
DM87
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 19

Vehicle Routing
Heuristic Methods

Marco Chiarandini

Outline

1. Construction Heuristics for VRPTW

2. Local Search

3. Metaheuristics

4. Other Variants of VRP

DM87 – Scheduling, Timetabling and Routing 2

Outline

1. Construction Heuristics for VRPTW

2. Local Search

3. Metaheuristics

4. Other Variants of VRP

DM87 – Scheduling, Timetabling and Routing 3

Construction Heuristics for VRPTW

Extensions of those for CVRP [Solomon (1987)]

I Savings heuristics (Clarke and Wright)

I Time-oriented nearest neighbors

I Insertion heuristics

I Time-oriented sweep heuristic

DM87 – Scheduling, Timetabling and Routing 4

Time-Oriented Nearest-Neighbor
I Add the unrouted node “closest” to the depot or the last node added

without violating feasibility
I Metric for “closest”:

cij = δ1dij + δ2Tij + δ3vij

dij geographical distance
Tij time distance
vij urgency to serve j

DM87 – Scheduling, Timetabling and Routing 5

Insertion Heuristics
Step 1: Compute for each unrouted costumer u the best feasible

position in the route:

c1(i(u), u, j(u)) = min
p=1,...,m

{c1(ip−1, u, ip)}

(c1 is a composition of increased time and increase route
length due to the insertion of u)
(use push forward rule to check feasibility efficiently)

Step 2: Compute for each unrouted customer u which can be feasibly
inserted:

c2(i(u
∗), u∗, j(u∗)) = max

u
{λd0u − c1(i(u), u, j(u))}

(max the benefit of servicing a node on a partial route rather
than on a direct route)

Step 3: Insert the customer u∗ from Step 2

DM87 – Scheduling, Timetabling and Routing 6

Outline

1. Construction Heuristics for VRPTW

2. Local Search

3. Metaheuristics

4. Other Variants of VRP

DM87 – Scheduling, Timetabling and Routing 7

Local Search for CVRP and VRPTW

I Neighborhoods structures:

I Intra-route: 2-opt, 3-opt, Lin-Kernighan (not very well suited) 2H-opt,
Or-opt

I Inter-routes: λ-interchange, relocate, exchange, cross, 2-opt∗, ejection
chains, GENI

I Solution representation and data structures
I They depend on the neighborhood.
I It can be advantageous to change them from one stage to another of the

heuristic

DM87 – Scheduling, Timetabling and Routing 8

Intra-route Neighborhoods

2-opt

{i, i+ 1}{j, j+ 1} −→ {i, j}{i+ 1, j+ 1}

i i+1

jj+1

i i+1

jj+1

O(n2) possible exchanges
One path is reversed

DM87 – Scheduling, Timetabling and Routing 9

Intra-route Neighborhoods

3-opt

{i, i+ 1}{j, j+ 1}{k, k+ 1} −→ . . .

i i+1

kk+1

j

j+1

i i+1

kk+1

j

j+1

i i+1

kk+1

j

j+1

O(n3) possible exchanges
Paths can be reversed

DM87 – Scheduling, Timetabling and Routing 10

Intra-route Neighborhoods

Or-opt [Or (1976)]
{i1 − 1, i1}{i2, i2 + 1}{j, j+ 1} −→ {i1 − 1, i2 + 1}{j, i1}{i2, j+ 1}

jj+1

i −11 i +1

i 21

2

i

jj+1

i −11 i +1

i 21

2

i

sequences of one, two, three consecutive vertices relocated
O(n2) possible exchanges — No paths reversed

DM87 – Scheduling, Timetabling and Routing 11

Time windows: Feasibility check

In TSP verifying k-optimality requires O(nk) time
In TSPTW feasibility has to be tested then O(nk+1) time

(Savelsbergh 1985) shows how to verify constraints in constant time
Search strategy + Global variables

⇓
O(nk) for k-optimality in TSPTW

DM87 – Scheduling, Timetabling and Routing 12

Search Strategy
I Lexicographic search, for 2-exchange:

I i = 1, 2, . . . , n− 2 (outer loop)
I j = i+ 2, i+ 3, . . . , n (inner loop)

1

2

3

4

5

{1,2}{3,4}−>{1,3}{2,4}1

2

3

4

5

{1,2}{4,5}−>{1,4}{2,5}1

2

3

4

5

Previous path is expanded by the edge {j− 1, j}

DM87 – Scheduling, Timetabling and Routing 13

Global variables (auxiliary data structure)

I Maintain auxiliary data such that it is possible to:

I handle single move in constant time

I update their values in constant time

Ex.: in case of time windows:

I total travel time of a path

I earliest departure time of a path

I latest arrival time of a path

DM87 – Scheduling, Timetabling and Routing 14

Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

DM87 – Scheduling, Timetabling and Routing 15

Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

DM87 – Scheduling, Timetabling and Routing 16

Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

DM87 – Scheduling, Timetabling and Routing 17

Inter-route Neighborhoods

GENI: generalized insertion [Gendreau, Hertz, Laporte, Oper. Res. (1992)]

I select the insertion restricted to the neighborhood of the vertex to be
added (not necessarily between consecutive vertices)

I perform the best 3- or 4-opt restricted to reconnecting arc links that are
close to one another.

General recommendation: use a combination of 2-opt∗ + or-opt [Potvin,
Rousseau, (1995)]

However,

I Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

I It is important to make such algorithms as much efficient as possible.

I Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

I The assessment is conducted through:
I analytical analysis (computational complexity)
I experimental analysis

DM87 – Scheduling, Timetabling and Routing 20

Outline

1. Construction Heuristics for VRPTW

2. Local Search

3. Metaheuristics

4. Other Variants of VRP

DM87 – Scheduling, Timetabling and Routing 21

Tabu Search for VRPTW [Potvin (1996)]

Initial solution: Solomon’s insertion heuristic

Neighborhood: or-opt and 2-opt* (in VNS fashion or neighborhood union)
speed up in or-opt: i is moved between j and j+ q if i is
one of the h nearest neighbors

Step : best improvement

Tabu criterion: forbidden to reinsert edges which were recently removed

Tabu length: fixed

Aspiration criterion: tabu move is overridden if an overall best is reached

End criterion: number of iterations without improvements

DM87 – Scheduling, Timetabling and Routing 22

Taburoute

[Gendreau, Hertz, Laporte, 1994]

Neighborhood: remove one vertex from one route and insert with GENI in
another that contains one of its p nearest neighbors
Re-optimization of routes at different stages

Tabu criterion: forbidden to reinsert vertex in route

Tabu length: random from [5, 10]

Evaluation function: possible to examine infeasible routes + diversification
component:

I penalty term measuring overcapacity
(every 10 iteration multiplied or divided by 2)

I penalty term measuring overduration
I frequency of movement of a vertex currently considered

Overall strategy: false restart (initially several solutions, limited search for
each of them, selection of the best)

False restart:
Step 1: (Initialization) Generate d√n/2e initial solutions and perform

tabu search on W ′ ⊂W = V \ {0} (|W ′| ≈ 0.9|W|) up to 50
idle iterations.

Step 2: (Improvement) Starting with the best solution observed in
Step 1 perform tabu search on W ′ ⊂W = V \ {0}

(|W ′| ≈ 0.9|W|) up to 50n idle iterations.

Step 3: (Intensification) Starting with the best solution observed in
Step 2, perform tabu search up to 50 idle iterations.
Here W ′ is the set of the d|V |/2e vertices that have been most
often moved in Steps 1 and 2.

DM87 – Scheduling, Timetabling and Routing 24

Adaptive Memory Procedure

[Rochart and Taillard, 1995]

1. Keep an adaptive memory as a pool of good solutions

2. Some element (single tour) of these solutions are combined together to
form new solution (more weight is given to best solutions)

3. Partial solutions are completed by an insertion procedure.

4. Tabu search is applied at the tour level

DM87 – Scheduling, Timetabling and Routing 25

Granular Tabu Search

[Toth and Vigo, 1995]

Long edges are unlikely to be in the optimal solution

⇓
Remove those edges that exceed a granularity threshold ν

ν = βc̄

I β sparsification parameter

I c̄ average length for a solution from a construction heuristic

I adjust β after a number of idle iterations

DM87 – Scheduling, Timetabling and Routing 26

Ant Colony System [Gambardella et al. 1999]

VRP-TW: in case of vehicle and distance minimization two ant
colonies are working in parallel on the two objective functions

(colonies exchange pheromone information)

Constraints: A constructed solution must satisfy i) each customer visited
once ii) capacity not exceeded iii) Time windows not violated

Pheromone trails: associated with connections (desirability of order)

Heuristic information: savings + time considerations

Solution construction:

pkij =
ταijη

β
ij∑

l∈Nk
l
ταilη

β
il

j ∈ Nki

if no feasible, open a new route
or decide routes to merge
if customers left out use an insertion procedure

Pheromone update:

Global τij ← τij + ρ∆τbsij ∀(i, j) ∈ Tbs

Local τij ← (1− ε)τij + ετbso ∀(i, j) ∈ Tbs

Outline

1. Construction Heuristics for VRPTW

2. Local Search

3. Metaheuristics

4. Other Variants of VRP

DM87 – Scheduling, Timetabling and Routing 29

Vehicle Routing with Backhauls (VRPB)

Further Input from CVRP:
I a partition of customers:
L = {1, . . . , n} Lineahaul customers (deliveries)
B = {n+ 1, . . . , n+m} Backhaul customers (collections)

I precedence constraint:
in a route, customers from L must be served before customers from B

Task: Find a collection of K simple circuits with minimum costs, such that:
I each circuit visit the depot vertex
I each customer vertex is visited by exactly one circuit; and
I the sum of the demands of the vertices visited by a circuit does not

exceed the vehicle capacity Q.
I in any circuit all the linehaul customers precede the backhaul customers,

if any.

DM87 – Scheduling, Timetabling and Routing 30

Vehicle Routing with Pickup and Delivery (VRPPD)

Further Input from CVRP:
I each customer i is associated with quantities di and pi to be delivered

and picked up, resp.
I for each customer i, Oi denotes the vertex that is the origin of the

delivery demand and Di denotes the vertex that is the destination of the
pickup demand

Task:
Find a collection of K simple circuits with minimum costs, such that:

I each circuit visit the depot vertex
I each customer vertex is visited by exactly one circuit; and
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q
I for each customer i, the customer Oi when different from the depot,

must be served in the same circuit and before customer i
I for each customer i, the customer Di when different from the depot,

must be served in the same circuit and after customer i

DM87 – Scheduling, Timetabling and Routing 31

Multiple Depots VRP

Further Input from CVRP:
I multiple depots to which customers can be assigned
I a fleet of vehicles at each depot

Task:
Find a collection of K simple circuits for each depot with minimum costs,
such that:

I each circuit visit the depot vertex
I each customer vertex is visited by exactly one circuit; and
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q
I vehicles start and return to the depots they belong

Vertex set V = {1, 2, . . . , n} and V0 = {n+ 1, . . . , n+m}

Route i defined by Ri = {l, 1, . . . , l}

DM87 – Scheduling, Timetabling and Routing 32

Periodic VRP

Further Input from CVRP:
I planning period of M days

Task:
Find a collection of K simple circuits with minimum costs, such that:

I each circuit visit the depot vertex
I each customer vertex is visited by exactly one circuit; and
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q
I A vehicle may not return to the depot in the same day it departs.
I Over the M-day period, each customer must be visited l times, where
1 ≤ l ≤M.

DM87 – Scheduling, Timetabling and Routing 33

Three phase approach:
1. Generate feasible alternatives for each customer.

Example, M = 3 days {d1, d2, d3} then the possible combinations are:
0→ 000; 1→ 001; 2→ 010; 3→ 011; 4→ 100; 5→ 101; 6→ 110;
7→ 111.
Customer Diary De-

mand
Number of
Visits

Number of
Combina-
tions

Possible
Combina-
tions

1 30 1 3 1,2,4
2 20 2 3 3,4,6
3 20 2 3 3,4,6
4 30 2 3 1,2,4
5 10 3 1 7

2. Select one of the alternatives for each customer, so that the daily
constraints are satisfied. Thus, select the customers to be visited in each
day.

3. Solve the vehicle routing problem for each day.

DM87 – Scheduling, Timetabling and Routing 34

Split Delivery VRP

Constraint Relaxation: it is allowed to serve the same customer by different
vehicles. (necessary if di > Q)

Task:
Find a collection of K simple circuits with minimum costs, such that:

I each circuit visit the depot vertex
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q

Note: a SDVRP can be transformed into a VRP by splitting each customer
order into a number of smaller indivisible orders [Burrows 1988].

DM87 – Scheduling, Timetabling and Routing 35

Inventory VRP

Input:
I a facility, a set of customers and a planning horizon T
I ri product consumption rate of customer i (volume per day)
I Ci maximum local inventory of the product for customer i
I a fleet of M homogeneous vehicles with capacity Q

Task:
Find a collection of K daily circuits to run over the planing horizon with
minimum costs and such that:

I each circuit visit the depot vertex
I no customer goes in stock-out during the planning horizon
I the current load of the vehicle along the circuit must be non-negative

and may never exceed Q

DM87 – Scheduling, Timetabling and Routing 36

Other VRPs

VRP with Satellite Facilities (VRPSF)
Possible use of satellite facilities to replenish vehicles during a route.

Open VRP (OVRP)
The vehicles do not need to return at the depot, hence routes are not circuits
but paths

Dial-a-ride VRP (DARP)

I It generalizes the VRPTW and VRP with Pick-up and Delivery by
incorporating time windows and maximum ride time constraints

I It has a human perspective
I Vehicle capacity is normally constraining in the DARP whereas it is often

redundant in PDVRP applications (collection and delivery of letters and
small parcels)

DM87 – Scheduling, Timetabling and Routing 37

