DM87 SCHEDULING, TIMETABLING AND ROUTING	Outline 1. Job Shop Generalizations
Job Shop and Resource Constrained Project Scheduling Marco Chiarandini	2. Resource Constrained Project Scheduling Model
Resume	DM87 – Scheduling, Timetabling and Routing 2 Outline
 Flow Shop Iterated Greedy Tabu Search (block representation and neighborhood pruning) Job Shop: Definition 	1. Job Shop Generalizations
 Starting times and m-tuple permutation representation Disjunctive graph representation [Roy and Sussman, 1964] Shifting Bottleneck Heuristic [Adams, Balas and Zawack, 1988] 	2. Resource Constrained Project Scheduling Model

7

Blocking

Arises with limited buffers:

after processing, a job remains on the machine until the next machine is freed

- $\label{eq:constraint} \blacktriangleright \mbox{ Needed a generalization of the disjunctive graph model} \\ \Longrightarrow \mbox{ Alternative graph model } G = (N, E, A) \mbox{ [Mascis, Pacciarelli, 2002]}$
- $1. \ \mbox{two non-blocking operations to be processed on the same machine}$

$$S_{\mathfrak{i}} + p_{\mathfrak{i}} \leq S_{\mathfrak{j}} \qquad \text{or} \qquad S_{\mathfrak{j}} + p_{\mathfrak{j}} \leq S_{\mathfrak{i}}$$

2. Two blocking operations i, j to be processed on the same machine $\mu(i)=\mu(j)$

- 3. i is blocking, j is non-blocking (ideal) and i, j to be processed on the same machine $\mu(i) = \mu(j)$.
 - $S_{\mathfrak{i}} + p_{\mathfrak{i}} \leq S_{\mathfrak{j}} \qquad \text{or} \qquad S_{\mathsf{MS}(\mathfrak{j})} \leq S_{\mathfrak{i}}$

► A complete selection S is consistent if it chooses alternatives from each pair such that the resulting graph does not contain positive cycles.

Example

- ▶ O_0, O_1, \dots, O_{13}
- ► $M(O_1) = M(O_5) = M(O_9)$ $M(O_2) = M(O_6) = M(O_{10})$ $M(O_3) = M(O_7) = M(O_{11})$

- Length of arcs can be negative
- ▶ Multiple occurrences possible: $((i, j), (u, v)) \in A$ and $((i, j), (h, k)) \in A$
- The last operation of a job j is always non-blocking.

```
DM87 – Scheduling, Timetabling and Routing
```

Example:

- \triangleright $p_a = 4$
- ▶ p_b = 2
- ▶ $p_c = 1$
- \blacktriangleright b must start at least 9 days after a has started
- c must start at least 8 days after b is finished
- \blacktriangleright c must finish within 16 days after a has started

$S_a + 9$	\leq	S_b
$S_{b} + 10$	\leq	S_c
$S_c - 15$	\leq	Sa

This leads to an absurd. In the alternative graph the cycle is positive.

DM87 – Scheduling, Timetabling and Routing

10

	Heuristics for the Alternative Graph Model
► The Makespan still corresponds to the longest path in the graph with the arc selection G(S).	
 If there are no cycles of length strictly positive it can still be computed efficiently in O(N E ∪ A) by Bellman-Ford (1958) algorithm. The algorithm iteratively considers all edges in a certain order and updates an array of longest path lengths for each vertex. It stops if a loop over all edges does not yield any update or after N iterations over all edges (in which case we know there is a positive cycle). Possible to maintain incremental updates when changing the selection [Demetrescu Frangioni, Marchetti-Spaccamela, Nanni, 2000]. 	 The search space is highly constrained + detecting positive cycles is costly Hence local search methods not very successful Rely on the construction paradigm Rollout algorithm [Meloni, Pacciarelli, Pranzo, 2004]
DM87 – Scheduling, Timetabling and Routing 13	DM87 – Scheduling, Timetabling and Routing 14
 Naster process: grows a partial selection S^k: decides the next element to fix based on an heuristic function (selects the one with minimal value) Slave process: evaluates heuristically the alternative choices. Completes the selection by keeping fixed what passed by the master process and fixing one alternative at a time. 	 Slave heuristics Avoid Maximum Current Completion time find an arc (h, k) that if selected would increase most the length of the longest path in G(S^k) and select its alternative
DM87 – Scheduling, Timetabling and Routing 15	DM87 – Scheduling, Timetabling and Routing 16

Outline	Resource Constrained Project Scheduling Model
 Job Shop Generalizations Resource Constrained Project Scheduling Model 	$\label{eq:Given:} \begin{aligned} \textbf{Given:} \\ \textbf{activities (jobs) } j = 1, \dots, n \\ \textbf{renewable resources } i = 1, \dots, m \\ \textbf{amount of resources available } R_i \\ \textbf{processing times } p_j \\ \textbf{amount of resource used } r_{ij} \\ \textbf{precedence constraints } j \rightarrow k \\ \hline \textbf{Further generalizations} \\ \textbf{Time dependent resource profile } R_i(t) \\ \textbf{given by } (t_i^{\mu}, R_i^{\mu}) \text{ where } 0 = t_i^1 < t_i^2 < \ldots < t_i^{m_i} = T \\ \textbf{Disjunctive resource, if } R_k(t) = \{0, 1\}; \text{ cumulative resource, otherwise} \\ \textbf{Multiple modes for an activity } j \\ \textbf{processing time and use of resource depends on its mode } m: p_{jm}, r_{jkm} \end{aligned}$
DM87 – Scheduling, Timetabling and Routing 17	DM87 – Scheduling, Timetabling and Routing
Solutions	
 Task: Find a schedule indicating the starting time of each activity All solution methods restrict the search to feasible schedules, S, S' Types of schedules Local left shift (LLS): S → S' with S'_j < S_j and S'_l = S₁ for all l ≠ j. Global left shift (GLS): LLS passing through infeasible schedule Semi active schedule: no LLS possible Active schedule: no GLS possible Non-delay schedule: no GLS and LLS possible even with preemption If regular objectives ⇒ exists an optimum which is active 	 Hence: Schedule not given by start times S_i space too large O(Tⁿ) difficult to check feasibility Sequence (list, permutation) of activities π = (j₁,, j_n) π determines the order of activities to be passed to a schedule generation scheme

DM87 – Scheduling, Timetabling and Routing

Modeling

Assignment 1

- A contractor has to complete n activities.
- The duration of activity j is p_j
- each activity requires a crew of size W_j .
- > The activities are not subject to precedence constraints.
- ▶ The contractor has W workers at his disposal
- \blacktriangleright his objective is to complete all n activities in minimum time.

Assignment 2

- Exams in a college may have different duration.
- ▶ The exams have to be held in a gym with W seats.
- The enrollment in course j is W_j and
- all W_j students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all n exams in minimum time.
- Consider both the cases in which each student has to attend a single exam as well as the situation in which a student can attend more than one exam.

DM87 – Scheduling, Timetabling and Routing

Assignment 3

- ▶ In a basic high-school timetabling problem we are given m classes c_1, \ldots, c_m ,
- h teachers a_1, \ldots, a_h and

DM87 - Scheduling, Timetabling and Routing

- T teaching periods t_1, \ldots, t_T .
- Furthermore, we have lectures $i = l_1, \ldots, l_n$.
- > Associated with each lecture is a unique teacher and a unique class.
- ► A teacher a_j may be available only in certain teaching periods.
- The corresponding timetabling problem is to assign the lectures to the teaching periods such that
 - each class has at most one lecture in any time period
 - each teacher has at most one lecture in any time period,
 - each teacher has only to teach in time periods where he is available.

Assignment 4

- A set of jobs J_1, \ldots, J_g are to be processed by auditors A_1, \ldots, A_m .
- Job J_l consists of n_l tasks (l = 1, ..., g).
- \blacktriangleright There are precedence constraints $i_1 \rightarrow i_2$ between tasks i_1, i_2 of the same job.
- Each job J_l has a release time r_l , a due date d_l and a weight w_l .
- Each task must be processed by exactly one auditor. If task i is processed by auditor A_k, then its processing time is p_{ik}.
- Auditor A_k is available during disjoint time intervals $[s_k^{\nu}, l_k^{\nu}]$ ($\nu = 1, ..., m$) with $l_k^{\nu} < s_k^{\nu}$ for $\nu = 1, ..., m_k 1$.
- Furthermore, the total working time of A_k is bounded from below by H_k^- and from above by H_k^+ with $H_k^- \leq H_k^+$ (k = 1, ..., m).
- ▶ We have to find an assignment $\alpha(i)$ for each task $i = 1, ..., n := \sum_{l=1}^{g} n_l$ to an auditor $A_{\alpha(i)}$ such that
 - each task is processed without preemption in a time window of the assigned auditor
 - ▶ the total workload of A_k is bounded by H_k^- and H_k^k for k = 1, ..., m.
 - the precedence constraints are satisfied,
 - \blacktriangleright all tasks of J_l do not start before time $r_l,$ and
 - the total weighted tardiness $\sum_{l=1}^{g} w_l T_l$ is minimized.

23

21

22