
	Outline
DM87 SCHEDULING,	
TIMETABLING AND ROUTING	
	1. Vehicle Routing
Lecture 18	
Vehicle Routing	2. Integer Programming
<u> </u>	
	3. Construction Heuristics
Marco Chiarandini	Construction Heuristics for CVRP
	 DM87 – Scheduling, Timetabling and Routing
Outline	Problem Definition
	Vehicle Routing: distribution of goods between depots and customers.
	Delivery, collection, transportation.
1. Vehicle Routing	Examples: solid waste collection, street cleaning, school bus routing, dial-a-ride systems, transportation of handicapped persons, routing of salespeople and maintenance unit.
2. Integer Programming	
	Vehicle Routing Problems
3. Construction Heuristics	Input: Vehicles, depots, road network, costs and customers requirements.
Construction Heuristics for CVRP	Output: Set of routes such that:
	 requirement of customers are fulfilled,
	 operational constraints are satisfied and a global transportation part is minimized
	a global transportation cost is minimized.

Road Network

- represented by a (directed or undirected) complete graph
- travel costs and travel times on the arcs obtained by shortest paths

Customers

- vertices of the graph
- collection or delivery demands
- time windows for service
- service time
- subset of vehicles that can serve them
- priority (if not obligatory visit)

Vehicles

- capacity
- ► types of goods
- subsets of arcs traversable
- fix costs associated to the use of a vehicle
- distance dependent costs
- ► a-priori partition of customers
- home depot in multi-depot systems
- drivers with union contracts

Operational Constraints

- vehicle capacity
- delivery or collection
- time windows
- working periods of the vehicle drivers
- precedence constraints on the customers

DM87 – Scheduling, Timetabling and Routing

Objectives

- minimization of global transportation cost (variable + fixed costs)
- minimization of the number of vehicles
- balancing of the routes
- minimization of penalties for un-served customers

History:

Dantzig, Ramser "The truck dispatching problem", Management Science, 1959

Clark, Wright, "Scheduling of vehicles from a central depot to a number of delivery points". Operation Research. 1964

6

Vehicle Routing Problems	Capacited Vehicle Routing (CVRP)
 Capacited (and Distance Constrained) VRP (CVRP and DCVRP) VRP with Time Windows (VRPTW) VRP with Backhauls (VRPB) VRP with Pickup and Delivery (VRPPD) Periodic VRP (PVRP) Multiple Depot VRP (MDVRP) Split Delivery VRP (SDVRP) VRP with Satellite Facilities (VRPSF) Site Dependent VRP Open VRP Stochastic VRP (SVRP) 	 Input: (common to all VRPs) (di)graph (strongly connected, typically complete) G(V, A), where V = {0,, n} is a vertex set: 0 is the depot. V' = V\{0} is the set of n customers A = {(i,j) : i, j ∈ V} is a set of arcs C a matrix of non-negative costs or distances c_{ij} between customers i and j (shortest path or Euclidean distance) (c_{ik} + c_{kj} ≥ c_{ij} ∀ i, j ∈ V) a non-negative vector of costumer demands d_i a set of K (identical!) vehicles with capacity Q, d_i ≤ Q
DM87 – Scheduling, Timetabling and Routing 9	DM87 – Scheduling, Timetabling and Routing 10
 Task: Find collection of K circuits with minimum cost, defined as the sum of the costs of the arcs of the circuits and such that: each circuit visits the depot vertex each customer vertex is visited by exactly one circuit; and the sum of the demands of the vertices visited by a circuit does not exceed the vehicle capacity Q. 	 A feasible solution is composed of: a partition R₁,, R_m of V; a permutation πⁱ of R_i ∪ 0 specifying the order of the customers on route i. A route R_i is feasible if ∑^{π_m}_{i=π₁} d_i ≤ Q.
Note: lower bound on K [d(V')/Q]	The cost of a given route (R _i) is given by: $F(R_i) = \sum_{i=\pi_0^i}^{\pi_m^i} c_{i,i+1}$
number of bins in the associated Bin Packing Problem	The cost of the problem solution is: $F_{VRP} = \sum_{i=1}^m F(R_i)$.

Relation with TSP

- VRP with K = 1, no limits, no (any) depot, customers with no demand
 TSP
- VRP is a generalization of the Traveling Salesman Problem (TSP) → is NP-Hard.
- VRP with a depot, K vehicles with no limits, customers with no demand
 Multiple TSP = one origin and K salesman
- Multiple TSP is transformable in a TSP by adding K identical copies of the origin and making costs between copies infinite.

Variants of CVRP:

- minimize number of vehicles
- different vehicles Q_k , $k = 1, \ldots, K$
- Distance-Constrained VRP: length t_{ij} on arcs and total duration of a route cannot exceed T associated with each vehicle Generally c_{ij} = t_{ij}
 (Service times s_i can be added to the travel times of the arcs: t'_{ij} = t_{ij} + s_i/2 + s_j/2)
- Distance constrained CVRP

DM87 – Scheduling, Timetabling and Routing

Vehicle Routing with Time Windows (VRPTW)

Further Input:

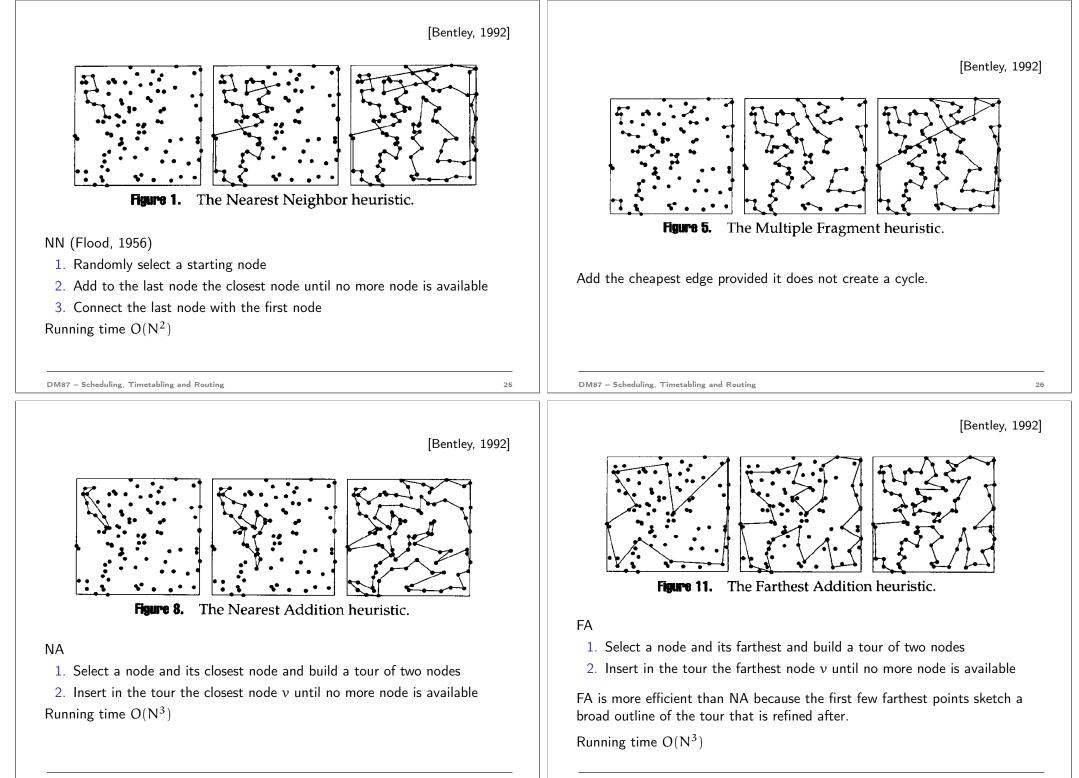
- each vertex is also associated with a time interval $[a_i, b_j]$.
- each arc is associated with a travel time t_{ij}
- each vertex is associated with a service time s_i


Task:

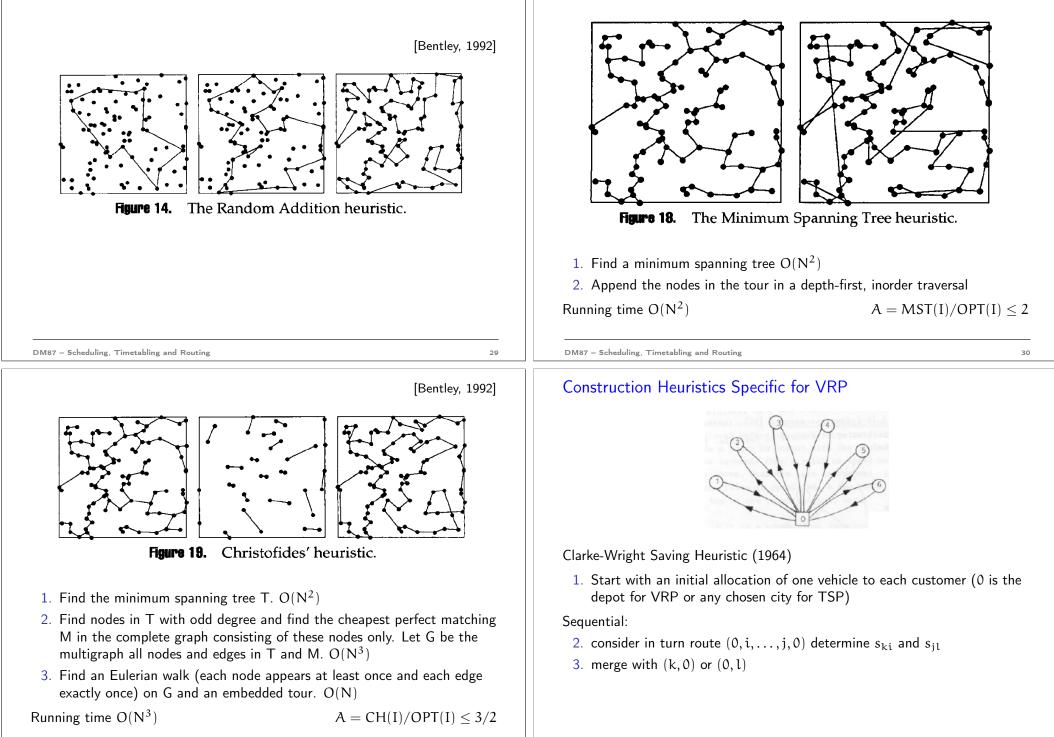
Find a collection of K simple circuits with minimum cost, such that:

- each circuit visit the depot vertex
- > each customer vertex is visited by exactly one circuit; and
- the sum of the demands of the vertices visited by a circuit does not exceed the vehicle capacity Q.
- ▶ for each customer i, the service starts within the time windows [a_i, b_i] (it is allowed to wait until a_i if early arrive)

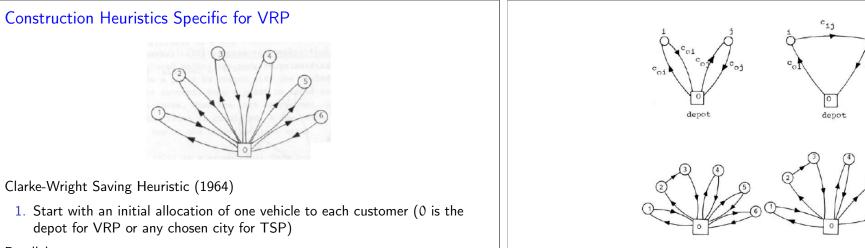
13



Time windows induce an orientation of the routes.


DM87 – Scheduling, Timetabling and Routing

Solution Techniques for CVRP
 Integer Programming (only formulations)
 Construction Heuristics
► Local Search
 Metaheuristics
 Hybridization with Constraint Programming
DM87 - Scheduling, Timetabling and Routing 18 Basic Models
vehicle flow formulation
integer variables on the edges counting the number of time it is traversed two or three index variables
 commodity flow formulation additional integer variables representing the flow of commodities
along the paths traveled bu the vehicles


VRPTW	Outline
 Pre-processing Time windows reduction Increase earliest allowed departure time, a_k Decrease latest allowed arrival time b_k Arc elimination a_i + t_{ij} > b_j → arc (i, j) cannot exist d_i + d_j > C → arcs (i, j) and (j, i) cannot exist 	 Vehicle Routing Integer Programming Construction Heuristics Construction Heuristics for CVRP
DM87 – Scheduling, Timetabling and Routing 21	DM87 – Scheduling, Timetabling and Routing 22 Construction heuristics for TSP
TSP based heuristics	 They can be used for route-first cluster-second or for growing multiple tours subject to capacity constraint. Heuristics that Grow Fragments
 Savings heuristics (Clarke and Wright) 	 Nearest neighborhood heuristics Double-Ended Nearest Neighbor heuristic
Insertion heuristics	 Multiple Fragment heuristic (aka, greedy heuristic) Heuristics that Grow Tours
 Cluster-first route-second Sweep algorithm Generalized assignment Location based heuristic 	 Nearest Addition Farthest Addition Random Addition Clarke-Wright savings heuristic Nearest Insertion Random Insertion
 Petal algorithm Route-first cluster-second 	 Heuristics based on Trees Minimum span tree heuristic Christofides' heuristics
Cluster-first route-second seems to perform better (Note: Distinction Construction Heuristic / Iterative Improvement is often blurred)	(But recall! Concorde: http://www.tsp.gatech.edu/)

DM87 - Scheduling, Timetabling and Routing

DM87 - Scheduling, Timetabling and Routing

32

Parallel:

- 2. Calculate saving $s_{\mathfrak{i}\mathfrak{j}}=c_{\mathfrak{0}\mathfrak{i}}+c_{\mathfrak{0}\mathfrak{j}}-c_{\mathfrak{i}\mathfrak{j}}$ and order the saving in non-increasing order
- 3. scan s_{ij}

merge routes if i) i and j are not in the same tour ii) neither i and j are interior to an existing route iii) vehicle and time capacity are not exceeded

DM87 – Scheduling, Timetabling and Routing

DM87 – Scheduling, Timetabling and Routing

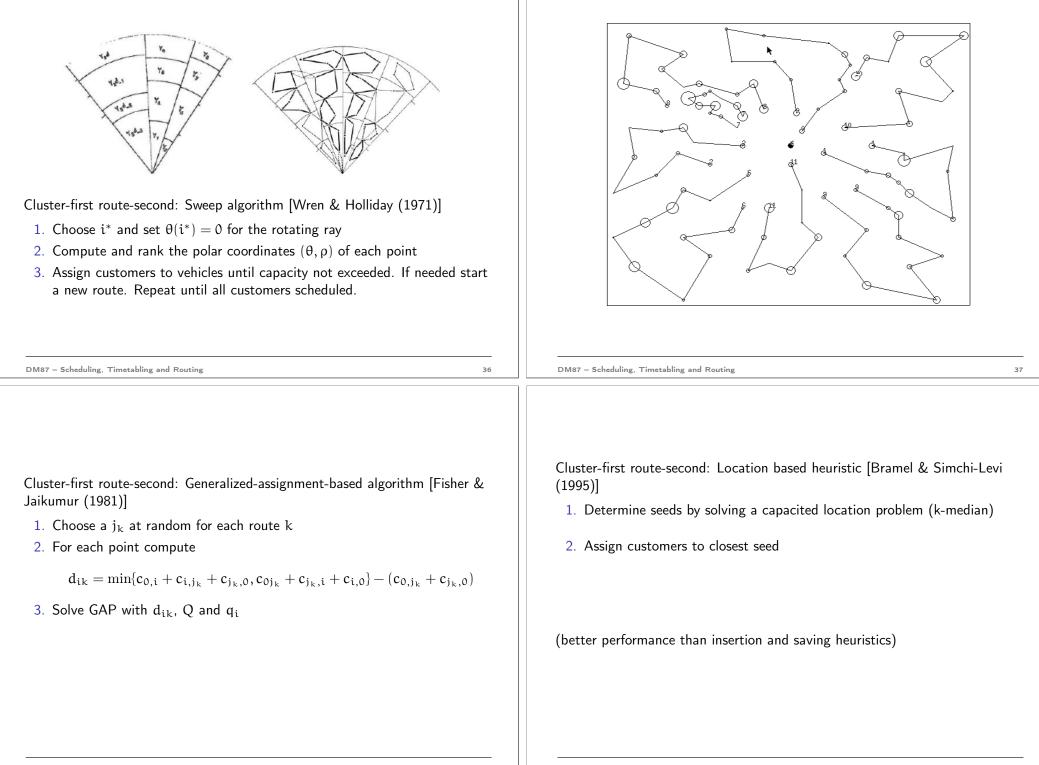
Matching Based Saving Heuristic

- 1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)
- 2. Compute $s_{\mathfrak{p}\,q} = t(S_{\mathfrak{p}}) + t(S_{\mathfrak{q}}) t(S_{\mathfrak{p}} \cup S_{\mathfrak{q}})$ where $t(\cdot)$ is the TSP solution
- 3. solve a max weighted matching on the S_k with weights s_{pq} on edges. A connection between a route p and q exists only if the merging is feasible.

Insertion Heuristic

$$\alpha(i, k, j) = c_{ik} + c_{ki} - \lambda c_{ij}$$
$$\beta(i, k, j) = \mu c_{0k} - \alpha(i, k, j)$$

(Fiala 1978)


1. construct emerging route (0, k, 0)

2. compute for all k unrouted the feasible insertion cost:

$$\alpha^*(i_k, k, j_k) = \min\{\alpha(i, k, j)\}$$

if no feasible insertion go to 1 otherwise choose \boldsymbol{k}^* such that

$$\beta^*(\mathfrak{i}_k^*,k^*,\mathfrak{j}_k^*)=\max\{\beta(\mathfrak{i}_k,k,\mathfrak{j}_k\}$$

Cluster-first route-second: Petal Algorithm 1. Construct a subset of feasible routes 2. Solve a set partitioning problem		 Route-first cluster-second [Beasley] 1. Construct a TSP tour over all customers 2. Choose an arbitrary orientation of the TSP; partition the tour according to capacity constraint; repeat for several orientations and select the best Alternatively, solve a shortest path in an acyclic digraph with cots on arcs: d_{ij} = c_{0i} + c_{0j} + l_{ij} where l_{ij} is the cost of traveling from i to j in the TSP tour. (not very competitive)
- DM87 – Scheduling, Timetabling and Routing	40	DM87 – Scheduling, Timetabling and Routing 41
Exercise Which heuristics can be used to minimize K and which ones need to have K fixed a priori?	42	