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Resume

Flow Shop
I Iterated Greedy

I Tabu Search (block representation and neighborhood pruning)

Job Shop:

I Definition

I Starting times and m-tuple permutation representation

I Disjunctive graph representation [Roy and Sussman, 1964]

I Shifting Bottleneck Heuristic [Adams, Balas and Zawack, 1988]
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Generalizations: Time Lags
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Generalized time constraints

They can be used to model:

I Release time:

S0 + ri ≤ Si ⇐⇒ d0i = ri

I Deadlines:

Si + pi − di ≤ S0 ⇐⇒ di0 = pi − di
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I Modelling

min Cmax
s.t. xij + dij ≤ Cmax ∀Oij ∈ N

xij + dij ≤ xlj ∀ (Oij, Olj) ∈ A
xij + dij ≤ xik ∨ xij + dij ≤ xik ∀ (Oij, Oik) ∈ E
xij ≥ 0 ∀ i = 1, . . . ,m j = 1, . . . ,N

I In the disjunctive graph, dij become the lengths of arcs
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I Exact relative timing (perishability constraints):
if operation j must start lij after operation i:

Si + pi + lij ≤ Sj and Sj − (pi + lij) ≤ Si
(lij = 0 if no-wait constraint)
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I Set up times:

Si + pi + sij ≤ Sj or Sj + pj + sji ≤ Si
I Machine unavailabilities:

I Machine Mk unavailable in [a1, b1], [a2, b2], . . . , [av, bv]
I Introduce v artificial operations with λ = 1, . . . , v with µλ = Mk and:
pλ = bλ − aλ
rλ = aλ
dλ = bλ

I Minimum lateness objectives:

Lmax =
N

max
j=1

{Cj − dj} ⇐⇒ dnj,n+1 = pnj
− dj
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Blocking

Arises with limited buffers:
after processing, a job remains on the machine until the next machine is freed

I Needed a generalization of the disjunctive graph model
=⇒ Alternative graph model G = (N,E,A) [Mascis, Pacciarelli, 2002]

1. two non-blocking operations to be processed on the same machine

Si + pi ≤ Sj or Sj + pj ≤ Si

2. Two blocking operations i, j to be processed on
the same machine µ(i) = µ(j)

SMS(j) ≤ Si or SMS(i) ≤ Sj

3. i is blocking, j is non-blocking (ideal) and i, j to
be processed on the same machine µ(i) = µ(j).

Si + pi ≤ Sj or SMS(j) ≤ Si

Example

I O0, O1, . . . , O13

I M(O1) = M(O5) = M(O9)
M(O2) = M(O6) = M(O10)
M(O3) = M(O7) = M(O11)

I Length of arcs can be negative
I Multiple occurrences possible: ((i, j), (u, v)) ∈ A and ((i, j), (h, k)) ∈ A
I The last operation of a job j is always non-blocking.
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I A complete selection S is consistent if it chooses alternatives from each
pair such that the resulting graph does not contain positive cycles.

Example:

I pa = 4

I pb = 2

I pc = 1

I b must start at least 9 days after a has started
I c must start at least 8 days after b is finished
I c must finish within 16 days after a has started

Sa + 9 ≤ Sb
Sb + 10 ≤ Sc
Sc − 15 ≤ Sa

This leads to an absurd.
In the alternative graph the cycle is positive.
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I The Makespan still corresponds to the longest path in the graph with
the arc selection G(S).

I If there are no cycles of length strictly positive it can still be computed
efficiently in O(|N||E ∪A|) by Bellman-Ford (1958) algorithm.

I The algorithm iteratively considers all edges in a certain order and
updates an array of longest path lengths for each vertex. It stops if a
loop over all edges does not yield any update or after |N| iterations over
all edges (in which case we know there is a positive cycle).

I Possible to maintain incremental updates when changing the selection
[Demetrescu Frangioni, Marchetti-Spaccamela, Nanni, 2000].
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Heuristics for the Alternative Graph Model

I The search space is highly constrained + detecting positive cycles is
costly

I Hence local search methods not very successful

I Rely on the construction paradigm

I Rollout algorithm [Meloni, Pacciarelli, Pranzo, 2004]
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Rollout
I Master process: grows a partial selection Sk:

decides the next element to fix based on an heuristic function
(selects the one with minimal value)

I Slave process: evaluates heuristically the alternative choices.
Completes the selection by keeping fixed what passed by the master
process and fixing one alternative at a time.
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I Slave heuristics
I Avoid Maximum Current Completion time

find an arc (h, k) that if selected would increase most the length of the
longest path in G(Sk) and select its alternative

max
(uv)∈A

{l(0, u) + auv + l(u,n)}

I Select Most Critical Pair
find the pair that, in the worst case, would increase least the length of
the longest path in G(Sk) and select the best alternative

max
((ij),(hk))∈A

min{l(0, u) + ahk + l(k, n), l(0, i) + aij + l(j, n)}

I Select Max Sum Pair
finds the pair with greatest potential effect on the length of the longest
path in G(Sk) and select the best alternative

max
((ij),(hk))∈A

|l(0, u) + ahk + l(k, n) + l(0, i) + aij + l(j, n)|

Trade off quality vs keeping feasibility
Results depend on the characteristics of the instance.
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Resource Constrained Project Scheduling Model

Given:
I activities (jobs) j = 1, . . . , n

I renewable resources i = 1, . . . ,m

I amount of resources available Ri
I processing times pj
I amount of resource used rij
I precedence constraints j → k

Further generalizations

I Time dependent resource profile Ri(t)
given by (tµi , R

µ
i ) where 0 = t1i < t

2
i < . . . < t

mi

i = T

Disjunctive resource, if Rk(t) = {0, 1}; cumulative resource, otherwise
I Multiple modes for an activity j

processing time and use of resource depends on its mode m: pjm, rjkm.
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Solutions

Task: Find a schedule indicating the starting time of each activity

I All solution methods restrict the search to feasible schedules, S, S ′

I Types of schedules
I Local left shift (LLS): S → S ′ with S ′j < Sj and S

′
l = Sl for all l 6= j.

I Global left shift (GLS): LLS passing through infeasible schedule
I Semi active schedule: no LLS possible
I Active schedule: no GLS possible
I Non-delay schedule: no GLS and LLS possible even with preemption

I If regular objectives =⇒ exists an optimum which is active
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Hence:
I Schedule not given by start times Si

I space too large O(Tn)

I difficult to check feasibility

I Sequence (list, permutation) of activities π = (j1, . . . , jn)

I π determines the order of activities to be passed to a
schedule generation scheme
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Modeling

Assignment 1
I A contractor has to complete n activities.
I The duration of activity j is pj
I each activity requires a crew of size Wj.
I The activities are not subject to precedence constraints.
I The contractor has W workers at his disposal
I his objective is to complete all n activities in minimum time.
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Assignment 2
I Exams in a college may have different duration.
I The exams have to be held in a gym with W seats.
I The enrollment in course j is Wj and
I all Wj students have to take the exam at the same time.
I The goal is to develop a timetable that schedules all n exams in

minimum time.
I Consider both the cases in which each student has to attend a single

exam as well as the situation in which a student can attend more than
one exam.
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Assignment 3
I In a basic high-school timetabling problem we are given m classes
c1, . . . , cm,

I h teachers a1, . . . , ah and
I T teaching periods t1, . . . , tT .
I Furthermore, we have lectures i = l1, . . . , ln.
I Associated with each lecture is a unique teacher and a unique class.
I A teacher aj may be available only in certain teaching periods.
I The corresponding timetabling problem is to assign the lectures to the

teaching periods such that
I each class has at most one lecture in any time period
I each teacher has at most one lecture in any time period,
I each teacher has only to teach in time periods where he is available.
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Assignment 4
I A set of jobs J1, . . . , Jg are to be processed by auditors A1, . . . , Am.
I Job Jl consists of nl tasks (l = 1, . . . , g).
I There are precedence constraints i1 → i2 between tasks i1, i2 of the same job.
I Each job Jl has a release time rl, a due date dl and a weight wl.
I Each task must be processed by exactly one auditor. If task i is processed by auditor
Ak, then its processing time is pik.

I Auditor Ak is available during disjoint time intervals [sνk , l
ν
k ] ( ν = 1, . . . ,m) with

lνk < s
ν
k for ν = 1, . . . ,mk − 1.

I Furthermore, the total working time of Ak is bounded from below by H−
k and from

above by H+
k with H−

k ≤ H+
k (k = 1, . . . ,m).

I We have to find an assignment α(i) for each task i = 1, . . . , n :=
∑g
l=1 nl to an

auditor Aα(i) such that

I each task is processed without preemption in a time window of the assigned
auditor

I the total workload of Ak is bounded by H−
k and Hkk for k = 1, . . . ,m.

I the precedence constraints are satisfied,
I all tasks of Jl do not start before time rl, and
I the total weighted tardiness

∑g
l=1wlTl is minimized.
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