Lecture 12
Job Shop and
Resource Constrained Project Scheduling

Marco Chiarandini

Outline

1. Job Shop Generalizations
2. Resource Constrained Project Scheduling Model

Generalized time constraints
They can be used to model:

- Release time:

$$
S_{0}+r_{i} \leq S_{i} \quad \Longleftrightarrow \quad d_{0 i}=r_{i}
$$

- Deadlines:

$$
\mathrm{S}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}}-\mathrm{d}_{\mathrm{i}} \leq \mathrm{S}_{0} \quad \Longleftrightarrow \quad \mathrm{~d}_{\mathrm{i} 0}=\mathrm{p}_{\mathrm{i}}-\mathrm{d}_{\mathrm{i}}
$$

- Exact relative timing (perishability constraints):
if operation \mathfrak{j} must start $l_{i j}$ after operation i :

$$
S_{i}+p_{i}+l_{i j} \leq S_{j} \quad \text { and } \quad S_{j}-\left(p_{i}+l_{i j}\right) \leq S_{i}
$$

($l_{i j}=0$ if no-wait constraint)

[^0]
Blocking

Arises with limited buffers:
after processing, a job remains on the machine until the next machine is freed

- Needed a generalization of the disjunctive graph model
\Longrightarrow Alternative graph model $G=(N, E, A) \quad[$ Mascis, Pacciarelli, 2002]

1. two non-blocking operations to be processed on the same machine

$$
S_{i}+p_{i} \leq S_{j} \quad \text { or } \quad S_{j}+p_{j} \leq S_{i}
$$

2. Two blocking operations $\mathfrak{i}, \mathfrak{j}$ to be processed on the same machine $\mu(\mathfrak{i})=\mu(\mathfrak{j})$

$$
\mathrm{S}_{\mathrm{MS}(\mathfrak{j})} \leq \mathrm{S}_{\mathrm{i}} \quad \text { or } \quad \mathrm{S}_{\mathrm{MS}(\mathrm{i})} \leq \mathrm{S}_{\mathfrak{j}}
$$

3. i is blocking, j is non-blocking (ideal) and i, j to be processed on the same machine $\mu(\mathfrak{i})=\mu(\mathfrak{j})$.

$$
\mathrm{S}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}} \leq \mathrm{S}_{\mathrm{j}} \quad \text { or } \quad \mathrm{S}_{\mathrm{MS}(\mathfrak{j})} \leq \mathrm{S}_{\mathrm{i}}
$$

- A complete selection S is consistent if it chooses alternatives from each pair such that the resulting graph does not contain positive cycles.

Example

- $\mathrm{O}_{0}, \mathrm{O}_{1}, \ldots, \mathrm{O}_{13}$
- $M\left(\mathrm{O}_{1}\right)=M\left(\mathrm{O}_{5}\right)=M\left(\mathrm{O}_{9}\right)$
$M\left(\mathrm{O}_{2}\right)=\mathrm{M}\left(\mathrm{O}_{6}\right)=\mathrm{M}\left(\mathrm{O}_{10}\right)$
$M\left(\mathrm{O}_{3}\right)=\mathrm{M}\left(\mathrm{O}_{7}\right)=\mathrm{M}\left(\mathrm{O}_{11}\right)$

- Length of arcs can be negative
- Multiple occurrences possible: $((i, j),(u, v)) \in A$ and $((i, j),(h, k)) \in A$
- The last operation of a job j is always non-blocking.

M87 - Scheduling, Timetabling and Routing

Example:

- $p_{a}=4$
- $p_{b}=2$
- $p_{c}=1$
- b must start at least 9 days after a has started
- c must start at least 8 days after b is finished
- c must finish within 16 days after a has started

$$
\begin{aligned}
\mathrm{S}_{\mathrm{a}}+9 & \leq \mathrm{S}_{\mathrm{b}} \\
\mathrm{~S}_{\mathrm{b}}+10 & \leq \mathrm{S}_{\mathrm{c}} \\
\mathrm{~S}_{\mathrm{c}}-15 & \leq \mathrm{S}_{\mathrm{a}}
\end{aligned}
$$

This leads to an absurd.
In the alternative graph the cycle is positive.

- The Makespan still corresponds to the longest path in the graph with the arc selection $G(S)$.
- If there are no cycles of length strictly positive it can still be computed efficiently in $\mathrm{O}(|\mathrm{N} \| \mathrm{E} \cup A|)$ by Bellman-Ford (1958) algorithm.
- The algorithm iteratively considers all edges in a certain order and updates an array of longest path lengths for each vertex. It stops if a loop over all edges does not yield any update or after $|\mathrm{N}|$ iterations over all edges (in which case we know there is a positive cycle).
- Possible to maintain incremental updates when changing the selection [Demetrescu Frangioni, Marchetti-Spaccamela, Nanni, 2000]
- Slave heuristics
- Avoid Maximum Current Completion time
find an arc (h, k) that if selected would increase most the length of the longest path in $\mathrm{G}\left(\mathrm{S}^{\mathrm{k}}\right)$ and select its alternative

$$
\max _{(u v) \in A}\left\{\mathfrak{l}(0, u)+a_{u v}+l(u, n)\right\}
$$

- Select Most Critical Pair
find the pair that, in the worst case, would increase least the length of the longest path in $\mathrm{G}\left(\mathrm{S}^{\mathrm{k}}\right)$ and select the best alternative

$$
\max _{((i j),(h k)) \in A} \min \left\{l(0, u)+a_{h k}+l(k, n), l(0, i)+a_{i j}+l(j, n)\right\}
$$

- Select Max Sum Pair
finds the pair with greatest potential effect on the length of the longest path in $G\left(S^{k}\right)$ and select the best alternative

$$
\max _{((i j),(h k)) \in A}\left|l(0, u)+a_{h k}+l(k, n)+l(0, i)+a_{i j}+l(j, n)\right|
$$

Trade off quality vs keeping feasibility
Results depend on the characteristics of the instance.

Outline

1. Job Shop Generalizations
2. Resource Constrained Project Scheduling Model

DM87 - Scheduling, Timetabling and Routing 17

Solutions

Task: Find a schedule indicating the starting time of each activity

- All solution methods restrict the search to feasible schedules, S, S^{\prime}
- Types of schedules
- Local left shift (LLS): $S \rightarrow S^{\prime}$ with $S_{j}^{\prime}<S_{j}$ and $S_{l}^{\prime}=S_{l}$ for all $l \neq j$.
- Global left shift (GLS): LLS passing through infeasible schedule
- Semi active schedule: no LLS possible
- Active schedule: no GLS possible
- Non-delay schedule: no GLS and LLS possible even with preemption
- If regular objectives \Longrightarrow exists an optimum which is active

Resource Constrained Project Scheduling Model

Given:

- activities (jobs) $j=1, \ldots, n$
- renewable resources $i=1, \ldots, m$
- amount of resources available R_{i}
- processing times p_{j}
- amount of resource used r_{ij}
- precedence constraints $\mathrm{j} \rightarrow \mathrm{k}$

Further generalizations

- Time dependent resource profile $\mathrm{R}_{\mathrm{i}}(\mathrm{t})$
given by (t_{i}^{μ}, R_{i}^{μ}) where $0=t_{i}^{1}<t_{i}^{2}<\ldots<t_{i}^{m_{i}}=T$
Disjunctive resource, if $R_{k}(t)=\{0,1\}$; cumulative resource, otherwise
- Multiple modes for an activity j
processing time and use of resource depends on its mode m : $p_{j m}, r_{j k m}$.

DM87 - Scheduling, Timetabling and Routing

Hence:

- Schedule not given by start times S_{i}
- space too large $O\left(T^{n}\right)$
- difficult to check feasibility
- Sequence (list, permutation) of activities $\pi=\left(j_{1}, \ldots, j_{n}\right)$
- π determines the order of activities to be passed to a schedule generation scheme

Modeling

Assignment 1

- A contractor has to complete n activities.
- The duration of activity j is p_{j}
- each activity requires a crew of size W_{j}.
- The activities are not subject to precedence constraints
- The contractor has W workers at his disposal
- his objective is to complete all n activities in minimum time.

Assignment 2

- Exams in a college may have different duration.
- The exams have to be held in a gym with W seats.
- The enrollment in course j is W_{j} and
- all W_{j} students have to take the exam at the same time
- The goal is to develop a timetable that schedules all n exams in minimum time.
- Consider both the cases in which each student has to attend a single exam as well as the situation in which a student can attend more than one exam.

Assignment 3

- In a basic high-school timetabling problem we are given m classes $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{m}}$,
- h teachers a_{1}, \ldots, a_{h} and
- T teaching periods $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{T}}$.
- Furthermore, we have lectures $i=l_{1}, \ldots, l_{n}$.
- Associated with each lecture is a unique teacher and a unique class.
- A teacher a_{j} may be available only in certain teaching periods.
- The corresponding timetabling problem is to assign the lectures to the teaching periods such that
- each class has at most one lecture in any time period
- each teacher has at most one lecture in any time period
- each teacher has only to teach in time periods where he is available.

Assignment 4

- A set of jobs $\mathrm{J}_{1}, \ldots, \mathrm{~J}_{\mathrm{g}}$ are to be processed by auditors A_{1}, \ldots, A_{m}.
- Job J_{l} consists of n_{l} tasks $(\mathrm{l}=1, \ldots, \mathrm{~g})$.
- There are precedence constraints $\mathfrak{i}_{1} \rightarrow \mathfrak{i}_{2}$ between tasks $\mathfrak{i}_{1}, \mathfrak{i}_{2}$ of the same job.
- Each job J_{l} has a release time r_{l}, a due date d_{l} and a weight w_{l}
- Each task must be processed by exactly one auditor. If task i is processed by auditor A_{k}, then its processing time is $p_{i k}$
- Auditor A_{k} is available during disjoint time intervals $\left[s_{k}^{v}, l_{k}^{v}\right](v=1, \ldots, m)$ with $l_{k}^{v}<s_{k}^{v}$ for $v=1, \ldots, m_{k}-1$.
- Furthermore, the total working time of A_{k} is bounded from below by $\mathrm{H}_{\mathrm{k}}^{-}$and from above by $\mathrm{H}_{\mathrm{k}}^{+}$with $\mathrm{H}_{\mathrm{k}}^{-} \leq \mathrm{H}_{\mathrm{k}}^{+}(\mathrm{k}=1, \ldots, \mathrm{~m})$.
- We have to find an assignment $\alpha(i)$ for each task $i=1, \ldots, n:=\sum_{l=1}^{g} n_{l}$ to an auditor $A_{\alpha(i)}$ such that
- each task is processed without preemption in a time window of the assigned auditor
- the total workload of A_{k} is bounded by H_{k}^{-}and H_{k}^{k} for $k=1, \ldots, m$.
- the precedence constraints are satisfied,
- all tasks of J_{l} do not start before time r_{l}, and
- the total weighted tardiness $\sum_{l=1}^{g} \mathcal{w}_{l} T_{l}$ is minimized

[^0]: DM87-Scheduling, Timetabling and Routing

