	Outline
DM87 SCHEDULING, TIMETABLING AND ROUTING	
	1. Workforce Scheduling
Lecture 17 Workforce Scheduling	2. Crew Scheduling and Rostering
Marco Chiarandini	3. Employee Timetabling
Outling	DM87 - Scheduling, Timetabling and Routing 2
Outime	
	Workforce Scheduling:
	 Crew Scheduling and Rostering Employee Timetabling
1. Workforce Scheduling	
2. Crew Scheduling and Rostering	Shift: consecutive working hours Roster: shift and rest day patterns over a fixed period of time (a week or a month)
2. Englanda Timetalling	Two main approaches:
3. Employee Timetabling	 coordinate the design of the rosters and the assignment of the shifts to the employees, and solve it as a single problem.
	 consider the scheduling of the actual employees only after the rosters are designed, solve two problems in series.
	Features to consider: rest periods, days off, preferences, availabilities, skills.
DM87 – Scheduling, Timetabling and Routing	3 DM87 – Scheduling, Timetabling and Routing 4

Crew Sched	uling and	Rostering
------------	-----------	-----------

Workforce scheduling applied in the transportation and logistics sector for enterprises such as airlines, railways, mass transit companies and bus companies (pilots, attendants, ground staff, guards, drivers, etc.)

Outline

DM87 – Scheduling, Timetabling and Routing

2. Crew Scheduling and Rostering

Employee timetabling (aka labor scheduling) is the operation of assigning

employees to tasks in a set of shifts during a fixed period of time, typically a week. Days off, shifts, tours (set of shifts) Examples of employee timetabling problems include: assignment of nurses to shifts in a hospital. ▶ assignment of workers to cash registers in a large store > assignment of phone operators to shifts and stations in a service-oriented call-center Differences with Crew scheduling: no need to travel to perform tasks in locations start and finish time not predetermined 5 DM87 – Scheduling, Timetabling and Routing 6 **Crew Scheduling** Input: Flight leg (departure, arrival, duration) A set of feasible combinations of flights for a crew **Output:** A subset of flights feasible for a crew Set partitioning problem! Often treated as set covering because: • its linear programming relaxation is numerically more stable and thus easier to solve ▶ it is trivial to construct a feasible integer solution from a solution to the linear programming relaxation it makes possible to restrict to only rosters of maximal length Extension: a set of crews

.

DM87 – Scheduling, Timetabling and Routing

Subgradient Optimization Lagrange Multipliers	
$\max c^{T}x$	
st $Ax \leq b$	Lagrangian dual solved by Subgradient optimization
$Dx \leq d$	 Works well due to convexity
$\mathrm{x}_{\mathrm{j}}\in\mathbf{Z}^{+}, \hspace{1em} \mathrm{j}=1,\ldots,\mathrm{n}$	 Roots in nonlinear programming
Lagrange Relaxation, multipliers $\lambda \geq 0$	
$\max \ z_{LR}(\lambda) = c^{T} x - \lambda (Dx - d)$	
st $Ax \leq b$	
$x_{\mathfrak{j}}\in \mathbf{Z}^{+}, \mathfrak{j}=1,\ldots, \mathfrak{n}$	
Lagrange Dual Problem	
$z_{ extsf{LD}} = \min_{\lambda \geq 0} z_{ extsf{LR}}(\lambda)$	
DM87 – Scheduling, Timetabling and Routing 9	DM87 – Scheduling, Timetabling and Routing 10
Outline	Shift Scheduling
1. Workforce Scheduling	 Creating daily shifts: cycle made of m time intervals not necessarily identical during each period, b_i personnel is required
2. Crew Scheduling and Rostering	 n different shift patterns (columns of matrix A)
	min $c^{T}x$
3. Employee Timetabling	st $Ax \ge b$
	$x \ge 0$ and integer

(k,m)-cyclic Staffing Problem

Assign persons to an m-period cyclic schedule so that:

- ► requirements b_i are met
- each person works a shift of k consecutive periods and is free for the other m - k periods. (periods 1 and m are consecutive)
 and the cost of the assignment is minimized.

Recall: Totally Unimodular Matrices

Definition: A matrix A is totally unimodular (TU) if every square submatrix of A has determinant +1, -1 or 0.

Proposition 1: The linear program $\max\{cx : Ax \le b, x \in \mathbf{R}^m_+\}$ has an integral optimal solution for all integer vectors b for which it has a finite optimal value if and only if A is totally unimodular

Efficient algorithms to recognize if a matrix is totally unimodular are nontrivial.

DM87 – Scheduling, Timetabling and Routing

Proposition 2: A matrix A is TU if

(i) $a_{ij} \in \{+1, -1, 0\}$ for all i, j

- (ii) each column contains at most two nonzero coefficients $(\sum_{i=1}^{m} |a_{ij}| \le 2)$
- (iii) there exists a partition (M_1, M_2) of the set M of rows such that each column j containing two nonzero coefficients satisfies $\sum_{i \in M_1} a_{ij} - \sum_{i \in M_2} a_{ij} = 0$

Proposition 3: A matrix is TU if

(i)
$$a_{ij} \in \{+1, -1, 0\}$$
 for all i, j

(ii) for any subset M of the rows, there exists a partition (M_1, M_2) of M such that each column j satisfies

$$\left|\sum_{i\in\mathcal{M}_1}a_{ij}-\sum_{i\in\mathcal{M}_2}a_{ij}\right|\leq 1$$

Definition: A (0,1)-matrix B has the consecutive 1's property if for any column j, $b_{ij} = b_{i'j} = 1$ with i < i' implies $b_{lj} = 1$ for i < l < i'. That is, if there is a permutation of the rows such that the 1's in each column appear consecutively.

Whether a matrix has the consecutive 1's property can be determined in polynomial time [D. R. Fulkerson and O. A. Gross; Incidence matrices and interval graphs. 1965 Pacific J. Math. 15(3) 835-855.]

A matrix with consecutive 1's property satisfies Proposition 3 and is therefore TU.

What about this matrix?

[1	0	0	1	1	1	1]
1	1	0	0	1	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	1
1	1	1	1	1	0	0
0	1	1	1	1	1	0
0	0	1	1	1	1	1

Definition A (0, 1)-matrix B has the circular 1's property for rows (resp. for columns) if the columns of B can be permuted so that the 1's in each row are circular, that is, appear in a circularly consecutive fashion

The circular 1's property for columns does not imply circular 1's property for rows.

Whether a matrix has the circular 1's property for rows (resp. columns) can be determined in $O(m^2n)$ time [A. Tucker, Matrix characterizations of circular-arc graphs. (1971) Pacific J. Math. 39(2) 535-545]

for **rows** can be solved efficiently as follows:

Integer programs where the constraint matrix A have the circular 1's property

- Step 1 Solve the linear relaxation of (P) to obtain x'_1, \ldots, x'_n . If x'_1, \ldots, x'_n are integer, then it is optimal for (P) and STOP. Otherwise go to Step 2.
- Step 2 Form two linear programs LP1 and LP2 from the relaxation of the original problem by adding respectively the constraints

$$x_1 + \ldots + x_n = \lfloor x'_1 + \ldots + x'_n \rfloor \tag{LP1}$$

and

$$x_1 + \ldots + x_n = \lceil x'_1 + \ldots + x'_n \rceil$$
 (LP2)

The solutions to LP1 and LP2 can be taken to be integral and the best of the two solutions is an optimal solution to the staffing problem (P)

DM87 – Scheduling, Timetabling and Routing

Cyclic Staffing with Overtime

► Hourly requirements b_i

DM87 – Scheduling, Timetabling and Routing

Basic work shift 8 hours

сx

Overtime of up to additional 8 hours possible

```
minimize
```

subject to

07	111111111	0 0 0 0 0 0 0 0 0	011111111
08	111111111	0 0 0 0 0 0 0 0 0	0 0 1 1 1 1 1 1 1
09	1111111111	0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 1 1
10	111111111	0 0 0 0 0 0 0 0 0	000011111
11	111111111	0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 1 1 1 1
12	111111111	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 1 1
13	111111111	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 1
14	111111111	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 1
15	011111111	111111111	0 0 0 0 0 0 0 0 0 0
16	001111111	111111111	0 0 0 0 0 0 0 0 0 0
17	0 0 0 1 1 1 1 1 1	111111111	0 0 0 0 0 0 0 0 0 0
18	0 0 0 0 1 1 1 1 1	111111111	0 0 0 0 0 0 0 0 0 0
19	0 0 0 0 0 1 1 1 1	111111111	000000000 x>b
20	0 0 0 0 0 0 1 1 1	111111111	0 0 0 0 0 0 0 0 0 0 0
21	0 0 0 0 0 0 0 1 1	111111111	0 0 0 0 0 0 0 0 0 0
22	0 0 0 0 0 0 0 0 1	11111111	0 0 0 0 0 0 0 0 0 0
23	0 0 0 0 0 0 0 0 0 0	011111111	111111111
24	000000000	001111111	111111111
01	0 0 0 0 0 0 0 0 0 0	000111111	111111111
02	0 0 0 0 0 0 0 0 0 0	000011111	111111111
03	0 0 0 0 0 0 0 0 0 0	000001111	111111111
04	0 0 0 0 0 0 0 0 0 0	000000111	111111111
05	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 1	111111111
06	0000000000	000000001	111111111
	L	_	
	x > 0 and	1	
	$\mathbf{x} \ge 0$ and	tureget.	

Days-Off Scheduling

Guarantee two days-off each week, including every other weekend.

IP with matrix A:

17

	1	1	1	1	1	1	1	1	1	1	1	0
	1	1	1	1	1	1	1	1	1	1	0	0
	1	1	1	1	1	1	1	1	1	0	0	1
first week	1	1	1	1	1	1	1	1	0	0	1	1
	1	1	1	1	1	1	1	0	0	1	1	1
	0	0	0	0	0	0	0	0	1	1	1	1
	0	0	0	0	0	0	0	1	1	1	1	1
	0	1	1	1	1	1	1	1	1	1	1	1
	0	0	1	1	1	1	1	1	1	1	1	1
	1	0	0	1	1	1	1	1	1	1	1	1
second week	1	1	0	0	1	1	1	1	1	1	1	1
Becolia week	1	1	1	0	0	1	1	1	1	1	1	1
Becond week	1 1	1 1	1 1	0 1	0 0	1 0						

 Cyclic Staffing with Part-Time Workers Columns of A describe the work-shifts Part-time employees can be hired for each time period i at cost c'_i per worker 	 Cyclic Staffing with Linear Penalties for Understaffing and Overstaffing demands are not rigid a cost c'_i for understaffing and a cost c''_i for overstaffing
min $cx + c'x'$	min $cx + c'x' + c''(b - Ax - x')$
st $Ax + Ix' \ge b$	st $Ax + Ix' \ge b$
$x,x^\prime \geq 0$ and integer	$x,x' \geq 0$ and integer
DM87 – Scheduling, Timetabling and Routing 21	DM87 – Scheduling, Timetabling and Routing 22
Once rosters (set of shifts) are designed, people can be assigned to them according to availabilities, preferences, skills. Alternatively one can take care of these two phases at the same time:	 Hospital: head nurses on duty seven days a week 24 hours a day Three 8 hours shifts per day (1: daytime, 2: evening, 3: night) In a day each shift must be staffed by a different nurse The schedule must be the same every week Four nurses are available (A,B,C,D) and must work at least 5 days a week. No shift should be staffed by more than two different nurses during the week No employee is asked to work different shifts on two consecutive days An employee that works shifts 2 and 3 must do so at least two days in a row.

Mainly a feasibility problem

A CP approach

Two solution representations

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Three different nurses ar alldiff(w.d) Every nurse is assigned t cardinality(w At most two nurses work nvalues(w _s . 1,2)
 DM87 – Scheduling, Timetabling and Routing 25	 DM87 – Scheduling, Timetabling and
All shifts assigned for each day alldiff(y.d) ∀d	Solved by
Maximal sequence of consecutive variables that take the same values	 Constraint Propaga
$\texttt{stretch-cycle}(y_{i}. (2,3),(2,2),(6,6),P) \qquad \forall i,P = \{(s,0),(0,s) s = 1,2,3\}$	Search: branch on o
Channeling constraints between the two representations: on any day, the nurse assigned to the shift to which nurse i is assigned must be nurse i	 Symmetry breaking
$w_{y_{id},d} = i \qquad \forall i,d$	
$y_{w_{sd},d} = s \qquad \forall s,d$	Local search methods an scale. Procedures very si
Global Constraint Catalog http://www.emn.fr/x-info/sdemasse/gccat/	

Variables w_{sd} nurse assigned to shift s on day d and y_{id} the shift assigned for each day

 $w_{sd} \in \{A, B, C, D\}$ $y_{id} \in \{0, 1, 2, 3\}$

re scheduled each day

 $\forall d$

to at least 5 days of work

(A, B, C, D), (5, 5, 5, 5), (6, 6, 6, 6))

k any given shift

 $\forall s$

ation (Edge filtering)

Routing

- domains (first fail)

nd metaheuristics are used if the problem has large imilar to what we saw for timetabling.

27