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Complexity Hierarchy

A problem A is reducible to B if a procedure for B can be used also for A. J

Ex: 1|2 Cj o 13 w;G

Complexity hierarchy describes relationships between different scheduling
problems.

Interest in characterizing the borderline: polynomial vs NP-hard problems

Problems Involving Numbers

Partition

» Input: finte set A and a size s(a) € Z* foreach a € A
» Question: is there a subset A’ C A such that

3-Partition

» Input: set A of 3m elements, a bound B € Z*, and a size s(a) € Z*
for each a € A such that B/4 < s(a) < B/2 and such that
2 _aca Sla) =mB

» Question: can A be partitioned into m diskoint sets A1,..., A, such
that for 1 <i<m, } . s(a) =B (note that each A; must therefore
contain exactly three elements from A)?

Complexity Hierarchy of Problems

TABLE D.1 FOLYMOMIAL TIME SOLVABLE PROBLEMS
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TABLED.2 NP-HARD PROBLEMS IN THE ORDINARY SENSE
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TABLE D.3 STROMGLY MP-HARD PROBLEMS

Single machine Paralle] machines | Shops
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http://www.mathematik.uni-osnabrueck.de/research/0OR/class/

Complexity Hierarchy

Elementary reductions for machine environment
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Complexity Hierarchy

Elementary reductions for regular objective functions
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Complexity Hierarchy of Problems
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Outline Project Planning
Milwaukee General Hospital Project
Immediate
Activity Description Predecessor  pyration
A Build internal components - 2
B Modify roof and floor - 3
C Construct collection stack A 2
D Pour concrete and install frame AB 4
3 CPM/PERT E Build high-temperature burner C 4
) F Install pollution control system [ 3
G Install air pollution device D.E 5
H Inspect and test F.G 2
13 14
Project Planning Project Planning
Gantt Chart
Milwaukee General Hospital Project " § S o
Immediate ; : ; i i ]
Activity Description Predecessor  pyration EST EFT LST LFT Slack 5 ; _
A Build internal components - 2 0 2 0 2 0 F : _
B Modify roof and floor - ] 0 3 1 4 it 2. ! #
] Construct collection stack A 2 2 4 2 4 8] g ! -
D Pour concrete and install frame AB 4 3 7 5 10 3 g0 _: E grpekcted Ruration
E Build high-temperature burner C 4 4 g 5] 10 2 c _ ac
F Install pollution control system C 3 4 7 10 13 & d ]
G Install air pollution device D.E 5 8 13 8 13 o] : _:
H Inspect and test F.G 2 13 15 13 15 0 A “ 3
Expected project duration| 15 c 1 2z 3 4 3 10 11 12 13 14 15 16
Time Period
14 14




Project Planning

Milwaukee General Hospital Projec

Immediate

Expecte Time Activity
d Estimates Varianc

Activity Description Predecessor o, gm k) EST EFT LST LFT Slack  a m_ b (ib-a)6)~2
A Build internal components - 2 0 2 [o] 2 o] TN 01111
B Modify roof and floor - 3 0 3 1. 4 1 SN 0.1111
C Construct collection stack A 2 2 4 2 4 0 (A 01111
D *our concrete and Install frame AB 4 3 7 4 8 1 2 4 B8 04444
E 3uild high-temperature burne C 4 4 8 4 8 0 1 4 7 1.0000
F nstall pollution control systerr C 3 4 7 10 13 [ NS 1.7778
G Install air pollution device D.E 5 8 13 8 13 o] SN 17778
H Inspect and test F.G 2 13 13 13 15 0 e 01111

Expected project duration 15 Variance of project duration 3.1111

Outline

4. Mathematical Programming

Linear, Integer, Nonlinear Programming Linear Programming
program = optimization problem
min  f(x) _ _
gi(x) =0, i=1,2,...,k Linear Program in standard form
h. < 0) = 1)2) * ) .
x)éxl)%; : " min c¢1X7 +C2X2 +...CnXn
s.t. anxi +anxy +... .+ ainxn = by min cTx
general (nonlinear) program (NLP) a21x1 + 2%z + ... F dnXn = b2 Ax =D
; x>0
min c¢'x min  c'x a21X7 + @22X2 + ...+ GonXn = by,
Ax=a Ax =a X1,X2,...,Xn >0
Bx<b
Bx<b
x>0
x>0 "
(x e R™) (x € Z7)
(x €{0,1}™)
linear program (LP) integer (linear) program (IP, MIP)




Historic Roots

1939 L. V. Kantorovitch: Foundations of linear programming (Nobel
Prize 1975)

v

v

George J. Stigler's 1945 (Nobel Prize 1982) “Diet Problem™: “the first
linear program”

find the cheapest combination of foods that will

satisfy the daily requirements of a person

Army’s problem had 77 unknowns and 9 constraints.

http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.h

v

1947 G. B. Dantzig: Invention of the simplex algorithm

v

Founding fathers:

» 1950s Dantzig: Linear Programming 1954, the Beginning of IP G.
Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
» 1960s Gomory: Integer Programming
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LP Theory

Max-Flow Min-Cut Theorem
The maximal (s,t)-flow in a capaciatetd network is equal to the minimal
capacity of an (s,t)-cut

The Duality Theorem of Linear Programming

max c'x min y'b
Ax<b yrA>c'
x>0 y>0

If feasible solutions to both the primal and the dual problem in a pair of
dual LP problems exist, then there is an optimum solution to both
systems and the optimal values are equal.
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LP Theory

» Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow)

» The Duality Theorem of Integer Programming

max c'x min y'b
Ax <b yrA>cl
x>0 < y>0
x €Zm yezZr
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LP Solvability

Linear programs can be solved in polynomial time with
the Ellipsoid Method (Khachiyan, 1979)
Interior Point Methods (Karmarkar, 1984, and others)

Open: is there a strongly polynomial time algorithm for the solution of
LPs?

Certain variants of the Simplex Algorithm run - under certain conditions
- in expected polynomial time (Borgwardt, 1977...)

Open: Is there a polynomial time variant of the Simplex Algorithm?

21




IP Solvability

» Theorem

Integer, 0/1, and mixed integer programming are NP-hard.

» Consequence

> special cases
» special purposes
> heuristics

>

>

>

Algorithms for the solution of nonlinear programs
Algorithms for the solution of linear programs

1) Fourier-Motzkin Elimination (hopeless)

2) The Simplex Method (good, above all with duality)
3) The Ellipsoid Method (total failure)

4) Interior-Point/Barrier Methods (good)

Algorithms for the solution of integer programs

» 1) Branch & Bound
> 2) Cutting Planes

v

vvyy
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Algorithms for nonlinear programming

v

v

v

Iterative methods that solve the equation and inequality systems
representing the necessary local optimality conditions.

Steepest descent (Kuhn-Tucker sufficient conditions)
Newton method

Subgradient method

24

Algorithms for linear programming

The Simplex Method

>

>
| 2
>
>

Dantzig, 1947: primal Simplex Method
Lemke, 1954; Beale, 1954: dual Simplex Method
Dantzig, 1953: revised Simplex Method

Underlying ldea: Find a vertex of the set of feasible LP solutions
(polyhedron) and move to a better neighbouring vertex, if possible.




The simplex method

min/max + x1 + 3x2 =~

\\\\
(1) - x2 <=0
(2) - x1 - =x2 <=-1 \
(3) — x1 + x2 <= 3 ~
(4) + x1 <= 3 2
(5) + x1 + 2x2 <= 9

(5)\
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The simplex method

min/max + x1 + 3x2 =~

~
(1) - x2 <=
(2) - x1 - x2 <=-1 \L
(3) - x1 + x2 <= 3 ~
(4) + x1 <= 3 \Q" (s)

(5) + x1 + 2x2 <= 9

~ A
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The simplex method

Hirsch Conjecture
If P is a polytope of dimension n with m facets then every vertex of P can be
reached from any other vertex of P on a path of length at most m-n.

In the example before: m=5, n=2 and m-n=3, conjecture is true.
At present, not even a polynomial bound on the path length is known.
Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an

n-dimensional polyhedron with m facets is at most m(log n+1).
Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).
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Algorithms for Integer Programming

special ,simple" combinatorial optimization problems Finding a:

minimum spanning tree
shortest path
maximum matching

maximal flow through a network

vV V. v v VY

cost-minimal flow

> ...

solvable in polynomial time by special purpose algorithms

28




Algorithms for Integer Programs

special ,hard" combinatorial optimization problems

» traveling salesman problem

> location and routing

> set-packing, partitioning, -covering
max-cut

linear ordering

scheduling (with a few exceptions)

vV v v Y

node and edge colouring
|

NP-hard (in the sense of complexity theory)
The most successful solution techniques employ linear programming.

Algorithms for Integer Programs

» 1) Branch & Bound
» 2) Cutting Planes

Branch & cut, Branch & Price (column generation), Branch & Cut & Price

30

Summary

» We can solve today explicit LPs with
» up to 500,000 of variables and
» up to 5,000,000 of constraints routinely
in relatively short running times.

» We can solve today structured implicit LPs (employing column
generation and cutting plane techniques) in special cases with hundreds
of million (and more) variables and almost infinitely many constraints in
acceptable running times. (Examples: TSP, bus circulation in Berlin)

[Martin Grétschel, Block Course at TU Berlin,
“Combinatorial Optimization at Work", 2005
http://co-at-work.zib.de/berlin/|
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