	Outline		
DM87 SCHEDULING, TIMETABLING AND ROUTING			
Lecture 15 Sport Timetabling	1. Problem Definitions		
Marco Chiarandini			
	 DM87 – Scheduling, Timetabling and Routing 2		
Problems we treat:single and double round-robin tournaments	Outline		
 balanced tournaments 			
bipartite tournaments			
Solutions:			
general resultsgraph algorithms	1. Problem Definitions		
 integer programming 			
 constraint programming 			
metaheuristics			

Terminology:

- A schedule is a mapping of games to slots or time periods, such that each team plays at most once in each slot.
- A schedule is compact if it has the minimum number of slots.
- Mirrored schedule: games in the first half of the schedule are repeated in the same order in the second half (with venues reversed)
- Partially mirrored schedule: all slots in the schedule are paired such that one is the mirror of the other
- A pattern is a vector of home (H) away (A) or bye (B) for a single team over the slots
- Two patterns are complementary if in every slot one pattern has a home and the other has an away.
- A pattern set is a collection of patterns, one for each team
- A tour is the schedule for a single team, a trip a series of consecutive away games and a home stand a series of consecutive home games

Round Robin Tournaments

(round-robin principle known from other fields, where each person takes an equal share of something in turn)

- Single round robin tournament (SRRT) each team meets each other team once
- Double round robin tournament (DRRT) each meets each other team twice

Definition SRRT Problem

Input: A set of n teams $T = \{1, \ldots, n\}$

Output: A mapping of the games in the set $G = \{g_{ij} : i, j \in T, i < j\}$, to the slots in the set $S = \{s_k, k = 1, \ldots, n-1 \text{ if } n \text{ is even and } k = 1, \ldots, n \text{ if } n \text{ is odd} \}$ such that no more than one game including i is mapped to any given slot for all $i \in T$.

DM87 – Scheduling, Timetabling and Routing

Circle method

Label teams and play:

```
Round 1. (1 plays 14, 2 plays 13, ... )
```

```
1 2 3 4 5 6 7
14 13 12 11 10 9 8
```

DM87 – Scheduling, Timetabling and Routing

Fix one team (number one in this example) and rotate the others clockwise:

```
Round 2. (1 plays 13, 14 plays 12, \dots )
```

```
1 14 2 3 4 5 6
13 12 11 10 9 8 7
```

Round 3. (1 plays 12, 13 plays 11, \ldots)

1 13 14 2 3 4 5 12 11 10 9 8 7 6

Repeat until almost back at the initial position

Round 13. (1 plays 2, 3 plays 14, \dots)

1 3 4 5 6 7 8 2 14 13 12 11 10 9

7

5

Definition DRRT Problem

Input: A set of n teams $T = \{1, \ldots, n\}$.

Output: A mapping of the games in the set $G = \{g_{ij} : i, j \in T, i \neq j\}$, to the slots in the set $S = \{s_k, k = 1, ..., 2(n-1) \text{ if } n \text{ is even and } k = 1, ..., 2n \text{ if } n \text{ is odd} \}$ such that no more than one game including i is mapped to any given slot for all $i \in T$.

The schedule can be obtained by the circle method plus mirroring Venue assignment can also be done through the circle method

Latin square

$\begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}$	2	3	4 1 2 5	ד5
2	3	3 5 4 2	1	5 4 1 3 2
3	5	4	2	1
4	1	2	5	3
L5	4	1	3	2

Even, symmetric Latin square \Leftrightarrow SRRT

Example: 4 Teams

```
round 1: 1 plays 2, 3 plays 4
round 2: 2 plays 3, 1 plays 4
round 3: 3 plays 1, 2 plays 4
```

Rewrite the schedule as a multiplication table: "a plays b in round c".

1	2	3	4	If the blank entries were filled with the
1	1	3	2	symbol 4, then we have an even,
2 1		2	3	symmetric latin square.
3 3	2		1	, ,
4 2	3	1		

Round robin tournaments with preassignments correspond to complete partial latin squares \rightarrow NP-complete

Extension:

- determining the venue for each game
- assigning actual teams to slots (so far where just place holders)

Decomposition:

- 1. First generate a pattern set
- 2. Then find a compatible pairing team-games (this yeilds a timetable)
- 3. Then assign actual teams in the timetable

DM87 – Scheduling, Timetabling and Routing

Generation of feasible pattern sets

► In SRRT:

- \blacktriangleright every pair of patterns must differ in at least one slot. \Rightarrow no two patterns are equal in the pattern set
- ▶ if at most one break per team, then a feasible pattern must have the complementary property (m/2 complementary pairs)

► In DRRT,

- ▶ for every pair of patterns i, j such that 1 ≤ i < j ≤ n there must be at least one slot in which i is home and j is away and at least one slot in which j is at home and i is away.</p>
- every slot in the pattern set includes an equal number of home and away games.

Definition Balanced Tournament Designs (BTDP)

Input: A set of n teams $T = \{1, \dots, n\}$ and a set of facilities F.

Output: A mapping of the games in the set $G=\!\!\{g_{i\,j}:i,j\in T\!,i<\!j\}$, to the slots available at each facility described by the set

 $S = \{s_{fk}, f = 1, \dots, |F|, k = 1, \dots, n-1 \text{ if } n \text{ is even and } k = 1, \dots, n \text{ if } n \text{ is odd}\}$ such that no more than one game involving team i is assigned to a particular slot and the difference between the number of appearances of team i at two separate facilities is no more than 1.

```
DM87 – Scheduling, Timetabling and Routing
```

- ► BTDP(2m,m): 2m teams and m facilities. There exists a solution for every m ≠ 2.
- BTDP(2m + 1, m): extension of the circle method:
 - Step 1: arrange the teams $1, \ldots, 2m + 1$ in an elongated pentagon. Indicate a facility associated with each row containing two teams.
 - Step 2: For each slot k = 1, ..., 2m + 1, give the team at the top of the pentagon the bye. For each row with two teams i, j associated with facility f assign g_{ij} to s_{kf} . Then shift the teams around the pentagon one position in a clockwise direction.

Bipartite Tournament

Input: Two teams with n players $T_1=\{x_1,\ldots,x_2\}$ and $T_2=\{y_1,\ldots,y_n\}.$

Output: A mapping of the games in the set $G = \{g_{ij} \ i \in T_1, j \in T_2\}$, to the slots in the set $S = \{s_k, \ k = 1, \ldots, n\}$ such that exactly one game including t is mapped to any given slot for all $t \in T_1 \cup T_2$

Latin square \Leftrightarrow bipartite tournament $(l[i, j] \text{ if player } x_i \text{ meets player } y_j \text{ in } l_{ij})$

DM87 – Scheduling, Timetabling and Routing

Extensions:

DM87 – Scheduling, Timetabling and Routing

 n facilities and seek for a balanced BT in which each player plays exactly once in each facility

 \iff two mutually orthogonal Latin squares (rows are slots and columns facilities)

A pair of Latin squares $A = [a_{ij}]$ and $B = [b_{ij}]$ are orthogonal iff the the ordered pairs (a_{ij}, b_{ij}) are distinct for all i and j.

1	2	3	1	2	3	11 22 33
2	3	1	3	1	2	23 31 12
3	1	2	2	3	1	32 13 21
						A and B
	А			В		superimposed

Mutually orthogonal Latin squares do not exist if m = 2, 6.

- Chess tournaments (assigning white and black)
- ▶ avoid carry-over effects, no two players x_i and y_j may play the same sequence of opponents y_p and followed immediately by y_q . \Rightarrow complete latin square.

13

Graph Algorithms

A spanning subgraph of G = (V, E) with all vertices of degree k is called a k-factor (A subgraph $H \subseteq G$ is a 1-factor $\Leftrightarrow E(H)$ is a matching of V)

A 1-factorization of $K_n \equiv$ decomposition of K_n in perfect matchings \equiv edge coloring of K_n

A SRRT among 2m teams is modeled by a complete graph K_{2m} with edge (i, j) representing the game between i and j and the schedule correspond to an edge coloring.

To include venues, the graph K_{2m} is oriented (arc (ij) represents the game team i at team j) and the edge coloring is said an oriented coloring.

A DRRT is modeled by the oriented graph G_{2m} with two arcs a_{ij} and a_{ji} for each ij and the schedule correspond to a decomposition of the arc set that is equivalent to the union of two oriented colorings of K_{2m} .

Assigning venues with minimal number of breaks:

- SRRT: there are at least 2m 2 breaks. Extension of circle method.
- ▶ DRRT: Any decomposition of G_{2m-2} has at least 6m 6 breaks.
- SRRT for n odd: the complete graph on an odd number of nodes k_{2m+1} has an oriented factorization with no breaks.

1. Find pattern sets (basic SRRT)

Variable

 $x_{ijk} \in \{0, 1\}$ $\forall i, j = 1, ..., n; i < j, k = 1, ..., n - 1$

Every team plays exactly once in each slot

$$\sum_{i:j>i} x_{ijk} = 1 \qquad \forall i = 1, \dots, n; \ k = 1, \dots, n-1$$

Each team plays every opponent exactly once.

$$\sum_k x_{ijk} = 1 \qquad \forall i, j = 1, \dots, n; \ i < j$$

DM87 – Scheduling, Timetabling and Routing

2. Find the timetable selecting the patterns and assining the games.

Variable denoting that pattern i plays at j in slot k. It is defined only if the ith pattern has an A in its kth position, and the jth has an H in its kth position. (S pattern set; T round set; F set of feasible triples (ijk))

$$x_{ijk} = \{0, 1\} \qquad \forall i, j \in S; k \in T, : (ijk) \in F$$

i and j meet at most once:

$$\sum_{t} x_{\texttt{ijt}} + \sum_{t} x_{\texttt{jit}} = 1 \qquad \forall \texttt{i,j} \in \texttt{S,i} \neq \texttt{j}$$

j plays at most once in a round

$$\sum_{\mathfrak{j}:(\mathfrak{i}\mathfrak{j}k)\in F}x_{\mathfrak{i}\mathfrak{j}k}+\sum_{\mathfrak{j}:(\mathfrak{j}\mathfrak{i}k)\in F}x_{\mathfrak{j}\mathfrak{i}k}\leq 1\qquad\forall\mathfrak{i}\in S;\,k\in T$$

3. Assign teams to selected patterns (assignment problem)

DM87 – Scheduling, Timetabling and Routing

Branch and cut algorithm Adds odd-set constrains that strengthen the one-factor constraint, that is, exactly one game for each team in each slot

$$\sum_{i\in S, j\not\in S} x_{ijk} \leq 1 \qquad \forall S\subseteq T, |S| \text{ is odd, } k=1,\ldots,n-$$

DM87 – Scheduling, Timetabling and Routing

17

DM87 – Scheduling, Timetabling and Routing

CP formulation Constraints to be included in practice: Pattern set constraints CP for phase 1 (games and patterns) feasible pattern sequences: avoid three consecutive home or away games equally distributed home and away games int n = ...; range Teams [1..n]; range Slots [1..n-1]; ► Team-specific constraints var Teams opponent[Teams,Slots]; fixed home and away patterns fixed games and opponent constraints solve { stadium availability forall (i in Teams, k in Slots) opponent[i,t]<>i; forbidden patterns for sets of teams forall (i in Teams) alldifferent(all (k in Slots) opponent[i,k]); constraints on the positioning of top games forall (k in Slots) onefactor(all (i in Teams) opponent[i,k]); Objective: maximize the number of good slots, that is, slots with popular }; match-ups later in the season or other TV broadcasting preferences. ▶ CP for phase 2: assign actual teams to position in timetable DM87 - Scheduling, Timetabling and Routing 21 DM87 – Scheduling, Timetabling and Routing 22 Reference **Application Examples** Dutch Professional Football League [Schreuder, 1992] 1. SRRT canonical schedule with minimum breaks and mirroring to make a DRRT 2. assign actual teams to the patterns European Soccer League [Bartsch, Drexl, Kroger (BDK), 2002] Kelly Easton and George Nemhauser and Michael Trick, Sport 1. DRRT schedule made of two separate SRRT with complementary Scheduling, in Handbook of Scheduling: Algorithms, Models, and Performance Analysis, J.Y-T. Leung (Ed.), Computer & Information patterns (Germany) four SRRTs the (2nd,3rd) and (1st,4th) complementary (Austria) Science Series, Chapman & Hall/CRC, 2004. 2. teams assigned to patterns with truncated branch and bound 3. games in each round are assigned to days of the week by greedy and local search algorithms ▶ Italian Football League [Della Croce, Olivieri, 2006] 1. Search for feasible pattern sets appealing to TV requirements 2. Search for feasible calendars 3. Matching teams to patterns

DM87 – Scheduling, Timetabling and Routing