<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Outline Construction Heuristics for VRPTW Local Search Metaheuristics Other Variants of VRP
Outline	DM87 – Scheduling, Timetabling and Routing 2 Construction Heuristics for VRPTW
 Construction Heuristics for VRPTW Local Search Metaheuristics Other Variants of VRP 	 Extensions of those for CVRP [Solomon (1987)] Savings heuristics (Clarke and Wright) Time-oriented nearest neighbors Insertion heuristics Time-oriented sweep heuristic

Time-Oriented Nearest-Neighbor• Add the unrouted node "closest" to the depot or the last node added without violating feasibility• Metric for "closest": $c_{ij} = \delta_1 d_{ij} + \delta_2 T_{ij} + \delta_3 v_{ij}$ d_{ij} geographical distance T_{ij} time distance v_{ij} urgency to serve j		Insertion HeuristicsStep 1: Compute for each unrouted costumer u the best feasible position in the route: $c_1(i(u), u, j(u)) = \min_{p=1,,m} \{c_1(i_{p-1}, u, i_p)\}$ $(c_1 \text{ is a composition of increased time and increase routelength due to the insertion of u)(use push forward rule to check feasibility efficiently)Step 2: Compute for each unrouted customer u which can be feasiblyinserted:c_2(i(u^*), u^*, j(u^*)) = \max_u \{\lambda d_{0u} - c_1(i(u), u, j(u))\}$		
		(max the benefit of servicing a node on a partial route rather than on a direct route) Step 3: Insert the customer u* from Step 2		
DM87 – Scheduling, Timetabling and Routing	5	DM87 – Scheduling, Timetabling and Routing 6		
Outline		Local Search for CVRP and VRPTW		
 Construction Heuristics for VRPTW Local Search 		 Neighborhoods structures: Intra-route: 2-opt, 3-opt, Lin-Kernighan (not very well suited) 2H-opt, Or-opt 		
 Metaheuristics Other Variants of VRP 		 Inter-routes: λ-interchange, relocate, exchange, cross, 2-opt*, ejection chains, GENI Solution representation and data structures They depend on the neighborhood. It can be advantageous to change them from one stage to another of the heuristic 		

7

DM87 – Scheduling, Timetabling and Routing

8

DM87 – Scheduling, Timetabling and Routing

Search Strategy Global variables (auxiliary data structure) ► Lexicographic search, for 2-exchange: Maintain auxiliary data such that it is possible to: • i = 1, 2, ..., n - 2 (outer loop) • j = i + 2, i + 3, ..., n (inner loop) handle single move in constant time update their values in constant time Ex.: in case of time windows: ► total travel time of a path $\{1,2\}\{3,4\} \rightarrow \{1,3\}\{2,4\}$ $\{1,2\}\{4,5\} \rightarrow \{1,4\}\{2,5\}$ earliest departure time of a path Previous path is expanded by the edge $\{j - 1, j\}$ ► latest arrival time of a path DM87 – Scheduling, Timetabling and Routing 13 DM87 – Scheduling, Timetabling and Routing 14 Inter-route Neighborhoods Inter-route Neighborhoods [Savelsbergh, ORSA (1992)] [Savelsbergh, ORSA (1992)] Figure 6. The exchange neighborhood. Figure 5. The relocate neighborhood.

General recommendation: use a combination of 2-opt* + or-opt [Potvin, Rousseau, (1995)]

However,

- Designing a local search algorithm is an engineering process in which learnings from other courses in CS might become important.
- ▶ It is important to make such algorithms as much efficient as possible.
- Many choices are to be taken (search strategy, order, auxiliary data structures, etc.) and they may interact with instance features. Often a trade-off between examination cost and solution quality must be decided.
- ▶ The assessment is conducted through:
 - analytical analysis (computational complexity)
 - experimental analysis

	Sequential			Parallel				
	No	+ 3-opt	+ 3-opt		No	+ 3-opt	+ 3-opt	
Problem	3-opt ¹	FI^2	BI^3	K^4	3-opt ⁵	FI ⁶	BI^7	K^8
E051-05e	625.56	624.20	624.20	5	584.64	578.56	578.56	6
E076-10e	1005.25	991.94	991.94	10	900.26	888.04	888.04	10
E101-08e	982.48	980.93	980.93	8	886.83	878.70	878.70	8
E101-10c	939.99	930.78	928.64	10	833.51	824.42	824.42	10
E121-07c	1291.33	1232.90	1237.26	- 7	1071.07	1049.43	1048.53	7
E151-12c	1299.39	1270.34	1270.34	12	1133.43	1128.24	1128.24	12
E200-17c	1708.00	1667.65	1669.74	16	1395.74	1386.84	1386.84	17
D051-06c	670:01	663.59	663.59	6	618.40	616.66	616.66	6
D076-11c	989.42	988.74	988.74	12	975.46	974.79	974.79	12
D101-09c	1054.70	1046.69	1046.69	10	973.94	968.73	968.73	9
D101-11c	952.53	943.79	943.79	11	875.75	868.50	868.50	11
D121-11c	1646.60	1638.39	1637.07	11	1596.72	1587.93	1587.93	11
D151-14c	1383.87	1374.15	1374.15	15	1287.64	1284.63	1284.63	15
D200-18c	1671.29	1652.58	1652.58	20	1538.66	1523.24	1521.94	19
¹ Sequential sav	ings.							
² Sequential sav	ings + 3-opt a	nd first impro	vement.					
³ Sequential savings + 3-opt and best improvement.								
⁴ Sequential sav	ings: number	of vehicles in	solution.					
⁵ Parallel saving	S .							
⁶ Parallel saving	s + 3-opt and	first improven	nent.		10/	hat is h	oct?	
7-		-				IGC IS D	CSC:	

⁷Parallel savings + 3-opt and best improvement. ⁸Parallel savings: number of vehicles in solution.

Outline	Tabu Search for VRPTW [Potvin (1996)]
	Initial solution: Solomon's insertion heuristic
1. Construction Heuristics for VRPTW	Neighborhood: or-opt and 2-opt* (in VNS fashion or neighborhood union) speed up in or-opt: i is moved between j and $j + q$ if i is one of the h nearest neighbors
2. Local Search	Step : best improvement
3. Metaheuristics	Tabu criterion: forbidden to reinsert edges which were recently removed
4. Other Variants of VRP	Tabu length: fixed
	Aspiration criterion: tabu move is overridden if an overall best is reached
	End criterion: number of iterations without improvements
DM87 – Scheduling, Timetabling and Routing 21	DM87 – Scheduling, Timetabling and Routing 22
Taburoute [Gendreau, Hertz, Laporte, 1994] Neighborhood: remove one vertex from one route and insert with GENI in another that contains one of its p nearest neighbors	False restart: Step 1: (Initialization) Generate $\lceil \sqrt{n}/2 \rceil$ initial solutions and perform tabu search on $W' \subset W = V \setminus \{0\}$ ($ W' \approx 0.9 W $) up to 50
Re-optimization of routes at different stages	idle iterations.
Tabu criterion: forbidden to reinsert vertex in route	Step 2: (Improvement) Starting with the best solution observed in Step 1 perform tabu search on $W' \subset W = V \setminus \{0\}$
Tabu length: random from [5,10]	$(VV' \approx 0.9 VV)$ up to 50 n idle iterations.
 Evaluation function: possible to examine infeasible routes + diversification component: penalty term measuring overcapacity (every 10 iteration multiplied or divided by 2) penalty term measuring overduration frequency of movement of a vertex currently considered 	Step 3: (Intensification) Starting with the best solution observed in Step 2, perform tabu search up to 50 idle iterations. Here W' is the set of the $\lceil V /2 \rceil$ vertices that have been most often moved in Steps 1 and 2.
Overall strategy: false restart (initially several solutions, limited search for each of them, selection of the best)	DM87 – Scheduling, Timetabling and Routing 24

2. Some element (single tour) of these solutions are combined together to

1. Keep an adaptive memory as a pool of good solutions

form new solution (more weight is given to best solutions)

3. Partial solutions are completed by an insertion procedure.

4. Tabu search is applied at the tour level

[Rochart and Taillard, 1995]

25

[Toth and Vigo, 1995]

26

Long edges are unlikely to be in the optimal solution

 \Downarrow

Remove those edges that exceed a granularity threshold $\boldsymbol{\nu}$

 $\nu=\beta\bar{c}$

- β sparsification parameter
- $\blacktriangleright\ \bar{c}$ average length for a solution from a construction heuristic
- adjust β after a number of idle iterations

DM87 – Scheduling, Timetabling and Routing

Ant Colony System [Gambardella et al. 1999]

VRP-TW: in case of vehicle and distance minimization two ant colonies are working in parallel on the two objective functions (colonies exchange pheromone information)

DM87 – Scheduling, Timetabling and Routing

Constraints: A constructed solution must satisfy i) each customer visited once ii) capacity not exceeded iii) Time windows not violated

Pheromone trails: associated with connections (desirability of order)

Heuristic information: savings + time considerations

Solution construction:

$$\mathtt{p}_{ij}^k = \frac{\tau_{ij}^\alpha \eta_{ij}^\beta}{\sum_{l \in N_l^k} \tau_{il}^\alpha \eta_{il}^\beta} \qquad j \in \mathsf{N}_i^k$$

if no feasible, open a new route or decide routes to merge if customers left out use an insertion procedure

Pheromone update:

$$\begin{array}{ll} \mathsf{Global} & \tau_{ij} \leftarrow \tau_{ij} + \rho \Delta \tau^{bs}_{ij} & \forall (i,j) \in \mathsf{T}^{bs} \\ \\ \mathsf{Local} & \tau_{ij} \leftarrow (1-\varepsilon)\tau_{ij} + \varepsilon \tau^{bs}_o & \forall (i,j) \in \mathsf{T}^{bs} \end{array}$$

Outline		Vehicle Routing with Backhauls (VRPB)			
		Further Input from CVRP:			
1. Construction Heuristics for VRPTW		 a partition of customers: L = {1,,n} Lineahaul customers (deliveries) B = {n + 1,,n + m} Backhaul customers (collections) 			
2. Local Search		precedence constraint: in a route, customers from L must be served before customers from B			
3. Metaheuristics		Task: Find a collection of K simple circuits with minimum costs, such that:▶ each circuit visit the depot vertex			
4. Other Variants of VRP		 each customer vertex is visited by exactly one circuit; and the sum of the demands of the vertices visited by a circuit does not exceed the vehicle capacity Q. 			
		in any circuit all the linehaul customers precede the backhaul customers, if any.			
DM87 – Scheduling, Timetabling and Routing	29	DM87 – Scheduling, Timetabling and Routing 30			

Vehicle Routing with Pickup and Delivery (VRPPD)

Further Input from CVRP:

- each customer i is associated with quantities di and pi to be delivered and picked up, resp.
- for each customer i, O_i denotes the vertex that is the origin of the delivery demand and D_i denotes the vertex that is the destination of the pickup demand

Task:

Find a collection of K simple circuits with minimum costs, such that:

- each circuit visit the depot vertex
- each customer vertex is visited by exactly one circuit; and
- \blacktriangleright the current load of the vehicle along the circuit must be non-negative and may never exceed Q
- ▶ for each customer i, the customer O_i when different from the depot, must be served in the same circuit and before customer i
- \blacktriangleright for each customer i, the customer D_i when different from the depot, must be served in the same circuit and after customer i

31

Multiple Depots VRP

Further Input from CVRP:

- multiple depots to which customers can be assigned
- a fleet of vehicles at each depot

Task:

Find a collection of K simple circuits for each depot with minimum costs, such that:

- each circuit visit the depot vertex
- each customer vertex is visited by exactly one circuit; and
- ► the current load of the vehicle along the circuit must be non-negative and may never exceed Q
- vehicles start and return to the depots they belong

Vertex set $V=\{1,2,\ldots,n\}$ and $V_0=\{n+1,\ldots,n+m\}$ Route i defined by $R_i=\{l,1,\ldots,l\}$

Periodic VRP

Further Input from CVRP:

planning period of M days

Task:

Find a collection of K simple circuits with minimum costs, such that:

- each circuit visit the depot vertex
- > each customer vertex is visited by exactly one circuit; and
- ► the current load of the vehicle along the circuit must be non-negative and may never exceed Q
- ▶ A vehicle may not return to the depot in the same day it departs.
- Over the M-day period, each customer must be visited 1 times, where $1 \le l \le M$.

Three phase approach:

1. Generate feasible alternatives for each customer.

Example, M = 3 days {d1, d2, d3} then the possible combinations are: $0 \rightarrow 000$; $1 \rightarrow 001$; $2 \rightarrow 010$; $3 \rightarrow 011$; $4 \rightarrow 100$; $5 \rightarrow 101$; $6 \rightarrow 110$;

 $7 \rightarrow 111.$

Customer	Diary De- mand	Number of Visits	Number of Combina-	Possible Combina-
			tions	tions
1	30	1	3	1,2,4
2	20	2	3	3,4,6
3	20	2	3	3,4,6
4	30	2	3	1,2,4
5	10	3	1	7

2. Select one of the alternatives for each customer, so that the daily constraints are satisfied. Thus, select the customers to be visited in each day.

3. Solve the vehicle routing problem for each day.

DM87 – Scheduling, Timetabling and Routing

Split Delivery VRP

Constraint Relaxation: it is allowed to serve the same customer by different vehicles. (necessary if $d_i > Q$)

Task:

Find a collection of K simple circuits with minimum costs, such that:

- each circuit visit the depot vertex
- the current load of the vehicle along the circuit must be non-negative and may never exceed Q

Note: a SDVRP can be transformed into a VRP by splitting each customer order into a number of smaller indivisible orders [Burrows 1988].

DM87 – Scheduling, Timetabling and Routing

Inventory VRP

Input:

- ▶ a facility, a set of customers and a planning horizon T
- \triangleright r_i product consumption rate of customer i (volume per day)
- \triangleright C_i maximum local inventory of the product for customer i
- \blacktriangleright a fleet of M homogeneous vehicles with capacity Q

Task:

Find a collection of K daily circuits to run over the planing horizon with minimum costs and such that:

- each circuit visit the depot vertex
- ▶ no customer goes in stock-out during the planning horizon
- ► the current load of the vehicle along the circuit must be non-negative and may never exceed Q

33

34

Other VRPs

VRP with Satellite Facilities (VRPSF)

Possible use of satellite facilities to replenish vehicles during a route.

Open VRP (OVRP)

The vehicles do not need to return at the depot, hence routes are not circuits but paths

Dial-a-ride VRP (DARP)

- It generalizes the VRPTW and VRP with Pick-up and Delivery by incorporating time windows and maximum ride time constraints
- ► It has a human perspective
- Vehicle capacity is normally constraining in the DARP whereas it is often redundant in PDVRP applications (collection and delivery of letters and small parcels)

DM87 – Scheduling, Timetabling and Routing

37