

I Length of longest path 0–(n+ 1) in D corresponds to the makespan
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Longest path computation
In an acyclic digraph:

I construct topological ordering (i < j forall i→ j ∈ A)

I recursion:

r0 = 0

rl = max
{j | j→l∈A}

{rj + pj} forl = 1, . . . , n+ 1
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I A block is a maximal sequence of adjacent critical operations processed
on the same machine.

I In the Fig. below: B1 = {4, 1, 8} and B2 = {9, 3}

I Any operation, u, has two immediate predecessors and successors:
I its job predecessor JP(u) and successor JS(u)

I its machine predecessor MP(u) and successor MS(u)
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Exact methods

I Disjunctive programming

min Cmax
s.t. xij + pij ≤ Cmax ∀Oij ∈ N

xij + pij ≤ xlj ∀ (Oij, Olj) ∈ A
xij + pij ≤ xik ∨ xij + pij ≤ xik ∀ (Oij, Oik) ∈ E
xij ≤ 0 ∀ i = 1, . . . ,m j = 1, . . . ,N

I Constraint Programming

I Branch and Bound [Carlier and Pinson, 1983]

Typically unable to schedule optimally more than 10 jobs on 10 machines.
Best result is around 250 operations.
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Shifting Bottleneck Heuristic

I A complete selection is made by the union of selections Sk for each
clique Ek that corresponds to machines.

I Idea: use a priority rule for ordering the machines.
chose each time the bottleneck machine and schedule jobs on that
machine.

I Measure bottleneck quality of a machine k by finding optimal schedule
to a certain single machine problem.

I Critical machine, if at least one of its arcs is on the critical path.
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– M0 ⊂M set of machines already sequenced.

– k ∈M \M0

– P(k,M0) is problem 1 | rj | Lmax obtained by:
I the selections in M0

I removing any disjunctive arc in p ∈M \M0

– v(k,M0) is the optimum of P(k,M0)

– bottleneck m = arg max
k∈M\M0

{v(k,M0)}

– M0 = ∅
Step 1: Identify bottleneck m among k ∈M \M0 and sequence it

optimally. Set M0 ←M0 ∪ {m}

Step 2: Reoptimize the sequence of each critical machine k ∈M0 in
turn: set M ′o = M0 − {k} and solve P(k,M ′0).
Stop if M0 = M otherwise Step 1.

– Local Reoptimization Procedure
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Construction of P(k,M0)

1 | rj | Lmax:
I rj = L(0, j)

I dj = L(0, n) − L(j, n) + pj

L(i, j) length of longest path in G: Computable in O(n)

An acyclic complete directed graph is the transitive closure of its unique
directed Hamilton path.

Hence, only predecessors and successor are to be checked.
The graph is not constructed explicitly, but by maintaining a list of jobs per
machines and a list machines per jobs.

1 | rj | Lmax can be solved optimally very efficiently.
Results reported up to 1000 jobs.
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1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax From Lecture 9
[Maximum lateness with release dates]

I Strongly NP-hard (reduction from 3-partition)

I might have optimal schedule which is not non-delay

I Branch and bound algorithm (valid also for 1 | rj, prec | Lmax)
I Branching:

schedule from the beginning (level k, n!/(k− 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J

{max (t, rl) + pl} J jobs to schedule, t current time

I Lower bounding: relaxation to preemptive case for which EDD is optimal
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Tabu Search for Job Shop

Neighborhoods
Change the orientation of certain disjunctive arcs of the current complete
selection

Issues:

1. Can it be decided easily if the new disjunctive graph G(S ′) is acyclic?

2. Can the neighborhood selection S ′ improve the makespan?

3. Is the neighborhood connected?
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Swap Neighborhood [Novicki, Smutnicki]
Reverse one oriented disjunctive arc (i, j) on some critical path.

Theorem: All neighbors are consistent selections.

Note: If the neighborhood is empty then there are no disjunctive arcs,
nothing can be improved and the schedule is already optimal.

Theorem: The swap neighborhood is connected.
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Insertion Neighborhood [Balas, Vazacopoulos, 1998]
For some nodes u, v in the critical path:

I move u right after v (forward insert)
I move v right before u (backward insert)

Theorem: If a critical path containing u and v also contain JS(v) and

L(v, n) ≥ L(JS(u), n)

then a forward insert of u after v yields an acyclic complete selection.

Theorem: If a critical path containing u and v also contain JS(v) and

L(0, u) + pu ≥ L(0, JP(v)) + pJP(v)

then a backward insert of v before v yields an acyclic complete selection.

308 309

Theorem: (Elimination criterion) If Cmax(S ′) < Cmax(S) then at least
one operation of a machine block B on the critical path has to be processed
before the first or after the last operation of B.

I Swap neighborhood can be restricted to first and last operations in the
block

I Insert neighborhood can be restricted to moves similar to those saw for
the flow shop. [Grabowski, Wodecki]
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Tabu Search requires a best improvement strategy hence the neighborhood
must be search very fast.

Neighbor evaluation:

I exact recomputation of the makespan O(n)

I approximate evaluation (rather involved procedure but much faster and
effective in practice)

The implementation of Tabu Search follows the one saw for flow shop.
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Part XII

Job Shop and Resource Constrained Project
Scheduling
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Outline

27. Job Shop Generalizations

28. Resource Constrained Project Scheduling Model
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Resume

Flow Shop
I Iterated Greedy

I Tabu Search (block representation and neighborhood pruning)

Job Shop:

I Definition

I Starting times and m-tuple permutation representation

I Disjunctive graph representation [Roy and Sussman, 1964]

I Shifting Bottleneck Heuristic [Adams, Balas and Zawack, 1988]
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27. Job Shop Generalizations

28. Resource Constrained Project Scheduling Model
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Generalizations: Time Lags

j

i
d i j

d

i

j
i j

−

Generalized time constraints

They can be used to model:

I Release time:

S0 + ri ≤ Si ⇐⇒ d0i = ri

I Deadlines:

Si + pi − di ≤ S0 ⇐⇒ di0 = pi − di
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I Modelling

min Cmax
s.t. xij + dij ≤ Cmax ∀Oij ∈ N

xij + dij ≤ xlj ∀ (Oij, Olj) ∈ A
xij + dij ≤ xik ∨ xij + dij ≤ xik ∀ (Oij, Oik) ∈ E
xij ≥ 0 ∀ i = 1, . . . ,m j = 1, . . . ,N

I In the disjunctive graph, dij become the lengths of arcs
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I Exact relative timing (perishability constraints):
if operation j must start lij after operation i:

Si + pi + lij ≤ Sj and Sj − (pi + lij) ≤ Si
(lij = 0 if no-wait constraint)
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I Set up times:

Si + pi + sij ≤ Sj or Sj + pj + sji ≤ Si
I Machine unavailabilities:

I Machine Mk unavailable in [a1, b1], [a2, b2], . . . , [av, bv]
I Introduce v artificial operations with λ = 1, . . . , v with µλ = Mk and:
pλ = bλ − aλ
rλ = aλ
dλ = bλ

I Minimum lateness objectives:

Lmax =
N

max
j=1

{Cj − dj} ⇐⇒ dnj,n+1 = pnj − dj
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Blocking

Arises with limited buffers:
after processing, a job remains on the machine until the next machine is freed

I Needed a generalization of the disjunctive graph model
=⇒ Alternative graph model G = (N,E,A) [Mascis, Pacciarelli, 2002]

1. two non-blocking operations to be processed on the same machine

Si + pi ≤ Sj or Sj + pj ≤ Si

2. Two blocking operations i, j to be processed on
the same machine µ(i) = µ(j)

SMS(j) ≤ Si or SMS(i) ≤ Sj

3. i is blocking, j is non-blocking (ideal) and i, j to
be processed on the same machine µ(i) = µ(j).

Si + pi ≤ Sj or SMS(j) ≤ Si

Example

I O0, O1, . . . , O13

I M(O1) = M(O5) = M(O9)
M(O2) = M(O6) = M(O10)
M(O3) = M(O7) = M(O11)

I Length of arcs can be negative
I Multiple occurrences possible: ((i, j), (u, v)) ∈ A and ((i, j), (h, k)) ∈ A
I The last operation of a job j is always non-blocking.
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I A complete selection S is consistent if it chooses alternatives from each
pair such that the resulting graph does not contain positive cycles.

Example:

I pa = 4

I pb = 2

I pc = 1

I b must start at least 9 days after a has started
I c must start at least 8 days after b is finished
I c must finish within 16 days after a has started

Sa + 9 ≤ Sb
Sb + 10 ≤ Sc
Sc − 15 ≤ Sa

This leads to an absurd.
In the alternative graph the cycle is positive.
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I The Makespan still corresponds to the longest path in the graph with
the arc selection G(S).

I If there are no cycles of length strictly positive it can still be computed
efficiently in O(|N||E ∪A|) by Bellman-Ford (1958) algorithm.

I The algorithm iteratively considers all edges in a certain order and
updates an array of longest path lengths for each vertex. It stops if a
loop over all edges does not yield any update or after |N| iterations over
all edges (in which case we know there is a positive cycle).

I Possible to maintain incremental updates when changing the selection
[Demetrescu Frangioni, Marchetti-Spaccamela, Nanni, 2000].

324

Heuristics for the Alternative Graph Model

I The search space is highly constrained + detecting positive cycles is
costly

I Hence local search methods not very successful

I Rely on the construction paradigm

I Rollout algorithm [Meloni, Pacciarelli, Pranzo, 2004]
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Rollout
I Master process: grows a partial selection Sk:

decides the next element to fix based on an heuristic function
(selects the one with minimal value)

I Slave process: evaluates heuristically the alternative choices.
Completes the selection by keeping fixed what passed by the master
process and fixing one alternative at a time.
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I Slave heuristics
I Avoid Maximum Current Completion time

find an arc (h, k) that if selected would increase most the length of the
longest path in G(Sk) and select its alternative

max
(uv)∈A

{l(0, u) + auv + l(u,n)}

I Select Most Critical Pair
find the pair that, in the worst case, would increase least the length of
the longest path in G(Sk) and select the best alternative

max
((ij),(hk))∈A

min{l(0, u) + ahk + l(k, n), l(0, i) + aij + l(j, n)}

I Select Max Sum Pair
finds the pair with greatest potential effect on the length of the longest
path in G(Sk) and select the best alternative

max
((ij),(hk))∈A

|l(0, u) + ahk + l(k, n) + l(0, i) + aij + l(j, n)|

Trade off quality vs keeping feasibility
Results depend on the characteristics of the instance.
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Resource Constrained Project Scheduling Model

Given:
I activities (jobs) j = 1, . . . , n

I renewable resources i = 1, . . . ,m

I amount of resources available Ri
I processing times pj
I amount of resource used rij
I precedence constraints j→ k

Further generalizations

I Time dependent resource profile Ri(t)
given by (tµi , R

µ
i ) where 0 = t1i < t

2
i < . . . < t

mi
i = T

Disjunctive resource, if Rk(t) = {0, 1}; cumulative resource, otherwise
I Multiple modes for an activity j

processing time and use of resource depends on its mode m: pjm, rjkm.
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Solutions

Task: Find a schedule indicating the starting time of each activity

I All solution methods restrict the search to feasible schedules, S, S ′

I Types of schedules
I Local left shift (LLS): S→ S ′ with S ′j < Sj and S

′
l = Sl for all l 6= j.

I Global left shift (GLS): LLS passing through infeasible schedule
I Semi active schedule: no LLS possible
I Active schedule: no GLS possible
I Non-delay schedule: no GLS and LLS possible even with preemption

I If regular objectives =⇒ exists an optimum which is active
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Hence:
I Schedule not given by start times Si

I space too large O(Tn)

I difficult to check feasibility

I Sequence (list, permutation) of activities π = (j1, . . . , jn)

I π determines the order of activities to be passed to a
schedule generation scheme

331

Modeling

Assignment 1
I A contractor has to complete n activities.
I The duration of activity j is pj
I each activity requires a crew of size Wj.
I The activities are not subject to precedence constraints.
I The contractor has W workers at his disposal
I his objective is to complete all n activities in minimum time.
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Assignment 2
I Exams in a college may have different duration.
I The exams have to be held in a gym with W seats.
I The enrollment in course j is Wj and
I all Wj students have to take the exam at the same time.
I The goal is to develop a timetable that schedules all n exams in

minimum time.
I Consider both the cases in which each student has to attend a single

exam as well as the situation in which a student can attend more than
one exam.
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Assignment 3
I In a basic high-school timetabling problem we are given m classes
c1, . . . , cm,

I h teachers a1, . . . , ah and
I T teaching periods t1, . . . , tT .
I Furthermore, we have lectures i = l1, . . . , ln.
I Associated with each lecture is a unique teacher and a unique class.
I A teacher aj may be available only in certain teaching periods.
I The corresponding timetabling problem is to assign the lectures to the

teaching periods such that
I each class has at most one lecture in any time period
I each teacher has at most one lecture in any time period,
I each teacher has only to teach in time periods where he is available.
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Assignment 4
I A set of jobs J1, . . . , Jg are to be processed by auditors A1, . . . , Am.
I Job Jl consists of nl tasks (l = 1, . . . , g).
I There are precedence constraints i1 → i2 between tasks i1, i2 of the same job.
I Each job Jl has a release time rl, a due date dl and a weight wl.
I Each task must be processed by exactly one auditor. If task i is processed by auditor
Ak, then its processing time is pik.

I Auditor Ak is available during disjoint time intervals [sνk , l
ν
k ] ( ν = 1, . . . ,m) with

lνk < s
ν
k for ν = 1, . . . ,mk − 1.

I Furthermore, the total working time of Ak is bounded from below by H−
k and from

above by H+
k with H−

k ≤ H+
k (k = 1, . . . ,m).

I We have to find an assignment α(i) for each task i = 1, . . . , n :=
∑g
l=1 nl to an

auditor Aα(i) such that

I each task is processed without preemption in a time window of the assigned
auditor

I the total workload of Ak is bounded by H−
k and Hkk for k = 1, . . . ,m.

I the precedence constraints are satisfied,
I all tasks of Jl do not start before time rl, and
I the total weighted tardiness

∑g
l=1wlTl is minimized.
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Part XIII

Resource Constrained Project Scheduling.
Reservations and Timetabling

336



Outline

29. Resource Constrained Project Scheduling Model
Heuristic Methods for RCPSP

30. Reservations without slack

31. Reservations with slack

32. Timetabling with one Operator

33. Timetabling with Operators

34. Exercises

337

Outline

29. Resource Constrained Project Scheduling Model
Heuristic Methods for RCPSP

30. Reservations without slack

31. Reservations with slack

32. Timetabling with one Operator

33. Timetabling with Operators

34. Exercises

338

Preprocessing: Temporal Analysis

I Precedence network must be acyclic
I Heads rj and Tails qj ⇐ Longest paths ⇐ Topological ordering

(deadlines dj can be obtained as UB− qj)

Preprocessing: constraint propagation

1. conjunctions i→ j Si + pi ≤ Sj
[precedence constrains]

2. parallelity constraints i || j Si + pi ≥ Sj and Sj + pj ≥ Si
[time windows [rj, dj],[rl, dl] and pl + pj > max{dl, dj} − min{rl, rj}]

3. disjunctions i – j Si + pi ≤ Sj or Sj + pj ≤ Si
[resource constraints: rjk + rlk > Rk]

N. Strengthenings: symmetric triples, etc.
340

Schedule Generation Schemes

Given a sequence of activity, SGS determine the starting times of each activity

Serial schedule generation scheme (SSGS)

n stages, Sλ scheduled jobs, Eλ eligible jobs

Step 1 Select next from Eλ and schedule at earliest.

Step 2 Update Eλ and Rk(τ).
If Eλ is empty then STOP,
else go to Step 1.
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Parallel schedule generation scheme (PSGS)
(Time sweep)

stage λ at time tλ

Sλ (finished activities), Aλ (activities not yet finished),
Eλ (eligible activities)

Step 1 In each stage select maximal resource-feasible subset of eligible
activities in Eλ and schedule it at Tλ.

Step 2 Update Eλ, Aλ and Rk(τ).
If Eλ is empty then STOP,

else move to tλ+1 = min
{

min
j∈Aλ

Cj,min
i∈M

t
µ
i

}
and go to Step 1.

I If constant resource, it generates non-delay schedules
I Search space of PSGS is smaller than SSGS

344

Dispatching Rules

Determines the sequence of activities to pass to
the schedule generation scheme

I activity based

I network based

I path based

I resource based

Static vs Dynamic
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Local Search

All typical neighborhood operators can be used:

I Swap

I Interchange

I Insert
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Genetic Algorithms

Recombination operator:

I One point crossover

I Two point crossover

I Uniform crossover
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Reservations without slack – Interval Scheduling

Given:
I m parallel machines (resources)

I n activities

I rj starting times (integers),
dj termination (integers),
wj or wij weight,
Mj eligibility

I without slack pj = dj − rj

Task: Maximize weight of assigned activities

Examples: Hotel room reservation, Car rental
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Polynomially solvable cases

1. pj = 1

Solve an assignment problem at each time slot

2. wj = 1, Mj = M, Obj. minimize resources used

I Corresponds to coloring interval graphs with minimal number of colors
I Optimal greedy algorithm (First Fit):

order r1 ≤ r2 ≤ . . . ≤ rn
Step 1 assign resource 1 to activity 1
Step 2 for j from 2 to n do

Assume k resources have been used.
Assign activity j to the resource with minimum feasible value
from {1, . . . , k+ 1}
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3. wj = 1, Mj = M, Obj. maximize activities assigned

I Corresponds to coloring max # of vertices in interval graphs with k
colors

I Optimal k-coloring of interval graphs:

order r1 ≤ r2 ≤ . . . ≤ rn
J = ∅, j = 1

Step 1 if a resource is available at time rj then assign activity j to
that resource;
include j in J; go to Step 3

Step 2 Else, select j∗ such that Cj∗ = max
j∈J

Cj

if Cj = rj + pj > Cj∗ go to Step 3
else remove j∗ from J, assign j in J

Step 3 if j = n STOP else j = j+ 1 go to Step 1
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Reservations with Slack

Given:
I m parallel machines (resources)

I n activities

I rj starting times (integers),
dj termination (integers),
wj or wij weight,
Mj eligibility

I with slack pj ≤ dj − rj

Task: Maximize weight of assigned activities
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Most constrained variable, least constraining value heuristic

|Mj| indicates how much constrained an activity is
νit: # activities that can be assigned to i in [t− 1, t]

Select activity j with smallest Ij = f
(
wj
pj
, |Mj|

)
Select resource i with smallest g(νi,t+1, . . . , νi,t+pj) (or discard j if no

place free for j)

Examples for f and g:

f

(
wj

pj
, |Mj|

)
=

|Mj|

wj/pj

g(νi,t+1, . . . , νi,t+pj) = max(νi,t+1, . . . , νi,t+pj)

g(νi,t+1, . . . , νi,t+pj) =

pj∑
l=1

νi,t+l

pj
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Timetabling with Workforce or Personnel Constrains

There is only one type of operator that processes all the activities

Example:
I A contractor has to complete n activities.
I The duration of activity j is pj
I Each activity requires a crew of size Wj.
I The activities are not subject to precedence constraints.
I The contractor has W workers at his disposal
I His objective is to complete all n activities in minimum time.

I RCPSP Model
I If pj all the same Ü Bin Packing Problem (still NP-hard)
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Example: Exam scheduling

I Exams in a college with same duration.
I The exams have to be held in a gym with W seats.
I The enrollment in course j is Wj and
I all Wj students have to take the exam at the same time.
I The goal is to develop a timetable that schedules all n exams in

minimum time.
I Each student has to attend a single exam.

I Bin Packing model
I In the more general (and realistic) case it is a RCPSP
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Heuristics for Bin Packing

I Construction Heuristics
I Best Fit Decreasing (BFD)
I First Fit Decreasing (FFD) Cmax(FFD) ≤ 11

9
Cmax(OPT) + 6

9

I Local Search: [Alvim and Aloise and Glover and Ribeiro, 1999]

Step 1: remove one bin and redistribute items by BFD

Step 2: if infeasible, re-make feasible by redistributing items for
pairs of bins, such that their total weights becomes equal
(number partitioning problem)
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[Levine and Ducatelle, 2004]
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Timetabling with Different Operator or Tools

I There are several operators and activities can be done by an operator
only if he is available

I Two activities that share an operator cannot be scheduled at the same
time

Examples:

I aircraft repairs

I scheduling of meetings (people Ü operators; resources Ü rooms)

I exam scheduling (students may attend more than one exam Ü
operators)

If pj = 1 Ü Graph-Vertex Coloring (still NP-hard)
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Mapping to Graph-Vertex Coloring

I activities Ü vertices

I if 2 activities require the same operators Ü edges

I time slots Ü colors

I feasibility problem (if # time slots is fixed)

I optimization problem
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DSATUR heuristic for Graph-Vertex Coloring

saturation degree: number of differently colored adjacent
vertices

set of empty color classes {C1, . . . , Ck}, where k = |V |

Sort vertices in decreasing order of their degrees

Step 1 A vertex of maximal degree is inserted into C1.

Step 2 The vertex with the maximal saturation degree is chosen and
inserted according to the greedy heuristic (first feasible color).
Ties are broken preferring vertices with the maximal number of
adjacent, still uncolored vertices; if further ties remain, they
are broken randomly.
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Resume: Job Shop

I Disjunctive graph representation [Roy and Sussman, 1964]
I Shifting Bottleneck Heuristic [Adams, Balas and Zawack, 1988]
I Local Search
I Generalizations:

I Time lags dij to model:
I set up times
I synchronizations
I deadlines
I perishability (no-wait)

I Blocking (alternative graph) Ü Rollout
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Exercise 1

Robotic Cell

Search for periodic pattern of moves (cycle)
one-unit cycle: the robot load (or unload) each machine exactly once
k-unit cycle: each activity is carried out exactly k times

368

Given:
I m machines M1,M2, . . .Mm

I ci,i+1 times of part transfer (unload+travel+load=activity) from Mi to
Mi+1

I di,j times of the empty robot from Mi to Mj (ci,i+1 ≥ di,i+1)

I pij processing time of part j on machine i (identical vs different parts)

Task:
I Determine input time for each part tj

I Minimize throughput  minimize period

Alternative graph model with intermediate robot operations
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Part XIV

Educational Timetabling
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The Timetabling Activity

Assignment of events to a limited number of time periods and locations
subject to constraints

Two categories of constraints:
Hard constraints H = {H1, . . . ,Hn}: must be strictly satisfied, no violation is

allowed
Soft constraints Σ = {S1, . . . ,Sm}: their violation should be minimized

(determine quality)

Each institution may have some unique combination of hard constraints and
take different views on what constitute the quality of a timetable.
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Types of Timetabling

I Educational Timetabling
I Class timetabling
I Exam timetabling
I Course timetabling

I Employee Timetabling
I Crew scheduling
I Crew rostering

I Transport Timetabling,
I Sports Timetabling,
I Communication Timetabling
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Educational timetabling process

Phase: Planning Scheduling Dispatching

Horizon: Long Term Timetable Period Day of Operation

Objective: Service Level Feasibility Get it Done

Steps: Curricula
Weekly
Timetabling

Repair, find rooms

Manpower, Equip-
ment
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We will concentrate on simple models that admit IP formulations or graph
and network algorithms. These simple problems might:

I occur at various stages

I be instructive to derive heuristics for more complex cases
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School Timetabling

[aka, teacher-class model]
The daily or weekly scheduling for all the classes of a high school, avoiding
teachers meeting two classes in the same time, and vice versa.
Input:

I a set of classes C = {C1, . . . , Cm}

A class is a set of students who follow exactly the same program. Each
class has a dedicated room.

I a set of teachers P = {P1, . . . , Pn}

I a requirement matrix Rm×n where Rij is the number of lectures given
by teacher Rj to class Ci.

I all lectures have the same duration (say one period)
I a set of time slots T = {T1, . . . , Tp} (the available periods in a day).

Output: An assignment of lectures to time slots such that no teacher or
class is involved in more than one lecture at a time
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IP formulation:
Binary variables: assignment of teacher Pj to class Ci in Tk

xijk = {0, 1} ∀i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , p

Constraints:
p∑
k=1

xijk = Rij ∀i = 1, . . . ,m; j = 1, . . . , n

n∑
j=1

xijk ≤ 1 ∀i = 1, . . . ,m; k = 1, . . . , p

m∑
i=1

xijk ≤ 1 ∀j = 1, . . . , n; k = 1, . . . , p
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Graph model
Bipartite multigraph G = (C, T ,R):

I nodes C and T : classes and teachers
I Rij parallel edges

Time slots are colors Ü Graph-Edge Coloring problem

Theorem: [König] There exists a solution to (1) iff:

m∑
i=1

Rij ≤ p ∀j = 1, . . . , n

n∑
i=1

Rij ≤ p ∀i = 1, . . . ,m
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Extension
From daily to weekly schedule
(timeslots represent days)

I ai max number of lectures for a class in a day
I bj max number of lectures for a teacher in a day

IP formulation:
Variables: number of lectures to a class in a day

m∑
i=1

xijk ≤ bj ∀j = 1, . . . , n; k = 1, . . . , p

xijk ∈ N ∀i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , p

Constraints:
p∑
k=1

xijk = Rij ∀i = 1, . . . ,m; j = 1, . . . , n

n∑
j=1

xijk ≤ ai ∀i = 1, . . . ,m; k = 1, . . . , p

381

Graph model
Edge coloring model still valid but with

I no more than ai edges adjacent to Ci have same colors and
I and more than bj edges adjacent to Tj have same colors

Theorem: [König] There exists a solution to (2) iff:

m∑
i=1

Rij ≤ bjp ∀j = 1, . . . , n

n∑
i=1

Rij ≤ aip ∀i = 1, . . . ,m
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A recurrent sub-problem in Timetabling is Matching
Input: A (weighted) bipartite graph G = (V, E) with bipartition {A,B}.
Task: Find the largest size set of edges M ∈ E such that each vertex in V is
incident to at most one edge of M.

Efficient algorithms for constructing matchings are based on augmenting
paths in graphs. An implementation is available at:
http://www.cs.sunysb.edu/~algorith/implement/bipm/implement.shtml

Theorem [Hall, 1935]: G contains a matching of A if and only if
|N(U)| ≥ |U| for all U ⊆ A.
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I The edge coloring problem in the multigraph is solvable in polynomial
time by solving a sequence of network flows problems p.
Possible approach: solve the weekly timetable first and then the daily
timetable

Further constraints that may arise:

I Preassignments
I Unavailabilities

(can be expressed as preassignments with dummy class or teachers)

They make the problem NP-complete.

I Bipartite matchings can still help in developing heuristics, for example,
for solving xijk keeping any index fixed.
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Further complications:

I Simultaneous lectures (eg, gymnastic)

I Subject issues (more teachers for a subject and more subject for a
teacher)

I Room issues (use of special rooms)
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So far feasibility problem.

Preferences (soft constraints) may be introduced

I Desirability of assignment pj to class ci in tk

min
n∑
i=1

m∑
j=1

p∑
k=1

dijkxijk

I Organizational costs: having a teacher available for possible temporary
teaching posts

I Specific day off for a teacher
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Introducing soft constraints the problem becomes a multiobjective problem.

Possible ways of dealing with multiple objectives:

I weighted sum

I lexicographic order

I minimize maximal cost

I distance from optimal or nadir point

I Pareto-frontier

I ...
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Heuristic Methods

Construction heuristic
Based on principles:

I most-constrained lecture on first (earliest) feasible timeslot

I most-constrained lecture on least constraining timeslot

Enhancements:
I limited backtracking

I local search optimization step after each assignment

More later
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Local Search Methods and Metaheuristics
High level strategy:

I Single stage (hard and soft constraints minimized simultaneously)

I Two stages (feasibility first and quality second)

Dealing with feasibility issue:
I partial assignment: do not permit violations of H but allow some

lectures to remain unscheduled

I complete assignment: schedule all the lectures and seek to minimize H
violations

More later
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University Course Timetabling

The weekly scheduling of the lectures of courses avoiding students, teachers
and room conflicts.
Input:

I A set of courses C = {C1, . . . , Cn} each consisting of a set of lectures
Ci = {Li1, . . . , Lili }. Alternatively,
A set of lectures L = {L1, . . . , Ll}).

I A set of curricula S = {S1, . . . , Sr} that are groups of courses with
common students (curriculum based model). Alternatively,
A set of enrollments S = {S1, . . . , Ss} that are groups of courses that a
student wants to attend (Post enrollment model).

I a set of time slots T = {T1, . . . , Tp} (the available periods in the
scheduling horizon, one week).

I All lectures have the same duration (say one period)

Output:
An assignment of each lecture Li to some period in such a way that no
student is required to take more than one lecture at a time.
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IP formulation
mt rooms ⇒ maximum number of lectures in time slot t

Variables

xit ∈ {0, 1} i = 1, . . . , n; t = 1, . . . , p

Number of lectures per course

p∑
t=1

xit = li ∀i = 1, . . . , n

Number of lectures per time slot

n∑
i=1

xit ≤ mt ∀t = 1, . . . , p
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Number of lectures per time slot (students’ perspective)

n∑
Ci∈Sj

xit ≤ 1 ∀i = 1, . . . , n; t = 1, . . . , p

If some preferences are added:

max
∑p
i=1

∑n
i=1 ditxit

Corresponds to a bounded coloring.
It can be solved up for 70 lectures, 25 courses and 40 curricula. [de Werra,
1985]
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Graph model

Graph G = (V, E):
I V correspond to lectures Li
I E correspond to conflicts between lectures due to curricula or enrollments

Time slots are colors Ü Graph-Vertex Coloring problem Ü NP-complete
(exact solvers max 100 vertices)

Typical further constraints:
I Unavailabilities
I Preassignments

The overall problem can still be modeled as Graph-Vertex Coloring. How?
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Further complications:

I Teachers that teach more than one course
(treated similarly to students’ enrollment)

I A set of rooms R = {R1, . . . , Rn}

with suitability and availability constraints
(this can be modeled as Hypergraph Coloring!)

Moreover,

I Logistic constraints: not two adjacent lectures if at different campus

I Max number of lectures in a single day and changes of campuses.

I Periods of variable length
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IP formulation to include room eligibility [Lach and Lübbecke, 2008]

Decomposition of the problem in two stages:

1. assign courses to timeslots

2. match courses with rooms within each timeslot

In stage 1
Let R(Ci) ⊆ R be the rooms eligible for course Ci
Let Gconf = (Vconf, Econf) be the conflict graph (vertices are pairs (Ci, Tt))

Variables: course Ci assigned to time slot Tt

xit ∈ {0, 1} i = 1, . . . , n; t = 1, . . . , p
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Edge constraints
(forbids that Ci1 is assigned to Tt1 and Ci2 to Tt2 simultaneously)

xi1,t1 + xj2,t2 ≤ 1 ∀ ((i1, t1), (i2, t2)) ∈ Econf
Hall’s constraints
(guarantee that in stage 1 we find only solutions that are feasibile for stage 2)

n∑
Ci∈U

xit ≤ |N(U)| ∀U ∈, t ∈ T

If some preferences are added:

max
p∑
i=1

n∑
i=1

ditxit
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So far feasibility.

Preferences (soft constraints) may be introduced

I Compactness or distribution

I Minimum working days

I Room stability

I Student min max load per day

I Travel distance

I Room suitability

I Double lectures

I Professors’ preferences for time slots

For most of these different way to model them exist.
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Exam Timetabling
By substituting lecture with exam we have the same problem!
However:

Course Timetabling Exam Timetabling

limited number of time slots unlimited number of time slots,
seek to minimize

conflicts in single slots, seek to
compact

conflicts may involve entire days
and consecutive days,seek to
spread

one single course per room possibility to set more than one
exam in a room with capacity
constraints

lectures have fixed duration exams have different duration
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Solution Methods

Hybrid Heuristic Methods
I Some metaheuristic solve the general problem while others or exact

algorithms solve the special problem

I Replace a component of a metaheuristic with one of another or of an
exact method (ILS+ SA, VLSN)

I Treat algorithmic procedures (heuristics and exact) as black boxes and
serialize

I Let metaheuristics cooperate (evolutionary + tabu search)

I Use different metaheuristics to solve the same solution space or a
partitioned solution space
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Basic 
components

Metaheuristics Assemblage

Testable
units

Testable
units

Testable
units

Evolutionary Algorithm

Solving the 
global problemHard constraints, Soft Constraints

Graph Coloring, Bipartite Matching,

Solving sub−problems

configurations
algorithm

Programming

Programming
Constraint

Integer

Construction
Heuristics

Ant Colony Optimization

Iterated Local Search

Simulated Annealing

Tabu Search 

Iterated Greedy

Beam Search 

...

Variable Neighborhood Search

Guided Local Search

Search
Neighborhood

Configuration Problem
Algorithms must be configured and tuned and the best selected.

This has to be done anew every time because constraints and their density
are specific of the institution.

Appropriate techniques exist to aid in the experimental assessment of
algorithms.

401

Outline

35. Introduction

36. Educational Timetabling
School Timetabling
Course Timetabling

37. A Solution Example

38. Timetabling in Practice

402

A Solution Example on Course Timetabling

Course Timetabling Problem
Find an assignment of lectures to time slots and rooms which is

Feasible

rooms are only used by one lecture at a time,
each lecture is assigned to a suitable room,
no student has to attend more than one lecture at once,
lectures are assigned only time slots where they are available;


Hard
Constraints

and Good

no more than two lectures in a row for a student,
unpopular time slots avoided (last in a day),
students do not have one single lecture in a day.

 Soft
Constraints
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A look at the instances

These are large scale instances.
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A look at the evaluation of a timetable can help
in understanding the solution strategy

High level solution strategy:
I Single phase strategy (not well suited here due to soft constraints)

I Ü Two phase strategy: Feasibility first, quality second

Searching a feasible solution:
I Suitability of rooms complicate the use of IP and CP.

I Heuristics:
1. Complete assignment of lectures
2. Partial assignment of lectures

I Room assignment:
A. Left to matching algorithm
B. Carried out heuristically
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Solution Representation

A. Room assignment left to matching algorithm:

Array of Lectures and Time-slots and/or
Collection of sets Lectures, one for each Time-slot

B. Room assignment included

Assignment Matrix

R
oo

m
s

Time-slots
T1 T2 Ti Tj T45

R1 −1 L4 · · · L10 · · · L14 · · · −1
R2 L1 L5 · · · L11 · · · L15 · · · −1
R3 L2 L6 · · · L12 · · · −1 · · · −1
...

...
...

...
...

Rr L3 L7 · · · L13 L16 · · · −1
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Construction Heuristic
most-constrained lecture on least constraining time slot

Step 1. Initialize the set L̂ of all unscheduled lectures with L̂ = L.
Step 2. Choose a lecture Li ∈ L̂ according to a heuristic rule.
Step 3. Let X̂ be the set of all positions for Li in the assignment matrix

with minimal violations of the hard constraints H.
Step 4. Let X̄ ⊆ X̂ be the subset of positions of X̂ with minimal

violations of the soft constraints Σ.
Step 5. Choose an assignment for Li in X̄ according to a heuristic rule.

Update information.
Step 6. Remove Li from L̂, and go to step 2 until L̂ is not empty.
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Local Search Algorithms
Neighborhood Operators:

A. Room assignment left to matching algorithm

The problem becomes a bounded graph coloring
Ü Apply well known algorithms for GCP with few adaptations

Ex:
1. complete assignment representation: TabuCol with one exchange

2. partial assignment representation: PartialCol with i-swaps

See [Blöchliger and N. Zufferey, 2008] for a description
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B. Room assignment included

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27

R10 382 1 56 362 45 247 392 85 389 384 17 394 200 294 273 391 180 42 157 388 397 331 131 363 383

R9 396 144 173 78 25 183 387 337 240 132 328 212 370 308 336 244 126 14 231 51 342 136 93 129 266 393 155

R8 256 32 147 270 289 130 48 282 0 116 251 307 44 260 79 296 242 150 81 353 158 293 338 218 161

R7 228 31 107 371 30 355 46 227 246 271 182 313 224 128 89 258 356 343 280 35 109 306 43 83 11 154

R6 322 225 352 28 168 72 49 69 12 92 38 373 390 164 135 121 268 115 75 87 140 165 104 137 133 385 346

R5 324 291 309 339 267 283 269 170 299 311 34 65 216 275 199 26 27 327 33 39 285

R4 181 160 90 82 193 206 156 152 341 179 171 226 4 348 127 365 213 80

R3 263 71 186 67 222 288 99 24 237 232 253 117 195 203 102 207 287 290 146 286 358 303 277

R2 360 345 2 153 354 91 61 319 349 278 86 204 316 220 323 176 314 7 108 50 312 235 330

R1 187 239 378 66 380 53 208 279 300 350 211 375 254 366 369 223 163 298 118 368 234 97 329 274 58

Monday Tuesday Wednesday

I N1: One Exchange
I N2: Swap

I N3: Period Swap
I N4: Kempe Chain Interchange
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Example of stochastic local search for case 1. with A.

initialize data (fast updates, dont look bit, etc.)
while (hcv!=0 && stillTime && idle iterations < PARAMETER)

shuffle the time slots
for each lecture L causing a conflict
for each time slot T
if not dont look bit
if lecture is available in T
if lectures in T < number of rooms
try to insert L in T
compute delta
if delta < 0 || with a PARAMETER probability if delta==0
if there exists a feasible matching room-lectures
implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break

for all lectures in time slot
try to swap time slots
compute delta
if delta < 0 || with a PARAMETER probability if delta==0

implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break

Algorithm Flowchart
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In Practice

A timetabling system consists of:

I Information Management

I Solver (written in a fast language, i.e., C, C++)

I Input and Output management (various interfaces to handle input and
output)

I Interactivity: Declaration of constraints (professors’ preferences may be
inserted directly through a web interface and stored in the information
system of the University)

See examples http://www.easystaff.it
http://www.eventmap-uk.com
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The timetabling process

1. Collect data from the information system

2. Execute a few runs of the Solver starting from different solutions
selecting the timetable of minimal cost. The whole computation time
should not be longer than say one night. This becomes a “draft”
timetable.

3. The draft is shown to the professors who can require adjustments. The
adjustments are obtained by defining new constraints to pass to the
Solver.

4. Post-optimization of the “draft” timetable using the new constraints

5. The timetable can be further modified manually by using the Solver to
validate the new timetables.
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Current Research Directions

1. Attempt to formulate standard timetabling problems with super sets of
constraints where portable programs can be developed and compared

2. Development of general frameworks that leave the user the final
instantiation of the program

3. Methodology for choosing automatically and intelligently the appropriate
algorithm for the problem at hand (hyper-heuristics case-based reasoning
systems and racing for algorithm configuration).

4. Robust timetabling

For latest developments see results of International Timetabling Competition
2007: http://www.cs.qub.ac.uk/itc2007/
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Part XV

Sport Timetabling

417

Outline

39. Problem Definitions

418

Problems we treat:

I single and double round-robin tournaments

I balanced tournaments

I bipartite tournaments

Solutions:

I general results

I graph algorithms

I integer programming

I constraint programming

I metaheuristics
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Outline

39. Problem Definitions
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Terminology:

I A schedule is a mapping of games to slots or time periods, such that
each team plays at most once in each slot.

I A schedule is compact if it has the minimum number of slots.
I Mirrored schedule: games in the first half of the schedule are repeated in

the same order in the second half (with venues reversed)
I Partially mirrored schedule: all slots in the schedule are paired such that

one is the mirror of the other
I A pattern is a vector of home (H) away (A) or bye (B) for a single team

over the slots
I Two patterns are complementary if in every slot one pattern has a home

and the other has an away.
I A pattern set is a collection of patterns, one for each team
I A tour is the schedule for a single team, a trip a series of consecutive

away games and a home stand a series of consecutive home games
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Round Robin Tournaments

(round-robin principle known from other fields, where each person takes an
equal share of something in turn)

I Single round robin tournament (SRRT) each team meets each other
team once

I Double round robin tournament (DRRT) each meets each other team
twice

Definition SRRT Problem
Input: A set of n teams T = {1, . . . , n}

Output: A mapping of the games in the set G ={gij : i, j ∈ T, i < j}, to the
slots in the set S = {sk, k = 1, . . . , n− 1 if n is even and k = 1, . . . , n if n is
odd} such that no more than one game including i is mapped to any given
slot for all i ∈ T .
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Circle method
Label teams and play:

Round 1. (1 plays 14, 2 plays 13, ... )

1 2 3 4 5 6 7
14 13 12 11 10 9 8

Fix one team (number one in this example) and rotate the others clockwise:

Round 2. (1 plays 13, 14 plays 12, ... )

1 14 2 3 4 5 6
13 12 11 10 9 8 7

Round 3. (1 plays 12, 13 plays 11, ... )

1 13 14 2 3 4 5
12 11 10 9 8 7 6

Repeat until almost back at the initial position

Round 13. (1 plays 2, 3 plays 14, ... )

1 3 4 5 6 7 8
2 14 13 12 11 10 9
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Definition DRRT Problem
Input: A set of n teams T = {1, . . . , n}.

Output: A mapping of the games in the set G ={gij : i, j ∈ T, i 6= j}, to the
slots in the set S = {sk, k = 1, . . . , 2(n− 1) if n is even and k = 1, . . . , 2n if
n is odd} such that no more than one game including i is mapped to any
given slot for all i ∈ T .

The schedule can be obtained by the circle method plus mirroring

Venue assignment can also be done through the circle method
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Latin square
26664
1 2 3 4 5
2 3 5 1 4
3 5 4 2 1
4 1 2 5 3
5 4 1 3 2

37775

Even, symmetric Latin square ⇔ SRRT
Example: 4 Teams

round 1: 1 plays 2, 3 plays 4
round 2: 2 plays 3, 1 plays 4
round 3: 3 plays 1, 2 plays 4

Rewrite the schedule as a multiplication table: "a plays b in round c".

1 2 3 4
-----------

1 | 1 3 2
2 | 1 2 3
3 | 3 2 1
4 | 2 3 1

If the blank entries were filled with the
symbol 4, then we have an even,
symmetric latin square.

Round robin tournaments with preassignments correspond to complete partial
latin squares Ü NP-complete

Extension:
I determining the venue for each game
I assigning actual teams to slots (so far where just place holders)

Decomposition:
1. First generate a pattern set
2. Then find a compatible pairing team-games (this yeilds a timetable)
3. Then assign actual teams in the timetable
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Generation of feasible pattern sets

I In SRRT:
I every pair of patterns must differ in at least one slot. ⇒ no two patterns

are equal in the pattern set

I if at most one break per team, then a feasible pattern must have the
complementary property (m/2 complementary pairs)

I In DRRT,
I for every pair of patterns i, j such that 1 ≤ i < j ≤ n there must be at

least one slot in which i is home and j is away and at least one slot in
which j is at home and i is away.

I every slot in the pattern set includes an equal number of home and away
games.
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Definition Balanced Tournament Designs (BTDP)

Input: A set of n teams T = {1, . . . , n} and a set of facilities F.

Output: A mapping of the games in the set G ={gij : i, j ∈ T, i < j}, to the
slots available at each facility described by the set
S = {sfk, f = 1, . . . , |F|, k = 1, . . . , n− 1 if n is even and k = 1, . . . , n if n is
odd} such that no more than one game involving team i is assigned to a
particular slot and the difference between the number of appearances of team
i at two separate facilities is no more than 1.
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I BTDP(2m,m): 2m teams and m facilities. There exists a solution for
every m 6= 2.

I BTDP(2m+ 1,m): extension of the circle method:

Step 1: arrange the teams 1, . . . , 2m+ 1 in an elongated pentagon.
Indicate a facility associated with each row containing two
teams.

Step 2: For each slot k = 1, . . . , 2m+ 1, give the team at the top of
the pentagon the bye. For each row with two teams i, j
associated with facility f assign gij to skf. Then shift the
teams around the pentagon one position in a clockwise
direction.
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Bipartite Tournament

Input: Two teams with n players T1 = {x1, . . . , x2} and T2 = {y1, . . . , yn}.

Output: A mapping of the games in the set G = {gij i ∈ T1, j ∈ T2}, to the
slots in the set S = {sk, k = 1, . . . , n} such that exactly one game including t
is mapped to any given slot for all t ∈ T1 ∪ T2

Latin square ⇔ bipartite tournament (l[i, j] if player xi meets player yj in lij)
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Extensions:
I n facilities and seek for a balanced BT in which each player plays exactly

once in each facility⇐⇒ two mutually orthogonal Latin squares
(rows are slots and columns facilities)

A pair of Latin squares A = [aij] and B = [bij] are orthogonal iff the the
ordered pairs (aij, bij) are distinct for all i and j.

1 2 3 1 2 3 1 1 2 2 3 3
2 3 1 3 1 2 2 3 3 1 1 2
3 1 2 2 3 1 3 2 1 3 2 1

A and B
A B superimposed

Mutually orthogonal Latin squares do not exist if m = 2, 6.

I Chess tournaments (assigning white and black)

I avoid carry-over effects, no two players xi and yj may play the same
sequence of opponents yp and followed immediately by yq. ⇒ complete
latin square.
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Graph Algorithms

A spanning subgraph of G = (V, E) with all vertices of degree k is called a
k-factor (A subgraph H ⊆ G is a 1-factor ⇔ E(H) is a matching of V)

A 1-factorization of Kn ≡ decomposition of Kn in perfect matchings
≡ edge coloring of Kn

A SRRT among 2m teams is modeled by a complete graph K2m with edge
(i, j) representing the game between i and j and the schedule correspond to
an edge coloring.

To include venues, the graph K2m is oriented
(arc (ij) represents the game team i at team j)
and the edge coloring is said an oriented coloring.

A DRRT is modeled by the oriented graph G2m with two arcs aij and aji for
each ij and the schedule correspond to a decomposition of the arc set that is
equivalent to the union of two oriented colorings of K2m.
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Assigning venues with minimal number of breaks:

I SRRT: there are at least 2m− 2 breaks. Extension of circle method.

I DRRT: Any decomposition of G2m−2 has at least 6m− 6 breaks.

I SRRT for n odd: the complete graph on an odd number of nodes
k2m+1 has an oriented factorization with no breaks.
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Three phase approach by IP

1. Find pattern sets (basic SRRT)

Variable

xijk ∈ {0, 1} ∀i, j = 1, . . . , n; i < j, k = 1, . . . , n− 1

Every team plays exactly once in each slot∑
j:j>i

xijk = 1 ∀i = 1, . . . , n; k = 1, . . . , n− 1

Each team plays every opponent exactly once.∑
k

xijk = 1 ∀i, j = 1, . . . , n; i < j
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Branch and cut algorithm
Adds odd-set constrains that strengthen the one-factor constraint, that is,
exactly one game for each team in each slot

∑
i∈S,j6∈S

xijk ≤ 1 ∀S ⊆ T, |S| is odd, k = 1, . . . , n− 1
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2. Find the timetable selecting the patterns and assining the games.

Variable denoting that pattern i plays at j in slot k. It is defined only if
the ith pattern has an A in its kth position, and the jth has an H in its
kth position. (S pattern set; T round set; F set of feasible triples (ijk))

xijk = {0, 1} ∀i, j ∈ S; k ∈ T, : (ijk) ∈ F

i and j meet at most once:∑
t

xijt +
∑
t

xjit = 1 ∀i, j ∈ S, i 6= j

j plays at most once in a round∑
j:(ijk)∈F

xijk +
∑

j:(jik)∈F
xjik ≤ 1 ∀i ∈ S; k ∈ T

3. Assign teams to selected patterns (assignment problem)
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CP formulation

I CP for phase 1 (games and patterns)

I CP for phase 2: assign actual teams to position in timetable
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Constraints to be included in practice:
I Pattern set constraints

I feasible pattern sequences: avoid three consecutive home or away games
I equally distributed home and away games

I Team-specific constraints
I fixed home and away patterns
I fixed games and opponent constraints
I stadium availability
I forbidden patterns for sets of teams
I constraints on the positioning of top games

Objective: maximize the number of good slots, that is, slots with popular
match-ups later in the season or other TV broadcasting preferences.
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Application Examples

I Dutch Professional Football League [Schreuder, 1992]
1. SRRT canonical schedule with minimum breaks

and mirroring to make a DRRT
2. assign actual teams to the patterns

I European Soccer League [Bartsch, Drexl, Kroger (BDK), 2002]
1. DRRT schedule made of two separate SRRT with complementary

patterns (Germany)
four SRRTs the (2nd,3rd) and (1st,4th) complementary (Austria)

2. teams assigned to patterns with truncated branch and bound
3. games in each round are assigned to days of the week by greedy and local

search algorithms

I Italian Football League [Della Croce, Olivieri, 2006]
1. Search for feasible pattern sets appealing to TV requirements
2. Search for feasible calendars
3. Matching teams to patterns
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Reference

Kelly Easton and George Nemhauser and Michael Trick, Sport
Scheduling, in Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, J.Y-T. Leung (Ed.), Computer & Information
Science Series, Chapman & Hall/CRC, 2004.
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Traveling tournament problem

Input: A set of teams T = {1, . . . , n}; D an n× n integer distance matrix
with elements dij; l, u integer parameters.

Output: A double round robin tournament on the teams in T such that

1. the length of every home stand and road trip is between l and u inclusive
2. the total distance traveled by the teams is minimized
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A metaheuristic approach: Simulated Annealing

Constraints:

I DRRT constraints always satisfied (enforced)
I constraints on repeaters (i may not play at j and host j at home in

consecutive slots) are relaxed in soft constraints

Objective made of:

I total distance
I a component to penalize violation of constraints on repeaters

Ü Penalties are dynamically adjusted to prevent the algorithm from spending
too much time in a space where the soft constraints are not satisfied.
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Neighborhood operators:

I Swap the positions of two slots of games

I Swap the schedules of two teams (except for the games when they play
against)

I Swap venues for a particular pair of games (i at j in slot s and j at i in
slot s ′ becomes i at j in slot s ′ and j at i in slot s)

Use reheating in SA.
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Outline

Problems
I Tanker Scheduling
I Aircraft Routing and Scheduling
I Train Timetabling

MIP Models using complicated variables: Let a variable represent a road trip,
a schedule section, or a whole schedule for a crew.

I Set packing
I Set partitioning

Solution techniques
I Branch and bound
I Local branching
I Branch and price (column generation)
I Subgradient optimization of Lagrangian multipliers

(solution without Simplex)
448



Planning problems in public transport

Phase: Planning Scheduling Dispatching

Horizon: Long Term Timetable Period Day of Operation

Objective: Service Level Cost Reduction Get it Done

Steps: Network Design Vehicle Scheduling Crew Assignment
Line Planning Duty Scheduling Delay Management
Timetabling Duty Rostering Failure Management
Fare Planning Depot Managementx x

Master Schedule
Dynamic Management−−−−−−−−−−−−−→ Conflict resolution

[Borndörfer, Grötschel, Pfetsch, 2005, ZIB-Report 05-22]
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Tanker Scheduling

Input:
I p ports

limits on the physical characteristics of the ships

I n cargoes:

type, quantity, load port, delivery port, time window constraints on the
load and delivery times

I ships (tanker): s company-owned plus others chartered
Each ship has a capacity, draught, speed, fuel consumption, starting
location and times

These determine the costs of a shipment: cli (company-owned) c∗j
(chartered)

Output: A schedule for each ship, that is, an itinerary listing the ports
visited and the time of entry in each port within the rolling horizon
such that the total cost of transportation is minimized
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Two phase approach:

1. determine for each ship i the set Si of all possible itineraries

2. select the itineraries for the ships by solving an IP problem

Phase 1 can be solved by some ad-hoc enumeration or heuristic algorithm
that checks the feasibility of the itinerary and its cost.

For each itinerary l of ship i compute the profit with respect to charter:

πli =

n∑
j=1

alijc
∗
j − cli

where alij = 1 if cargo j is shipped by ship i in itinerary l and 0 otherwise.
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Phase 2:

A set packing model with additional constraints
Variables

xli ∈ {0, 1} ∀i = 1, . . . , s; l ∈ Si
Each cargo is assigned to at most one ship:

s∑
i=1

∑
l∈Si

alijx
l
i ≤ 1 ∀j = 1, . . . , n

Each tanker can be assigned at most one itinerary∑
l∈Si

xli ≤ 1 ∀i = 1, . . . , s

Objective: maximize profit

max
s∑
i=1

∑
l∈Si

πlix
l
i

Branch and bound (Variable fixing)
Solve LP relaxation (this provides an upper bound) and branch by:

I select a fractional variable with value closest to 0.5
(keep tree balanced)
set a branch xli = 0 and
the other xli = 1 (this rules out the other itineraries of ship i)

I select one ship and branch on its itineraries
select the ship that may lead to largest profit or largest cargo or with
largest number of fractional variables.
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Local Branching
I The procedure is in the spirit of heuristic local search paradigm.
I The neighborhoods are obtained through the introduction in the MIP

model of (invalid) linear inequalities called local branching cuts.
I Takes advantage of black box efficient MIP solvers.

In the previous branch and bound, unclear how to fix variables
Ü Idea: soft fixing

Given a feasible solution x̄ let Ō := {i ∈ B : x̄i = 1}.
Define the k-opt neighborhood N (x̄, k) as the set of feasible solutions
satisfying the additional local branching constraint:

∆(x, x̄) :=
∑
i∈Ō

(1− xi) +
∑
i∈B\Ō

xi ≤ k

(∆ counts the number of flips)

Partition at the branching node:

∆(x, x̄) ≤ k (left branching) or ∆(x, x̄) ≥ k+ 1 (right branching)

454

455

I The idea is that the neighborhood N(x̄, k) corresponding to the left
branch must be “sufficiently small” to be optimized within short
computing time, but still “large enough” to likely contain better solutions
than x.

I According to computational experience, good values for k are in [10, 20]

This procedure coupled with an efficient MIP solver (subgradient
optimization of Lagrangian multipliers) was shown able to solve very large
problems with more than 8000 variables.
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OR in Air Transport Industry

I Aircraft and Crew Schedule Planning
I Schedule Design (specifies legs and times)
I Fleet Assignment
I Aircraft Maintenance Routing
I Crew Scheduling

I crew pairing problem
I crew assignment problem (bidlines)

I Airline Revenue Management
I number of seats available at fare level
I overbooking
I fare class mix (nested booking limits)

I Aviation Infrastructure
I airports

I runaways scheduling (queue models, simulation; dispatching, optimization)
I gate assignments

I air traffic management
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Daily Aircraft Routing and Scheduling (DARS)

Input:
I L set of flight legs with airport of origin and arrival, departure time

windows [ei, li], i ∈ L, duration, cost/revenue
I Heterogeneous aircraft fleet T , with mt aircrafts of type t ∈ T

Output: For each aircraft, a sequence of operational flight legs and
departure times such that operational constraints are satisfied:

I number of planes for each type
I restrictions on certain aircraft types at certain times and certain airports
I required connections between flight legs (thrus)
I limits on daily traffic at certain airports
I balance of airplane types at each airport

and the total profits are maximized.
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I Lt denotes the set of flights that can be flown by aircraft of type t

I St the set of feasible schedules for an aircraft of type t (inclusive of the
empty set)

I alti = {0, 1} indicates if leg i is covered by l ∈ St

I πti profit of covering leg i with aircraft of type i

πlt =
∑
i∈Lt

πtia
l
ti for l ∈ St

I P set of airports, Pt set of airports that can accommodate type t

I oltp and dltp equal to 1 if schedule l, l ∈ St starts and ends, resp., at
airport p

459

A set partitioning model with additional constraints
Variables

x
l
t ∈ {0, 1} ∀t ∈ T ; l ∈ St and x

0
t ∈ N ∀t ∈ T

Maximum number of aircraft of each type:∑
l∈St

x
l
t = mt ∀t ∈ T

Each flight leg is covered exactly once:∑
t∈T

∑
l∈St

a
l
tix

l
t = 1 ∀i ∈ L

Flow conservation at the beginning and end of day for each aircraft type∑
l∈St

(oltp − dltp)x
l
t = 0 ∀t ∈ T ; p ∈ P

Maximize total anticipate profit

max
∑
t∈T

∑
l∈St

π
l
tx
l
t

Solution Strategy: branch-and-price (branch-and-bound + column
generation)

I At the high level branch-and-bound similar to the Tanker Scheduling case

I Upper bounds obtained solving linear relaxations by column generation.

I Decomposition into
I Restricted Master problem, defined over a restricted number of schedules
I Subproblem, used to test the optimality or to find a new feasible schedule

to add to the master problem (column generation)

I Each restricted master problem solved by LP.
It finds current optimal solution and dual variables

I Subproblem (or pricing problem) corresponds to finding longest path with
time windows in a network defined by using dual variables of the current
optimal solution of the master problem. Solve by dynamic programming.
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Train Timetabling

Input:
I Corridors made up of two independent one-way tracks
I L links between L+ 1 stations.
I T set of trains and Tj, Tj ⊆ T , subset of trains that pass through link j

Output: We want to find a periodic (eg, one day) timetable for the trains on
one track (the other can be mirrored) that specifies:

I yij = time train i enters link j
I zij = time train i exists link j

such that specific constraints are satisfied and costs minimized.
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Constraints:
I Minimal time to traverse one link
I Minimum stopping times at stations to allow boarding
I Minimum headways between consecutive trains on each link for safety

reasons
I Trains can overtake only at train stations
I There are some “predetermined” upper and lower bounds on arrival and

departure times for certain trains at certain stations

Costs due to:
I deviations from some “preferred” arrival and departure times for certain

trains at certain stations
I deviations of the travel time of train i on link j
I deviations of the dwelling time of train i at station j
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Solution Approach
I All constraints and costs can be modeled in a MIP with the variables:
yij, zij and xihj = {0, 1} indicating if train i precedes train h

I Two dummy trains T ′ and T ′′ with fixed times are included to compact
and make periodic

I Large model solved heuristically by decomposition.

I Key Idea: insert one train at a time and solve a simplified MIP.

I In the simplified MIP the order in each link of trains already scheduled is
maintained fixed while times are recomputed. The only order not fixed is
the one of the new train inserted k (xihj simplifies to xij which is 1 if k
is inserted in j after train i)
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Overall Algorithm
Step 1 (Initialization)

Introduce two “dummy trains” as the first and last trains in T0
Step 2 (Select an Unscheduled Train) Problem) Select the next train

k through the train selection priority rule

Step 3 (Set up and preprocess the MIP) Include train k in the set T0
Set up MIP(K) for the selected train k
Preprocess MIP(K) to reduce number of 0–1 variables and
constraints

Step 4 (Solve the MIP) Solve MIP(k). If algorithm does not yield
feasible solution STOP.
Otherwise, ass train k to the list of already scheduled trains
and fix for each link the sequences of all trains in T0.

Step 5 (Reschedule all trains scheduled earlier) Consider the current
partial schedule that includes train k.
For each train i ∈ {T0 − k} delete it and reschedule it

Step 6 (Stopping criterion) If T0 consists of all train, then STOP
otherwise go to Step 2.

465

Further References
M. Fischetti and A. Lodi, Local Branching, Mathematical Programming,
98(1-3), pp 23-47, 2003.

C. Barnhart, P. Belobaba, A. Odoni, Applications of Operations Research
in the Air Transport Industry, Transportation Science, 2003, vol. 37,
issue 4, p 368.
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Exercise

Short-term Railway Traffic Optimization
Conflict resolution problem (CRP) with two trains traveling at different speed:

Block sections: track segment with signals (fixed NS54)

At time t = 0 there are two trains in the network.
Train TA is a slow train running from block section 3 to block section 9, and
stopping at platform 6. It can enter a block section only if the signal aspect
is yellow or green.
Train TB is a fast train running from block section 1 to block section 9
through platform 7 without stopping. It can enter a block section at high
speed only if the signal aspect is green.
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A blocking job shop model:

Given:
I Passing of trains in a block Ü Operation

I Traverse (running) times Ü Processing times

I Itinerary of the train Ü Precedences

I Safety standards between blocks Ü Setup times

Task:
I Find the starting times t1, t2, . . . , tn, (or the precedences) such that:

I No conflict (two trains on the same track segment at the same time)
I Minimize maximum delay (or disrupt least possible the original plan)
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I Signals and train speed constraints can be modeled as blocking
constraints Ü Alternative graph

I Speed and times goals can be modeled with time lags

I δAP scheduled departing time from platform P

I −γAP planned due dates
469
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Workforce Scheduling

Workforce Scheduling:
I Crew Scheduling and Rostering
I Employee Timetabling

Shift: consecutive working hours
Roster: shift and rest day patterns over a fixed period of time (a week or a
month)

Two main approaches:
I coordinate the design of the rosters and the assignment of the shifts to

the employees, and solve it as a single problem.
I consider the scheduling of the actual employees only after the rosters are

designed, solve two problems in series.
Features to consider: rest periods, days off, preferences, availabilities, skills.
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Crew Scheduling and Rostering

Workforce scheduling applied in the transportation and logistics sector for
enterprises such as airlines, railways, mass transit companies and bus
companies (pilots, attendants, ground staff, guards, drivers, etc.)
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Employee Timetabling

Employee timetabling (aka labor scheduling) is the operation of assigning
employees to tasks in a set of shifts during a fixed period of time, typically a
week.
Days off, shifts, tours (set of shifts)

Examples of employee timetabling problems include:
I assignment of nurses to shifts in a hospital,
I assignment of workers to cash registers in a large store
I assignment of phone operators to shifts and stations in a service-oriented

call-center

Differences with Crew scheduling:

I no need to travel to perform tasks in locations
I start and finish time not predetermined
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Crew Scheduling

Input:
I Flight leg (departure, arrival, duration)
I A set of feasible combinations of flights for a crew

Output: A subset of flights feasible for a crew

Set partitioning problem!

Often treated as set covering because:
I its linear programming relaxation is numerically more stable and thus

easier to solve
I it is trivial to construct a feasible integer solution from a solution to the

linear programming relaxation
I it makes possible to restrict to only rosters of maximal length

Extension: a set of crews
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Subgradient Optimization Lagrange Multipliers

max cTx

st Ax ≤ b
Dx ≤ d
xj ∈ Z+, j = 1, . . . , n

Lagrange Relaxation, multipliers λ ≥ 0
max zLR(λ) = cTx− λ(Dx− d)

st Ax ≤ b
xj ∈ Z+, j = 1, . . . , n

Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)
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Lagrangian dual solved by Subgradient optimization
I Works well due to convexity
I Roots in nonlinear programming
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Shift Scheduling

Creating daily shifts:

I cycle made of m time intervals not necessarily identical
I during each period, bi personnel is required
I n different shift patterns (columns of matrix A)

min cTx

st Ax ≥ b
x ≥ 0 and integer
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(k,m)-cyclic Staffing Problem

Assign persons to an m-period cyclic schedule so that:
I requirements bi are met
I each person works a shift of k consecutive periods and is free for the

other m− k periods. (periods 1 and m are consecutive)
and the cost of the assignment is minimized.

min cx

st



1 0 0 1 1 1 1

1 1 0 0 1 1 1

1 1 1 0 0 1 1

1 1 1 1 0 0 1

1 1 1 1 1 0 0

0 1 1 1 1 1 0

0 0 1 1 1 1 1


x ≥ b

x ≥ 0 and integer

(P)
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Recall: Totally Unimodular Matrices
Definition: A matrix A is totally unimodular (TU) if every square submatrix
of A has determinant +1, -1 or 0.

Proposition 1: The linear program max{cx : Ax ≤ b, x ∈ Rm+ } has an
integral optimal solution for all integer vectors b for which it has a finite
optimal value if and only if A is totally unimodular

Efficient algorithms to recognize if a matrix is totally unimodular are
nontrivial.
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Proposition 2: A matrix A is TU if
(i) aij ∈ {+1,−1, 0} for all i, j
(ii) each column contains at most two nonzero coefficients (

∑m
i=1 |aij| ≤ 2)

(iii) there exists a partition (M1,M2) of the set M of rows such that each
column j containing two nonzero coefficients satisfies∑
i∈M1

aij −
∑
i∈M2

aij = 0

Proposition 3: A matrix is TU if
(i) aij ∈ {+1,−1, 0} for all i, j
(ii) for any subset M of the rows, there exists a partition (M1,M2) of M

such that each column j satisfies∣∣∣∣∣∑
i∈M1

aij −
∑
i∈M2

aij

∣∣∣∣∣ ≤ 1
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Definition: A (0, 1)–matrix B has the consecutive 1’s property if for any
column j, bij = bi ′j = 1 with i < i ′ implies blj = 1 for i < l < i ′. That is, if
there is a permutation of the rows such that the 1’s in each column appear
consecutively.

Whether a matrix has the consecutive 1’s property can be determined in
polynomial time [ D. R. Fulkerson and O. A. Gross; Incidence matrices and
interval graphs. 1965 Pacific J. Math. 15(3) 835-855.]

A matrix with consecutive 1’s property satisfies Proposition 3 and is therefore
TU.
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What about this matrix? 

1 0 0 1 1 1 1

1 1 0 0 1 1 1

1 1 1 0 0 1 1

1 1 1 1 0 0 1

1 1 1 1 1 0 0

0 1 1 1 1 1 0

0 0 1 1 1 1 1


Definition A (0, 1)-matrix B has the circular 1’s property for rows (resp. for
columns) if the columns of B can be permuted so that the 1’s in each row are
circular, that is, appear in a circularly consecutive fashion

The circular 1’s property for columns does not imply circular 1’s property for
rows.

Whether a matrix has the circular 1’s property for rows (resp. columns) can
be determined in O(m2n) time [A. Tucker, Matrix characterizations of
circular-arc graphs. (1971) Pacific J. Math. 39(2) 535-545]
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Integer programs where the constraint matrix A have the circular 1’s property
for rows can be solved efficiently as follows:

Step 1 Solve the linear relaxation of (P) to obtain x ′1, . . . , x
′
n. If

x ′1, . . . , x
′
n are integer, then it is optimal for (P) and STOP.

Otherwise go to Step 2.
Step 2 Form two linear programs LP1 and LP2 from the relaxation of

the original problem by adding respectively the constraints

x1 + . . .+ xn = bx ′1 + . . .+ x ′nc (LP1)

and

x1 + . . .+ xn = dx ′1 + . . .+ x ′ne (LP2)

The solutions to LP1 and LP2 can be taken to be integral and
the best of the two solutions is an optimal solution to the
staffing problem (P)
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Cyclic Staffing with Overtime
I Hourly requirements bi
I Basic work shift 8 hours
I Overtime of up to additional 8 hours possible

Days-Off Scheduling
I Guarantee two days-off each week, including every other weekend.

IP with matrix A:
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Cyclic Staffing with Part-Time Workers
I Columns of A describe the work-shifts
I Part-time employees can be hired for each time period i at cost c ′i per

worker

min cx+ c ′x ′

st Ax+ Ix ′ ≥ b
x, x ′ ≥ 0 and integer
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Cyclic Staffing with Linear Penalties for Understaffing and
Overstaffing

I demands are not rigid
I a cost c ′i for understaffing and a cost c ′′i for overstaffing

min cx+ c ′x ′ + c ′′(b−Ax− x ′)

st Ax+ Ix ′ ≥ b
x, x ′ ≥ 0 and integer
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Once rosters (set of shifts) are designed, people can be assigned to them
according to availabilities, preferences, skills.

Alternatively one can take care of these two phases at the same time:

492

Nurse Scheduling

I Hospital: head nurses on duty seven days a week 24 hours a day
I Three 8 hours shifts per day (1: daytime, 2: evening, 3: night)
I In a day each shift must be staffed by a different nurse
I The schedule must be the same every week
I Four nurses are available (A,B,C,D) and must work at least 5 days a

week.
I No shift should be staffed by more than two different nurses during the

week
I No employee is asked to work different shifts on two consecutive days
I An employee that works shifts 2 and 3 must do so at least two days in a

row.
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Mainly a feasibility problem

A CP approach
Two solution representations

Sun Mon Tue Wed Thu Fri Sat
Shift 1 A B A A A A A
Shift 2 C C C B B B B
Shift 3 D D D D C C D

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3
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Variables wsd nurse assigned to shift s on day d and yid the shift assigned
for each day

wsd ∈ {A,B,C,D} yid ∈ {0, 1, 2, 3}

Three different nurses are scheduled each day

alldiff(w·d) ∀d

Every nurse is assigned to at least 5 days of work

cardinality(w·· | (A,B,C,D), (5, 5, 5, 5), (6, 6, 6, 6))

At most two nurses work any given shift

nvalues(ws· | 1, 2) ∀s
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All shifts assigned for each day

alldiff(y·d) ∀d

Maximal sequence of consecutive variables that take the same values

stretch-cycle(yi·|(2, 3), (2, 2), (6, 6), P) ∀i, P = {(s, 0), (0, s)|s = 1, 2, 3}

Channeling constraints between the two representations:
on any day, the nurse assigned to the shift to which nurse i is assigned must
be nurse i

wyid,d = i ∀i, d

ywsd,d = s ∀s, d

Global Constraint Catalog
http://www.emn.fr/x-info/sdemasse/gccat/
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Solved by

I Constraint Propagation (Edge filtering)

I Search: branch on domains (first fail)

I Symmetry breaking

Local search methods and metaheuristics are used if the problem has large
scale. Procedures very similar to what we saw for timetabling.
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Problem Definition

Vehicle Routing: distribution of goods between depots and customers.

Delivery, collection, transportation.

Examples: solid waste collection, street cleaning, school bus routing,
dial-a-ride systems, transportation of handicapped persons, routing of
salespeople and maintenance unit.

Vehicle Routing Problems
Input: Vehicles, depots, road network, costs and customers requirements.
Output: Set of routes such that:

I requirement of customers are fulfilled,
I operational constraints are satisfied and
I a global transportation cost is minimized.
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Refinement

Road Network
I represented by a (directed or undirected) complete graph
I travel costs and travel times on the arcs obtained by shortest paths

Customers
I vertices of the graph
I collection or delivery demands
I time windows for service
I service time
I subset of vehicles that can serve them
I priority (if not obligatory visit)
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Vehicles
I capacity
I types of goods
I subsets of arcs traversable
I fix costs associated to the use of a vehicle
I distance dependent costs
I a-priori partition of customers
I home depot in multi-depot systems
I drivers with union contracts

Operational Constraints
I vehicle capacity
I delivery or collection
I time windows
I working periods of the vehicle drivers
I precedence constraints on the customers
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Objectives
I minimization of global transportation cost (variable + fixed costs)
I minimization of the number of vehicles
I balancing of the routes
I minimization of penalties for un-served customers

History:
Dantzig, Ramser “The truck dispatching problem”, Management Science,
1959
Clark, Wright, “Scheduling of vehicles from a central depot to a number of
delivery points”. Operation Research. 1964
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Vehicle Routing Problems

I Capacited (and Distance Constrained) VRP (CVRP and DCVRP)
I VRP with Time Windows (VRPTW)
I VRP with Backhauls (VRPB)
I VRP with Pickup and Delivery (VRPPD)
I Periodic VRP (PVRP)
I Multiple Depot VRP (MDVRP)
I Split Delivery VRP (SDVRP)
I VRP with Satellite Facilities (VRPSF)
I Site Dependent VRP
I Open VRP
I Stochastic VRP (SVRP)
I ...
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Capacited Vehicle Routing (CVRP)

Input: (common to all VRPs)
I (di)graph (strongly connected, typically complete) G(V,A), where
V = {0, . . . , n} is a vertex set:

I 0 is the depot.
I V ′ = V\{0} is the set of n customers
I A = {(i, j) : i, j ∈ V} is a set of arcs

I C a matrix of non-negative costs or distances cij between customers i
and j (shortest path or Euclidean distance)
(cik + ckj ≥ cij ∀ i, j ∈ V)

I a non-negative vector of costumer demands di

I a set of K (identical!) vehicles with capacity Q, di ≤ Q
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Task:
Find collection of K circuits with minimum cost, defined as the sum of the
costs of the arcs of the circuits and such that:

I each circuit visits the depot vertex

I each customer vertex is visited by exactly one circuit; and

I the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.

Note: lower bound on K
I dd(V ′)/Qe

I number of bins in the associated Bin Packing Problem
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A feasible solution is composed of:

I a partition R1, . . . , Rm of V ;

I a permutation πi of Ri
⋃
0 specifying the order of the customers on

route i.

A route Ri is feasible if
∑πm
i=π1

di ≤ Q.

The cost of a given route (Ri) is given by: F(Ri) =
∑πim
i=πi0

ci,i+1

The cost of the problem solution is: FVRP =
∑m
i=1 F(Ri) .
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Relation with TSP
I VRP with K = 1, no limits, no (any) depot, customers with no demand

Ü TSP

I VRP is a generalization of the Traveling Salesman Problem (TSP) Ü is
NP-Hard.

I VRP with a depot, K vehicles with no limits, customers with no demand
Ü Multiple TSP = one origin and K salesman

I Multiple TSP is transformable in a TSP by adding K identical copies of
the origin and making costs between copies infinite.
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Variants of CVRP:
I minimize number of vehicles

I different vehicles Qk, k = 1, . . . , K

I Distance-Constrained VRP: length tij on arcs and total duration of a
route cannot exceed T associated with each vehicle
Generally cij = tij
(Service times si can be added to the travel times of the arcs:
t ′ij = tij + si/2+ sj/2)

I Distance constrained CVRP
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Vehicle Routing with Time Windows (VRPTW)

Further Input:
I each vertex is also associated with a time interval [ai, bj].

I each arc is associated with a travel time tij

I each vertex is associated with a service time si

Task:
Find a collection of K simple circuits with minimum cost, such that:

I each circuit visit the depot vertex

I each customer vertex is visited by exactly one circuit; and

I the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.

I for each customer i, the service starts within the time windows [ai, bi]
(it is allowed to wait until ai if early arrive)
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Time windows induce an orientation of the routes.
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Variants

I Minimize number of routes
I Minimize hierarchical objective function
I Makespan VRP with Time Windows (MPTW)

minimizing the completion time
I Delivery Man Problem with Time Windows (DMPTW)

minimizing the sum of customers waiting times
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Solution Techniques for CVRP

I Integer Programming (only formulations)

I Construction Heuristics

I Local Search

I Metaheuristics

I Hybridization with Constraint Programming
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Basic Models

I vehicle flow formulation

integer variables on the edges counting the number of time it is
traversed
two or three index variables

I commodity flow formulation

additional integer variables representing the flow of commodities
along the paths traveled bu the vehicles

I set partitioning formulation
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VRPTW

Pre-processing
I Time windows reduction

I Increase earliest allowed departure time, ak
I Decrease latest allowed arrival time bk

I Arc elimination
I ai + tij > bj Ü arc (i, j) cannot exist
I di + dj > C Ü arcs (i, j) and (j, i) cannot exist
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Construction Heuristics for CVRP

I TSP based heuristics

I Savings heuristics (Clarke and Wright)

I Insertion heuristics

I Cluster-first route-second
I Sweep algorithm
I Generalized assignment
I Location based heuristic
I Petal algorithm

I Route-first cluster-second

Cluster-first route-second seems to perform better
(Note: Distinction Construction Heuristic / Iterative Improvement
is often blurred)
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Construction heuristics for TSP
They can be used for route-first cluster-second or for growing multiple tours
subject to capacity constraint.

I Heuristics that Grow Fragments
I Nearest neighborhood heuristics
I Double-Ended Nearest Neighbor heuristic
I Multiple Fragment heuristic (aka, greedy heuristic)

I Heuristics that Grow Tours
I Nearest Addition
I Farthest Addition
I Random Addition
I Clarke-Wright savings heuristic

I Nearest Insertion
I Farthest Insertion
I Random Insertion

I Heuristics based on Trees
I Minimum span tree heuristic
I Christofides’ heuristics

(But recall! Concorde: http://www.tsp.gatech.edu/)
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[Bentley, 1992]

NN (Flood, 1956)
1. Randomly select a starting node
2. Add to the last node the closest node until no more node is available
3. Connect the last node with the first node

Running time O(N2)
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[Bentley, 1992]

Add the cheapest edge provided it does not create a cycle.
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[Bentley, 1992]

NA
1. Select a node and its closest node and build a tour of two nodes
2. Insert in the tour the closest node v until no more node is available

Running time O(N3)
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[Bentley, 1992]

FA
1. Select a node and its farthest and build a tour of two nodes
2. Insert in the tour the farthest node v until no more node is available

FA is more efficient than NA because the first few farthest points sketch a
broad outline of the tour that is refined after.

Running time O(N3)
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[Bentley, 1992]
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[Bentley, 1992]

1. Find a minimum spanning tree O(N2)

2. Append the nodes in the tour in a depth-first, inorder traversal

Running time O(N2) A = MST(I)/OPT(I) ≤ 2
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[Bentley, 1992]

1. Find the minimum spanning tree T. O(N2)

2. Find nodes in T with odd degree and find the cheapest perfect matching
M in the complete graph consisting of these nodes only. Let G be the
multigraph all nodes and edges in T and M. O(N3)

3. Find an Eulerian walk (each node appears at least once and each edge
exactly once) on G and an embedded tour. O(N)

Running time O(N3) A = CH(I)/OPT(I) ≤ 3/2
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Construction Heuristics Specific for VRP

Clarke-Wright Saving Heuristic (1964)

1. Start with an initial allocation of one vehicle to each customer (0 is the
depot for VRP or any chosen city for TSP)

Sequential:
2. consider in turn route (0, i, . . . , j, 0) determine ski and sjl
3. merge with (k, 0) or (0, l)

529

Construction Heuristics Specific for VRP

Clarke-Wright Saving Heuristic (1964)

1. Start with an initial allocation of one vehicle to each customer (0 is the
depot for VRP or any chosen city for TSP)

Parallel:
2. Calculate saving sij = c0i + c0j − cij and order the saving in

non-increasing order
3. scan sij

merge routes if i) i and j are not in the same tour ii) neither i and j are
interior to an existing route iii) vehicle and time capacity are not
exceeded
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Matching Based Saving Heuristic

1. Start with an initial allocation of one vehicle to each customer (0 is the
depot for VRP or any chosen city for TSP)

2. Compute spq = t(Sp) + t(Sq) − t(Sp ∪ Sq) where t(·) is the TSP
solution

3. solve a max weighted matching on the Sk with weights spq on edges. A
connection between a route p and q exists only if the merging is feasible.
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Insertion Heuristic
α(i, k, j) = cik + cki − λcij

β(i, k, j) = µc0k − α(i, k, j)

1. construct emerging route (0, k, 0)

2. compute for all k unrouted the feasible insertion cost:

α∗(ik, k, jk) = min{α(i, k, j)}

if no feasible insertion go to 1 otherwise choose k∗ such that

β∗(i∗k, k
∗, j∗k) = max{β(ik, k, jk}

532

Cluster-first route-second: Sweep algorithm [Wren & Holliday (1971)]

1. Choose i∗ and set θ(i∗) = 0 for the rotating ray
2. Compute and rank the polar coordinates (θ, ρ) of each point
3. Assign customers to vehicles until capacity not exceeded. If needed start

a new route. Repeat until all customers scheduled.
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Cluster-first route-second: Generalized-assignment-based algorithm [Fisher &
Jaikumur (1981)]

1. Choose a jk at random for each route k
2. For each point compute

dik = min{c0,i + ci,jk + cjk,0, c0jk + cjk,i + ci,0} − (c0,jk + cjk,0)

3. Solve GAP with dik, Q and qi
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Cluster-first route-second: Location based heuristic [Bramel & Simchi-Levi
(1995)]

1. Determine seeds by solving a capacited location problem (k-median)

2. Assign customers to closest seed

(better performance than insertion and saving heuristics)
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Cluster-first route-second: Petal Algorithm

1. Construct a subset of feasible routes

2. Solve a set partitioning problem
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Route-first cluster-second [Beasley]

1. Construct a TSP tour over all customers

2. Choose an arbitrary orientation of the TSP;
partition the tour according to capacity constraint;
repeat for several orientations and select the best
Alternatively, solve a shortest path in an acyclic digraph with cots on
arcs: dij = c0i + c0j + lij where lij is the cost of traveling from i to j in
the TSP tour.

(not very competitive)
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Exercise

Which heuristics can be used to minimize K
and which one need to have K fixed a priori?
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Construction Heuristics for VRPTW

Extensions of those for CVRP [Solomon (1987)]

I Savings heuristics (Clarke and Wright)

I Time-oriented nearest neighbors

I Insertion heuristics

I Time-oriented sweep heuristic

543

Time-Oriented Nearest-Neighbor
I Add the unrouted node “closest” to the depot or the last node added

without violating feasibility
I Metric for “closest”:

cij = δ1dij + δ2Tij + δ3vij

dij geographical distance
Tij time distance
vij urgency to serve j
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Insertion Heuristics
Step 1: Compute for each unrouted costumer u the best feasible

position in the route:

c1(i(u), u, j(u)) = min
p=1,...,m

{c1(ip−1, u, ip)}

(c1 is a composition of increased time and increase route
length due to the insertion of u)
(use push forward rule to check feasibility efficiently)

Step 2: Compute for each unrouted customer u which can be feasibly
inserted:

c2(i(u
∗), u∗, j(u∗)) = max

u
{λd0u − c1(i(u), u, j(u))}

(max the benefit of servicing a node on a partial route rather
than on a direct route)

Step 3: Insert the customer u∗ from Step 2
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Local Search for CVRP and VRPTW

I Neighborhoods structures:

I Intra-route: 2-opt, 3-opt, Lin-Kernighan (not very well suited) 2H-opt,
Or-opt

I Inter-routes: λ-interchange, relocate, exchange, cross, 2-opt∗, ejection
chains, GENI

I Solution representation and data structures
I They depend on the neighborhood.
I It can be advantageous to change them from one stage to another of the

heuristic
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Intra-route Neighborhoods

2-opt

{i, i+ 1}{j, j+ 1} −→ {i, j}{i+ 1, j+ 1}

i i+1

jj+1

i i+1

jj+1

O(n2) possible exchanges
One path is reversed
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Intra-route Neighborhoods

3-opt

{i, i+ 1}{j, j+ 1}{k, k+ 1} −→ . . .

i i+1

kk+1

j

j+1

i i+1

kk+1

j

j+1

i i+1

kk+1

j

j+1

O(n3) possible exchanges
Paths can be reversed
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Intra-route Neighborhoods

Or-opt [Or (1976)]
{i1 − 1, i1}{i2, i2 + 1}{j, j+ 1} −→ {i1 − 1, i2 + 1}{j, i1}{i2, j+ 1}

jj+1

i −11 i +1

i 21

2

i 

jj+1

i −11 i +1

i 21

2

i 

sequences of one, two, three consecutive vertices relocated
O(n2) possible exchanges — No paths reversed
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Time windows: Feasibility check

In TSP verifying k-optimality requires O(nk) time
In TSPTW feasibility has to be tested then O(nk+1) time

(Savelsbergh 1985) shows how to verify constraints in constant time
Search strategy + Global variables

⇓
O(nk) for k-optimality in TSPTW
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Search Strategy
I Lexicographic search, for 2-exchange:

I i = 1, 2, . . . , n− 2 (outer loop)
I j = i+ 2, i+ 3, . . . , n (inner loop)

1

2

3

4

5

{1,2}{3,4}−>{1,3}{2,4}1

2

3

4

5

{1,2}{4,5}−>{1,4}{2,5}1

2

3

4

5

Previous path is expanded by the edge {j− 1, j}
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Global variables (auxiliary data structure)

I Maintain auxiliary data such that it is possible to:

I handle single move in constant time

I update their values in constant time

Ex.: in case of time windows:

I total travel time of a path

I earliest departure time of a path

I latest arrival time of a path
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Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]
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Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]
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Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]
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Inter-route Neighborhoods

GENI: generalized insertion [Gendreau, Hertz, Laporte, Oper. Res. (1992)]
I select the insertion restricted to the neighborhood of the vertex to be

added (not necessarily between consecutive vertices)
I perform the best 3- or 4-opt restricted to reconnecting arc links that are

close to one another.

General recommendation: use a combination of 2-opt∗ + or-opt [Potvin,
Rousseau, (1995)]

However,

I Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

I It is important to make such algorithms as much efficient as possible.

I Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

I The assessment is conducted through:
I analytical analysis (computational complexity)
I experimental analysis
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Tabu Search for VRPTW [Potvin (1996)]

Initial solution: Solomon’s insertion heuristic

Neighborhood: or-opt and 2-opt* (in VNS fashion or neighborhood union)
speed up in or-opt: i is moved between j and j+ q if i is
one of the h nearest neighbors

Step : best improvement

Tabu criterion: forbidden to reinsert edges which were recently removed

Tabu length: fixed

Aspiration criterion: tabu move is overridden if an overall best is reached

End criterion: number of iterations without improvements
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Taburoute

[Gendreau, Hertz, Laporte, 1994]
Neighborhood: remove one vertex from one route and insert with GENI in

another that contains one of its p nearest neighbors
Re-optimization of routes at different stages

Tabu criterion: forbidden to reinsert vertex in route

Tabu length: random from [5, 10]

Evaluation function: possible to examine infeasible routes + diversification
component:

I penalty term measuring overcapacity
(every 10 iteration multiplied or divided by 2)

I penalty term measuring overduration
I frequency of movement of a vertex currently considered

Overall strategy: false restart (initially several solutions, limited search for
each of them, selection of the best)

562

False restart:
Step 1: (Initialization) Generate d√n/2e initial solutions and perform

tabu search on W ′ ⊂W = V \ {0} (|W ′| ≈ 0.9|W|) up to 50
idle iterations.

Step 2: (Improvement) Starting with the best solution observed in
Step 1 perform tabu search on W ′ ⊂W = V \ {0}

(|W ′| ≈ 0.9|W|) up to 50n idle iterations.

Step 3: (Intensification) Starting with the best solution observed in
Step 2, perform tabu search up to 50 idle iterations.
Here W ′ is the set of the d|V |/2e vertices that have been most
often moved in Steps 1 and 2.
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Adaptive Memory Procedure

[Rochart and Taillard, 1995]

1. Keep an adaptive memory as a pool of good solutions

2. Some element (single tour) of these solutions are combined together to
form new solution (more weight is given to best solutions)

3. Partial solutions are completed by an insertion procedure.

4. Tabu search is applied at the tour level
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Granular Tabu Search

[Toth and Vigo, 1995]

Long edges are unlikely to be in the optimal solution

⇓
Remove those edges that exceed a granularity threshold ν

ν = βc̄

I β sparsification parameter

I c̄ average length for a solution from a construction heuristic

I adjust β after a number of idle iterations
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Ant Colony System [Gambardella et al. 1999]

VRP-TW: in case of vehicle and distance minimization two ant
colonies are working in parallel on the two objective functions

(colonies exchange pheromone information)

Constraints: A constructed solution must satisfy i) each customer visited
once ii) capacity not exceeded iii) Time windows not violated

Pheromone trails: associated with connections (desirability of order)

Heuristic information: savings + time considerations

Solution construction:

pkij =
ταijη

β
ij∑

l∈Nkl τ
α
ilη
β
il

j ∈ Nki

if no feasible, open a new route
or decide routes to merge
if customers left out use an insertion procedure

Pheromone update:

Global τij ← τij + ρ∆τbsij ∀(i, j) ∈ Tbs

Local τij ← (1− ε)τij + ετbso ∀(i, j) ∈ Tbs
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Vehicle Routing with Backhauls (VRPB)

Further Input from CVRP:
I a partition of customers:
L = {1, . . . , n} Lineahaul customers (deliveries)
B = {n+ 1, . . . , n+m} Backhaul customers (collections)

I precedence constraint:
in a route, customers from L must be served before customers from B

Task: Find a collection of K simple circuits with minimum costs, such that:
I each circuit visit the depot vertex
I each customer vertex is visited by exactly one circuit; and
I the sum of the demands of the vertices visited by a circuit does not

exceed the vehicle capacity Q.
I in any circuit all the linehaul customers precede the backhaul customers,

if any.
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Vehicle Routing with Pickup and Delivery (VRPPD)

Further Input from CVRP:
I each customer i is associated with quantities di and pi to be delivered

and picked up, resp.
I for each customer i, Oi denotes the vertex that is the origin of the

delivery demand and Di denotes the vertex that is the destination of the
pickup demand

Task:
Find a collection of K simple circuits with minimum costs, such that:

I each circuit visit the depot vertex
I each customer vertex is visited by exactly one circuit; and
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q
I for each customer i, the customer Oi when different from the depot,

must be served in the same circuit and before customer i
I for each customer i, the customer Di when different from the depot,

must be served in the same circuit and after customer i
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Multiple Depots VRP

Further Input from CVRP:
I multiple depots to which customers can be assigned
I a fleet of vehicles at each depot

Task:
Find a collection of K simple circuits for each depot with minimum costs,
such that:

I each circuit visit the depot vertex
I each customer vertex is visited by exactly one circuit; and
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q
I vehicles start and return to the depots they belong

Vertex set V = {1, 2, . . . , n} and V0 = {n+ 1, . . . , n+m}

Route i defined by Ri = {l, 1, . . . , l}
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Periodic VRP

Further Input from CVRP:
I planning period of M days

Task:
Find a collection of K simple circuits with minimum costs, such that:

I each circuit visit the depot vertex
I each customer vertex is visited by exactly one circuit; and
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q
I A vehicle may not return to the depot in the same day it departs.
I Over the M-day period, each customer must be visited l times, where
1 ≤ l ≤M.
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Three phase approach:
1. Generate feasible alternatives for each customer.

Example, M = 3 days {d1, d2, d3} then the possible combinations are:
0→ 000; 1→ 001; 2→ 010; 3→ 011; 4→ 100; 5→ 101; 6→ 110;
7→ 111.
Customer Diary De-

mand
Number of
Visits

Number of
Combina-
tions

Possible
Combina-
tions

1 30 1 3 1,2,4
2 20 2 3 3,4,6
3 20 2 3 3,4,6
4 30 2 3 1,2,4
5 10 3 1 7

2. Select one of the alternatives for each customer, so that the daily
constraints are satisfied. Thus, select the customers to be visited in each
day.

3. Solve the vehicle routing problem for each day.
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Split Delivery VRP

Constraint Relaxation: it is allowed to serve the same customer by different
vehicles. (necessary if di > Q)

Task:
Find a collection of K simple circuits with minimum costs, such that:

I each circuit visit the depot vertex
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q

Note: a SDVRP can be transformed into a VRP by splitting each customer
order into a number of smaller indivisible orders [Burrows 1988].
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Inventory VRP

Input:
I a facility, a set of customers and a planning horizon T
I ri product consumption rate of customer i (volume per day)
I Ci maximum local inventory of the product for customer i
I a fleet of M homogeneous vehicles with capacity Q

Task:
Find a collection of K daily circuits to run over the planing horizon with
minimum costs and such that:

I each circuit visit the depot vertex
I no customer goes in stock-out during the planning horizon
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q
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Other VRPs

VRP with Satellite Facilities (VRPSF)
Possible use of satellite facilities to replenish vehicles during a route.

Open VRP (OVRP)
The vehicles do not need to return at the depot, hence routes are not circuits
but paths

Dial-a-ride VRP (DARP)

I It generalizes the VRPTW and VRP with Pick-up and Delivery by
incorporating time windows and maximum ride time constraints

I It has a human perspective
I Vehicle capacity is normally constraining in the DARP whereas it is often

redundant in PDVRP applications (collection and delivery of letters and
small parcels)
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Vehicle Routing, Rich Models
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Performance of exact methods

Current limits of exact methods [Ropke, Pisinger (2007)]:

CVRP: up to 135 customers by branch and cut and price

VRPTW: 50 customers (but 1000 customers can be solved if the
instance has some structure)

CP can handle easily side constraints but hardly solve VRPs with more than
30 customers.
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Large Neighborhood Search

Other approach with CP: [Shaw, 1998]

I Use an over all local search scheme

I Moves change a large portion of the solution

I CP system is used in the exploration of such moves.

I CP used to check the validity of moves and determine the values of
constrained variables

I As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.
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Solution representation:

I Handled by local search:
Next pointers: A variable ni for every customer i representing the next
visit performed by the same vehicle

ni ∈ N ∪ S ∪ E
where S =

⋃
Sk and E =

⋃
Ek are additional visits for each vehicle k

marking the start and the end of the route for vehicle k

I Handled by the CP system: time and capacity variables.
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In the literature, the overall heuristic idea received different names:

I Removal and reinsertion

I Ruin and repair

I Iterated greedy

I Fix and re-optimize
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Remove
Remove some related customers
(their re-insertion is likely to change something)

Relatedness measure rij

I geographical

rij =
1

D
(d ′(i, j) + d ′(i, j+ n) + d ′(i+ n, j) + d ′(i+ n, j+ n))

I temporal and load based

d ′(u, v) = |Tpi − Tpj | + |Tdi − Tdj | + |li − lj|

I cluster removal

I history based: neighborhood graph removal
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Dispersion sub-problem:
choose q customers to remove with minimal rij

Heuristic stochastic procedure:

I choose a pair randomly;
I select an already removed i and find j that minimizes rij
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Insertion
by CP:

I constraint propagation rules: time windows, load and bound
considerations

I search heuristic most constrained variable + least constrained valued
(for each v find cheapest insertion and choose v with largest such cost)

I Complete search: ok for 15 visits (25 for VRPTW) but with heavy tails

I Limited discrepancy search
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[Shaw, 1998]
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Other insertion procedures:

I Greedy (cheapest insertion)

I Max regret:

∆f
q
i due to insert i into its best position in its qth best route

i = argmax(∆f2i − ∆f1i )
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Advantages of removal-reinsert procedure with many side constraints:

I the search space in local search may become disconnected

I it is easier to implement feasibility checks

I no need of computing delta functions in the objective function
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Further ideas

I Adaptive removal: start by removing 1 pair and increase after a certain
number of iterations

I use of roulette wheel to decide which removal and reinsertion heuristic
to use

pi =
πi∑
πi

for each heuristic i

I SA as accepting criterion after each reconstruction
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Stochastic VRP (SVRP)

Stochastic VRP (SVRP) are VRPs where one or several components of the
problem are random.
Three different kinds of SVRP are:

I Stochastic customers: Each customer i is present with probability pi
and absent with probability 1− pi.

I Stochastic demands: The demand di of each customer is a random
variable.

I Stochastic times: Service times δi and travel times tij are random
variables.
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Current Research Directions

Optimization under uncertainty: some problem parameters are unknown.

I Stochastic optimization: If probability distributions governing the data
are known or can be estimated

In stochastic optimization the goal is to find some policy that is feasible
for all (or almost all) the possible data instances and maximizes the
expectation of some function of the decisions and the random variables.

I Robust optimization: If the parameters are known only within certain
bounds

In robust optimization the goal is to find a solution which is feasible for
all such data and optimal in some sense.
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Current Research Directions

Multistage stochastic optimization:

I Requests arrive dynamically

I Decisions on which requests to serve and how must be taken with a
certain frequency

I Previous decisions can be changed to accommodate the new requests at
best.

I large scale instances

Ü needed fast solvers that account for possible incoming data
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