
DM87
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 10

Parallel Machine and Flow Shop Models

Marco Chiarandini

Outline

1. Resume and Extensions on Single Machine Models

2. Parallel Machine Models

3. Flow Shop

DM87 – Scheduling, Timetabling and Routing 2

Outline

1. Resume and Extensions on Single Machine Models

2. Parallel Machine Models

3. Flow Shop

DM87 – Scheduling, Timetabling and Routing 3

Complexity resume

Single machine models

1 | | Cmax P
1 | sjk | Cmax P Gilmore and Gomory’s alg. in O(n2)
1 | | Tmax P
1 | | Lmax P
1 | prec| Lmax P Lawler’s alg. (Backward dyn. progr.) in O(n2)
1 | rj, (prec) | Lmax strongly NP-hard Branch and Bound
1 | | hmax P
1 | |
∑
Cj P

1 | |
∑
wjCj P WSPT

1 | |
∑
U P Moore’s algorithm

1 | |
∑
wjUj weakly NP-hard

1 | |
∑
T weakly NP-hard

1 | |
∑
wjTj strongly NP-hard Branch and Bound, Dynasearch

1 | |
∑
hj(Cj) strongly NP-hard Dynamic programming in O(2n)

DM87 – Scheduling, Timetabling and Routing 4

Branch and Bound

[Jens Clausen (1999). Branch and Bound Algorithms
- Principles and Examples.]

I Eager Strategy:
based on the bound value of the subproblems

1. select a node
2. branch
3. for each subproblem compute bounds and compare with current best

solution
4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

I Lazy Strategy:
often used when selection criterion for next node is max depth

1. select a node
2. compute bound
3. branch
4. store the new nodes together with the bound of the processed node

DM87 – Scheduling, Timetabling and Routing 5

Components
I Initial good feasible solution (heuristic) – might be crucial!
I Bounding function
I Strategy for selecting
I Branching

DM87 – Scheduling, Timetabling and Routing 6

Bounding

min
s∈P

g(s) ≤
{

mins∈P f(s)
mins∈S g(s)

}
≤ min
s∈S

f(s)

P: candidate solutions; S ⊆ P feasible solutions

I relaxation: mins∈P f(s)
I solve (to optimality) in P but with g

DM87 – Scheduling, Timetabling and Routing 7

Strategy for selecting next subproblem

I best first
(combined with eager strategy)

I breadth first
(memory problems)

I depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds combined
with branching on the node with the largest difference in bound between
the children)
(it seems to perform best)

DM87 – Scheduling, Timetabling and Routing 8

Branch and bound vs backtracking

I = a state space tree is used to solve a problem.

I 6= branch and bound does not limit us to any particular way of traversing
the tree (backtracking is depth-first)

I 6= branch and bound is used only for optimization problems.

Branch and bound vs A∗

I = In A∗ the admissible heuristic mimics bounding

I 6= In A∗ there is no branching. It is a search algorithm.

I 6= A∗ is best first

DM87 – Scheduling, Timetabling and Routing 9

Dynasearch
I Two interchanges δjk and δlm are independent

if max{j, k} < min{l,m} or min{l, k} > max{l,m}.

I The dynasearch neighborhood is obtained by a series of independent
interchanges

I It has size 2n−1 − 1 but a best move can be found in O(n3).

I It yields in average better results than the interchange neighborhood
alone.

I Searched by dynamic programming

DM87 – Scheduling, Timetabling and Routing 10

I state (k, π)

I πk is the partial sequence at state (k, π) that has min
∑
wT

I πk is obtained from state (i, π){
appending job π(k) i = k− 1

appending job π(k) and interchanging π(i+ 1) and π(k) 0 ≤ i < k− 1

I F(π0) = 0; F(π1) = wπ(1)

(
pπ(1) − dπ(1)

)+;

F(πk) = min

F(πk−1) +wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F(πi) +wπ(k)

(
Cπ(i) + pπ(k) − dπ(k)

)+
+

+
∑k−1
j=i+2wπ(j)

(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(k)

)+
+

+wπ(i+1)

(
Cπ(k−1) − pπ(i+1) + pπ(k) − dπ(k)

)+
}

DM87 – Scheduling, Timetabling and Routing 11

I The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F(πn) is found by backtrack.

I Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F(πtn) = F(π

(t−1)
n), for iteration t).

I Speedups:
I pruning with considerations on pπ(k) and pπ(i+1)

I maintaining a string of late, no late jobs
I ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F(π

(t−1)
k) = F(π

(t−2)
k) for k = 1, . . . , ht and at iter t no need to consider

i < ht.

DM87 – Scheduling, Timetabling and Routing 12

Dynasearch, refinements:

I [Grosso et al. 2004] add insertion moves to interchanges.

I [Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).

DM87 – Scheduling, Timetabling and Routing 13

Performance:
I exact solution via branch and bound feasible up to 40 jobs

[Potts and Wassenhove, Oper. Res., 1985]

I exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

I dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

DM87 – Scheduling, Timetabling and Routing 14

Extensions

Non regular objectives
I 1 | dj = d |

∑
Ej +

∑
Tj

I In an optimal schedule,
I early jobs are scheduled according to LPT
I tardy jobs are scheduled according to SPT

DM87 – Scheduling, Timetabling and Routing 15

Multicriteria scheduling
Resolution process and decision maker intervention:

I a priori methods (definition of weights, importance)
I goal programming
I weighted sum
I ...

I interactive methods

I a posteriori methods (Pareto optima)
I lexicographic with goals
I ...

DM87 – Scheduling, Timetabling and Routing 16

Outline

1. Resume and Extensions on Single Machine Models

2. Parallel Machine Models

3. Flow Shop

DM87 – Scheduling, Timetabling and Routing 17

Pm | | CmaxPm | | CmaxPm | | Cmax (without Preemption)

Pm | | Cmax LPT heuristic, approximation ratio: 43 − 1
3m

P∞ | prec | Cmax CPM

Pm | prec | Cmax strongly NP-hard, LNS heuristic (non optimal)

Pm | pj = 1,Mj | Cmax LFJ-LFM (optimal if Mj are nested)

DM87 – Scheduling, Timetabling and Routing 18

Pm | prmp| CmaxPm | prmp| CmaxPm | prmp| Cmax

Not NP hard:

I Linear Programming, xij: time job j in machine i

I Construction based on LWB = max
{
p1,
∑n
j=1

pj

m

}
I Dispatching rule: longest remaining processing time (LRPT)

optimal in discrete time

DM87 – Scheduling, Timetabling and Routing 19

Qm | prmp| CmaxQm | prmp| CmaxQm | prmp| Cmax

I Construction based on

LWB = max

{
p1

v1
,
p1 + p2

v1 + v2
, . . . ,

∑n
j=1 pj∑m
j=1 vj

}

I Dispatching rule: longest remaining processing time on the fastest
machine first (processor sharing)
optimal in discrete time

DM87 – Scheduling, Timetabling and Routing 20

Outline

1. Resume and Extensions on Single Machine Models

2. Parallel Machine Models

3. Flow Shop

DM87 – Scheduling, Timetabling and Routing 21

Flow Shop

I Buffer limited, unlimited

I Permutation Flow Shop

I Directed graph representation

I Cmax computation (critical path length)

DM87 – Scheduling, Timetabling and Routing 22

DM87 – Scheduling, Timetabling and Routing 23

Exact Solutions

I Theorem: There always exist an optimum without sequence change in
the first two and last two machines.
(hence F2 | | Cmax and F3 | | Cmax are permutation flow shop)

I F2 | | Cmax: Johnson’s rule (1954)
I Set I: p1j < p2j, order in increasing p1j, SPT(1)

I Set II: p2j < p1j, order in decreasing p2j, LPT(2)

I F3 | | Cmax is strongly NP-hard

DM87 – Scheduling, Timetabling and Routing 24

Fm | prmu, pij = pj | Cmax

[Proportionate permutation flow shop]

I Theorem: Cmax =
∑n
j=1 pj + (m− 1) max(p1, . . . , pn) and is

sequence independent

I Generalization to include machines with different speed: pij = pj/vi

Theorem:
if the first machine is the bottleneck then LPT is optimal.
if the last machine is the bottleneck then SPT is optimal.

DM87 – Scheduling, Timetabling and Routing 25

Construction Heuristics for Fm | prmu | Cmax

Slope heuristic
I schedule in decreasing order of Aj = −

∑m
i=1(m− (2i− 1))pij

Campbell, Dudek and Smith’s heuristic (1970)
extension of Johnson’s rule to when permutation is not dominant

I recursively create 2 machines 1 and m− 1

p ′ij =

i∑
k=1

pkj p ′′ij =

m∑
k=m−i+1

pkj

and use Johnson’s rule
I repeat for all m− 1 possible pairings
I return the best for the overall m machine problem

DM87 – Scheduling, Timetabling and Routing 26

Nawasz, Enscore, Ham’s heuristic (1983)

I Step 1: order in decreasing
∑m
j=1 pij

I Step 2: schedule the first 2 jobs at best
I Step 3: insert all others in best position

Implementation in O(n2m)

Framinan, Gupta, Leisten (2004) examined 177 different arrangements of jobs
in Step 1 and concluded that the NEH arrangement is the best one for Cmax.

DM87 – Scheduling, Timetabling and Routing 27

Metaheuristics for Fm | prmu | Cmax

Iterated Greedy [Ruiz, Stützle, 2007]

I Destruction: remove d jobs at random

I Construction: reinsert them with NEH heuristic in the order of removal

I Local Search: insertion neighborhood
(first improvement, whole evaluation O(n2m))

I Acceptance Criterion: random walk, best, SA-like

Performance on up to n = 500×m = 20 :
I NEH average gap 3.35% in less than 1 sec.

I IG average gap 0.44% in about 360 sec.

DM87 – Scheduling, Timetabling and Routing 28

Tabu Search

[Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]

I Cmax expression through critical path

I Block Bk, definition

I Internal block BIntk , definition

I Theorem: Let π, π ′ ∈ Π, if π ′ has been obtained from π by an
interchange of jobs so that Cmax(π ′) < Cmax(π) then in π ′:

I a) at least one job j ∈ Bk precedes job π(uk−1), k = 1, . . . ,m

I b) at least one job j ∈ Bk succeeds job π(uk), k = 1, . . . ,m

DM87 – Scheduling, Timetabling and Routing 29

I Insert neighborhood

I Tabu search requires a best strategy. How to search efficiently?

I Theorem: (Elimination Criterion) If π ′ is obtained by π by a “block
insertion” then Cmax(π ′) ≤ Cmax(π).

I Define good moves:

DM87 – Scheduling, Timetabling and Routing 30

I Use of lower bounds in delta evaluations:

Dka(x) =

{
pπ(x),k+1 − pπ(uk),k+1 x 6= uk−1

pπ(x),k+1 − pπ(uk),k+1 + pπ(uk−1+1,k − pπ(x),k x = uk−1

Cmax(δx(π)) ≥ Cmax(π) +Dka(x)

I Prohibition criterion:
an insertion δx,uk

is tabu if it restores the realtive order of π(x) and
π(x+ 1).

I Tabu length: TL = 6+
[
n
10m

]

DM87 – Scheduling, Timetabling and Routing 31

I Perturbation

I perform all interchanges among all the blocks that have D < 0
I activated after MaxIdleIter idle iterations

DM87 – Scheduling, Timetabling and Routing 32

Tabu Search: the final algorithm:

Initialization : π = π0, C∗ = Cmax(π), set iteration counter to zero.
Searching : Create URk and ULk (set of non tabu moves)
Selection : Find the best move according to lower bound D.

Compute Cmax(δ(π)). Apply move.
If improving compare with C∗ and in case update.
Else increase number of idle iterations.

Stop criterion : Exit if MaxIter iterations are done.
Perturbation : Apply perturbation if MaxIdleIter done.

DM87 – Scheduling, Timetabling and Routing 33

