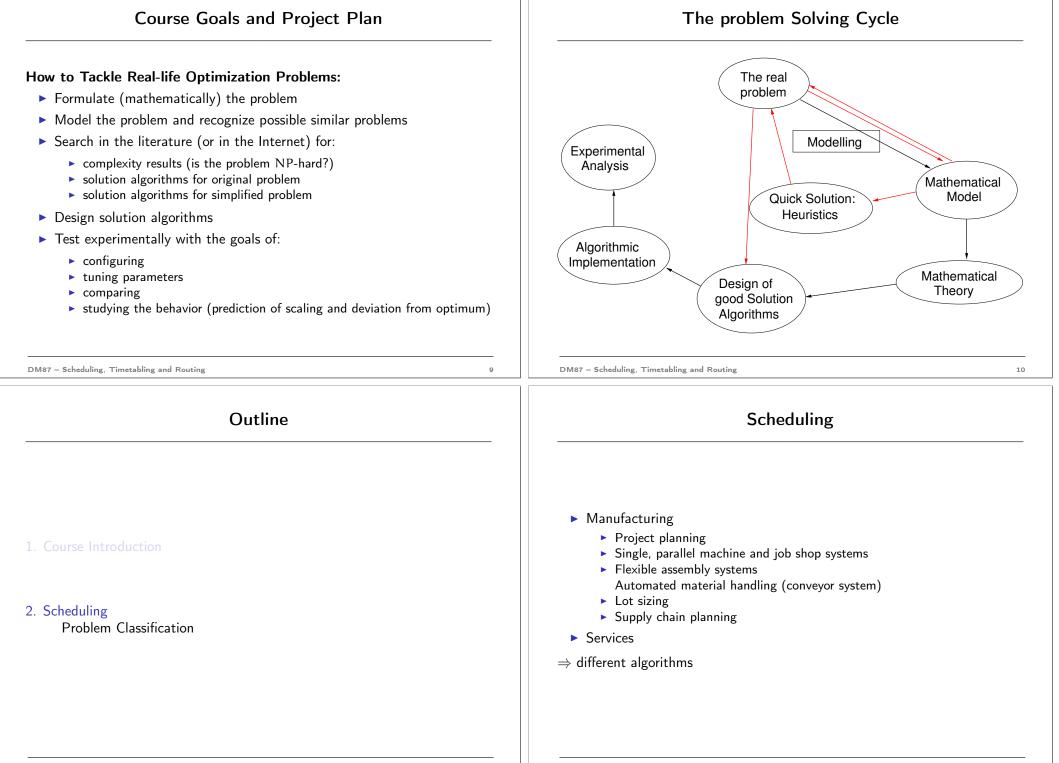
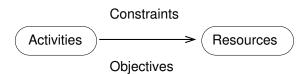
	Outline		
DM87 SCHEDULING, TIMETABLING AND ROUTING			
Lecture 1 Course Introduction.	1. Course Introduction		
Scheduling: Terminology and Classification	2. Scheduling Problem Classification		
Marco Chiarandini			
	DM87 – Scheduling, Timetabling and Routing	2	
Outline	Course Presentation		
 Course Introduction Scheduling Problem Classification 	 Communication media Blackboard (for private communications) Mail, Fora, Blog, Grades, Documents (photocopies), Web-site http://www.imada.sdu.dk/~marco/DM87/ Lecture plan, Syllabus, Links, Exam documents 40 hours of lectures + work at the exam project Schedule: Lectures: Mondays 12:00-13:45, Thursdays 8:15-10:00 Weeks 5-10, 13-16 Last lecture (preliminary date): Thursday, April 17 Exam: June 		


Course Content	Evaluation
 Review of Optimization Methods: Mathematical Programming, Constraint Programming, Heuristics Problem Specific Algorithms (Dynamic Programming, Branch and Bound) Introduction to Scheduling, Terminology, Classification. Single Machine Models Parallel Machine Models Flow Shops and Flexible Flow Shops Job Shops, Open Shops Introduction to Timetabling, Terminology, Classification Interval Scheduling, Reservations Educational Timetabling Workforce and Employee Timetabling Transportation Timetabling Introduction to Vehicle Routing, Terminology, Classification Capacited Vehicle Routing Vehicle Routing with Time Windows 	 Final Assessment (10 ECTS) Oral exam: 30 minutes + 5 minutes defense project meant to assess the base knowledge Group project: free choice of a case study among few proposed ones Deliverables: program + report meant to assess the ability to apply

Course Material

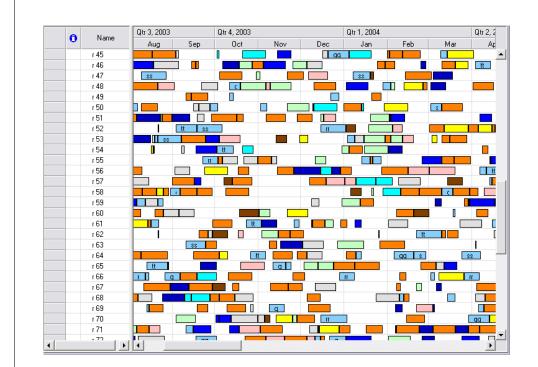

- Literature
 - Text book: M.L. Pinedo, Planning and Scheduling in Manufacturing and Services; Springer Series in Operations Research and Financial Engineering, 2005. (388 DKK)
 - Supplementary book: M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems; 2nd ed., Prentice Hall, 2002.
 - Supplementary book: P. Toth, D. Vigo, eds. The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 2002.
 - **Supplementary Articles**: will be indicated during the course
- Slides
- Class exercises (participatory)

Useful Previous Knowledge for this Course

- Algorithms and data structures
- Programming A and B
- Networks and Integer Programming
- Heuristics for Optimization
- Software Methodologies and Engineering

Problem Definition


Notation:


n, j, k jobs m, i, h machines

DM87 – Scheduling, Timetabling and Routing

Given: a set of **jobs** $\mathcal{J} = \{J_1, \ldots, J_n\}$ that have to be processed by a set of **machines** $\mathcal{M} = \{M_1, \ldots, M_m\}$ Find: a **schedule**, *i.e.*, a mapping of jobs to machines and processing times subject to feasibility and optimization constraints. Scheduling are represented by Gantt charts

machine-oriented

Data Associated to Jobs

- Processing time p_{ij}
- ► Release date r_i
- ▶ Due date d_i (called deadline, if strict)
- ► Weight w_j

13

- ► A job J_j may also consist of a number n_j of operations O_{j1}, O_{j2},..., O_{jnj} and data for each operation.
- \blacktriangleright Associated to each operation a set of machines $\mu_{j1}\subseteq \mathcal{M}$

Data that depend on the schedule (dynamic)

- Starting times S_{ij}
- ► Completion time C_{ij}, C_j

Problem Classification

A scheduling problem is described by a triplet $\alpha \mid \beta \mid \gamma$.

- α machine environment (one or two entries)
- β job characteristics (none or multiple entry)
- γ objective to be minimized (one entry)

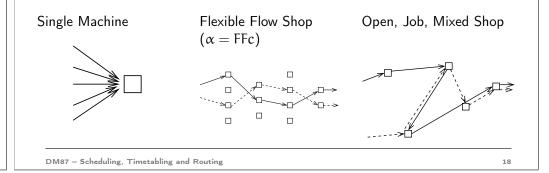
[R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979): Optimization and approximation in deterministic sequencing and scheduling: a survey, Ann. Discrete Math. 4, 287-326.]

DM87 – Scheduling, Timetabling and Routing

The $\alpha |\beta| \gamma$ Classification Scheme

Job Characteristics

$\alpha_1 \alpha_2 | \beta_1 \dots \beta_{13} | \gamma$


- $\beta_1 = \text{prmp}$ presence of preemption (resume or repeat)
- β₂ precedence constraints between jobs (with α = P, F) acyclic digraph G = (V, A)
 - $\beta_2 = prec$ if G is arbitrary
 - $\beta_2 = \{chains, intree, outtree, tree, sp-graph\}$
- $\beta_3 = r_j$ presence of release dates
- $\beta_4 = p_j = p$ preprocessing times are equal
- $(\beta_5 = d_j \text{ presence of deadlines})$
- $\beta_6 = \{s\text{-batch}, p\text{-batch}\}\ batching \ problem$
- ▶ $\beta_7 = \{s_{jk}, s_{jik}\}$ sequence dependent setup times

The $\alpha |\beta| \gamma$ Classification Scheme

Machine Environment

$\boldsymbol{\alpha_1\alpha_2} \mid \boldsymbol{\beta_1} \dots \boldsymbol{\beta_{13}} \mid \boldsymbol{\gamma}$

- ▶ single machine/multi-machine ($\alpha_1 = \alpha_2 = 1$ or $\alpha_2 = m$)
- ► parallel machines: identical ($\alpha_1 = P$), uniform p_j/v_i ($\alpha_1 = Q$), unrelated p_j/v_{ij} ($\alpha_1 = R$)
- ► multi operations models: Flow Shop ($\alpha_1 = F$), Open Shop ($\alpha_1 = O$), Job Shop ($\alpha_1 = J$), Mixed (or Group) Shop ($\alpha_1 = X$)

The $\alpha |\beta| \gamma$ Classification Scheme

Job Characteristics (2)

$\alpha_1 \alpha_2 | \beta_1 \dots \beta_{13} | \gamma$

- $\beta_8 = brkdwn$ machines breakdowns
- $\beta_9 = M_j$ machine eligibility restrictions (if $\alpha = Pm$)
- $\beta_{10} = \text{prmu}$ permutation flow shop
- $\beta_{11} = block$ presence of blocking in flow shop (limited buffer)
- $\beta_{12} = nwt$ no-wait in flow shop (limited buffer)
- $\beta_{13} = recrc$ Recirculation in job shop

The $\alpha \beta \gamma$ Classification Scheme		The $\alpha \beta \gamma$ Classification Scheme	
		Objective	$\alpha_1 \alpha_2 \beta_1 \beta_2 \beta_3 \beta_4 $
Objective (always $f(C_j)$)	$\alpha_1 \alpha_2 \beta_1 \beta_2 \beta_3 \beta_4 \boldsymbol{\gamma}$	 Makespan: Maximum completends to max the use of max 	etion $C_{max} = \max\{C_1, \dots, C_n\}$ chines
• Lateness $L_j = C_j - d_j$		 Maximum lateness L_{max} = 1 	$\max\{L_1,\ldots,L_n\}$
• Tardiness $T_j = max\{C_j - d_j, 0\} = max\{L_j, 0\}$		• Total completion time $\sum C_j$ (flow time)	
 Factories (i) = max(C_j = d_j, 0) = max(L_j, 0) Earliness E_j = max{d_j - C_j, 0} Unit penalty U_j = { 1 if C_j > d_j 0 otherwise 		► Total weighted completion time ∑ w _j · C _j tends to min the av. num. of jobs in the system, ie, work in progress, also the throughput time	
		• Discounted total weighted completion time $\sum w_j(1 - e^{-rC_j})$	
		► Total weighted tardiness ∑ n	$w_j \cdot T_j$
		 Weighted number of tardy jo 	bbs $\sum w_j U_j$
		All regular functions (nondecreasi	ng in C_1, \ldots, C_n) except E_i
DM87 – Scheduling, Timetabling and Routing	21	DM87 – Scheduling, Timetabling and Routing	
The $\alpha \beta \gamma$ Classification Scheme		Exercises	
			ocessing Unit (CPU) [Ex. 1.1.3, textbook]
		 Multitasking operating system 	m
Other Objectives Non regular objectives	$\alpha_1 \alpha_2 \beta_1 \beta_2 \beta_3 \beta_4 \boldsymbol{\gamma}$	 Schedule time that the CPU 	devotes to the different programs
 Min ∑ w'_jE_j + ∑ w"_jT_j (just in time) Min waiting times 			wn but an expected value might be knowr
 Min set up times/costs 		Each program has a certain	priority level
 Min set up times/costs Min transportation costs 		 Minimize the time expected sum of the weighted completion times for a tasks 	
			tle pieces. They are then rotated such that

DM87 – Scheduling, Timetabling and Routing

Gate Assignment at an Airport [Ex. 1.1.2, textbook]

- Airline terminal at a airport with dozes of gates and hundreds of arrivals each day.
- ▶ Gates and Airplanes have different characteristics
- Airplanes follow a certain schedule
- During the time the plane occupies a gate, it must go through a series of operations
- There is a scheduled departure time (due date)
- > Performance measured in terms of on time departures.

DM87 – Scheduling, Timetabling and Routing

Classes of Schedules

Nondelay schedule

A feasible schedule is called nondelay if no machine is kept idle while an operation is waiting for processing.

There are optimal schedules that are nondelay for most models with regular objective function.

Active schedule

A feasible schedule is called active if it is not possible to construct another schedule by changing the order of processing on the machines and having at least one operation finishing earlier and no operation finishing later.

There exists for $Jm||\gamma (\gamma \text{ regular})$ an optimal schedule that is active. nondelay \Rightarrow active active \Rightarrow nondelay

Semi-active schedule

A feasible schedule is called <u>semi-active</u> if no operation can be completed earlier without changing the order of processing on any one of the machines.

25

Distinction between

- sequence
- schedule
- scheduling policy

Feasible schedule

A schedule is feasible if no two time intervals overlap on the same machine, and if it meets a number of problem specific constraints.

26

Optimal schedule

A schedule is optimal if it minimizes the given objective.

DM87 – Scheduling, Timetabling and Routing