DM87
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 2
Complexity hierarchies, PERT, Mathematical programming

Marco Chiarandini

Outline

1. Resume
2. Complexity Hierarchy
3. CPM/PERT
4. Mathematical Programming
5. Resume
6. Complexity Hierarchy
7. CPM/PERT
8. Mathematical Programming

Outline

1. Resume
2. Complexity Hierarchy
3. CPM/PERT
4. Mathematical Programming

Complexity Hierarchy

A problem \mathcal{A} is reducible to \mathcal{B} if a procedure for \mathcal{B} can be used also for \mathcal{A}.
Ex: $1\left\|\sum C_{j} \propto 1\right\| \sum w_{j} C_{j}$
Complexity hierarchy describes relationships between different scheduling problems.

Interest in characterizing the borderline: polynomial vs NP-hard problems

Problems Involving Numbers

Partition

- Input: finte set A and a size $s(a) \in \mathbf{Z}^{+}$for each $a \in A$
- Question: is there a subset $A^{\prime} \subseteq A$ such that

$$
\sum_{a \in A^{\prime}} s(a)=\sum_{a \in A-A^{\prime}} s(a) ?
$$

3-Partition

- Input: set A of $3 m$ elements, a bound $B \in \mathbf{Z}^{+}$, and a size $s(a) \in \mathbf{Z}^{+}$ for each $a \in A$ such that $B / 4<s(a)<B / 2$ and such that $\sum_{a \in A} s(a)=m B$
- Question: can A be partitioned into m diskoint sets A_{1}, \ldots, A_{m} such that for $1 \leq i \leq m, \sum_{a \in A_{i}} s(a)=B$ (note that each A_{i} must therefore contain exactly three elements from A)?

Complexity Hierarchy of Problems

TABLE D. 1 POLYNOMIAL TIME SOLVABLE PROBLEMS

TABLE D. 2 NP-HARD PROBLEMS IN THE ORDINARY SENSE

Single machine	Parallel machines	Shops		
$1 \\| \sum w_{j} U_{j}\left(^{*}\right)$	$P 2 \\| C_{\max }\left({ }^{*}\right)$	$O 2\|p r m p\| \sum C_{j}$		
$1\left\|r_{j}, p m m p\right\| \sum w_{j} U_{j}\left({ }^{*}\right)$	$\begin{aligned} & P 2\left\|r_{j}, p r m p\right\| \sum C_{j} \\ & P 2 \\| \sum w_{j} C_{i}\left({ }^{*}\right) \end{aligned}$	$03 \\| C_{\max }$		
$1 \\| \sum T_{j}\left({ }^{*}\right)$	$P 2\left\|r_{j}, p r m p\right\| \sum U_{j}$	O3\| p mpm $\mid \sum w_{j} U_{j}$		
	Pm $\operatorname{prmp}^{\text {prmp }} \mid \sum w_{j} C_{j}$			
	$\underline{Q m \\|} \\| w_{j} C_{j}\left({ }^{*}\right)$			
	$R \mathrm{~m}\left\|r_{j}\right\| C_{\text {max }}{ }^{(*)}$			
	$R m \\| \sum w_{j} U_{j}\left(^{*}\right)$			
	$R m\|p r m p\| \sum w_{j} U_{j}$			

TABLE D. 3 STRONGLY NP-HARD PROBLEMS

Single machine	Parallel machines	Shops					
$\begin{aligned} & 1\left\|s_{j}\right\| C_{\mathrm{max}} \\ & 1\left\|r_{j}\right\| \sum C_{j} \\ & 1\|p r e c\| \sum C_{j} \\ & 1 \mid r_{j}, p r m p, \text { tree } \mid \sum C_{j} \\ & 1\left\|r_{j}, p m p\right\| \sum w_{j} C_{j} \\ & 1 \mid r_{j}, p_{j}=1 \text {, tree } \mid \sum w_{j} C_{j} \\ & 1 \mid p_{j}=1, \text { prec } \mid \sum w_{j} C_{j} \\ & 1\left\|r_{j}\right\| L_{\mathrm{mas}} \\ & 1\left\|r_{j}\right\| \sum U_{j} \\ & 1 \mid p_{j}=1 \text {, chains } \mid \sum U_{j} \\ & 1\left\|r_{j}\right\| \sum T_{j} \\ & 1 \mid p_{j}=1, \text { chains } \mid \sum T_{j} \\ & 1 \mid \sum w_{j} T_{j} \end{aligned}$	$P 2 \mid$ chains $\mid C_{\text {max }}$ $P 2 \mid$ chains $\mid \sum C_{j}$ $P 2 \mid$ prmp, chains $\mid \sum C_{j}$ $P 2 \mid p_{j}=1$, tree $\mid \sum w_{j} C_{j}$ $R 2 \mid$ pmp, chains $\mid C_{\max }$	$\begin{aligned} & F 2\left\|r_{j}\right\| C_{\max } \\ & F 2\left\|r_{j}, p m m p\right\| C_{\max } \\ & F 2 \\| \sum C_{j} \\ & F 2\|p m m p\| \sum C_{j} \\ & F 2 \\| L_{\max } \\ & F 2\|p m p\| L_{\max } \\ & F 3 \\| C_{\max } \\ & F 3\|p m p\| C_{\max } \\ & F 3\|n w t\| C_{\max } \\ & O 2\left\|r_{j}\right\| C_{\max } \\ & O 2 \\| \sum C_{j} \\ & O 2\|p r m p\| \sum w_{j} C_{j} \\ & O 2 \\| L_{\max } \\ & O 3\|p r m p\| \sum C_{j} \\ & J 2\|r e c r c\| C_{\max } \\ & J 3\left\|p_{i j}=1, r e c r c\right\| C_{\max } \end{aligned}$					

http://www.mathematik.uni-osnabrueck.de/research/OR/class/

Complexity Hierarchy

Elementary reductions for regular objective functions

Elementary reductions for machine environment

Complexity Hierarchy of Problems

Outline

1. Resume
2. Complexity Hierarchy
3. CPM/PERT
4. Mathematical Programming

Project Planning

Milwaukee General Hospital Project

Activity	Description	Immediate Predecessor	Duration
A	Build internal components	-	2
B	Modify roof and floor	-	3
C	Construct collection stack	A	2
D	Pour concrete and install frame	A,B	4
E	Build high-temperature burner	C	4
F	Install pollution control system	C	3
G	Install air pollution device	D,E	5
H	Inspect and test	F,G	2

Project Planning

Milwaukee General Hospital Project

Activity	Description	Predecessor	Duration	EST	EFT	LST	LFT	Slack
A	Build internal components	-	2	0	2	0	2	0
B	Modify roof and floor	-	3	0	3	1	4	1
C	Construct collection stack	A	2	2	4	2	4	0
D	Pour concrete and install frame	A.B	4	3	7	6	10	3
E	Build high-temperature burner	C	4	4	8	6	10	2
F	Install pollution control system	C	3	4	7	10	13	6
G	Install air pollution device	D.E	5	8	13	8	13	0
H	Inspect and test	F,G	2	13	15	13	15	0

Project Planning

Milwaukee General Hospital Projer $\begin{gathered}\text { Expecte } \\ d\end{gathered}$

Linear, Integer, Nonlinear Programming

program $=$ optimization problem

$\min f(x)$

$g_{i}(x)=0, \quad i=1,2, \ldots, k$
$h_{j}(x) \leq 0, \quad j=1,2, \ldots, m$
$x \in \mathbf{R}^{n}$
general (nonlinear) program (NLP)

$$
\begin{array}{ll}
\min & c^{\top} x \\
& A x=a \\
& \mathrm{~B} x \leq \mathrm{b} \\
& x \geq 0 \\
& \left(x \in \mathbf{R}^{n}\right)
\end{array}
$$

linear program (LP)
$\min c^{\top} x$
$A x=a$
$\mathrm{B} x \leq \mathrm{b}$
$x \geq 0$
$\left(x \in \mathbf{Z}^{n}\right)$
$\left(x \in\{0,1\}^{n}\right)$
integer (linear) program (IP, MIP)

Linear Programming

Linear Program in standard form

$$
\begin{array}{cl}
\min & c_{1} x_{1}+c_{2} x_{2}+\ldots c_{n} x_{n} \\
s . t . & a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{n} \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{array}
$$

LP Theory

- 1939 L. V. Kantorovitch: Foundations of linear programming (Nobel Prize 1975)
- George J. Stigler’s 1945 (Nobel Prize 1982) "Diet Problem": "the first linear program"
find the cheapest combination of foods that will satisfy the daily requirements of a person
Army's problem had 77 unknowns and 9 constraints.
http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.h
- 1947 G. B. Dantzig: Invention of the simplex algorithm
- Founding fathers:
- 1950s Dantzig: Linear Programming 1954, the Beginning of IP G. Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
- 1960s Gomory: Integer Programming
- Max-Flow Min-Cut Theorem

The maximal (s, t)-flow in a capaciatetd network is equal to the minimal capacity of an (s, t)-cut

- The Duality Theorem of Linear Programming
$\begin{aligned} \max & \mathrm{c}^{\top} x \\ & \mathrm{~A} x \leq \mathrm{b}\end{aligned}$

$$
\begin{array}{ll}
\min & y^{\top} b \\
& y^{\top} A \geq c^{\top} \\
& y \geq 0
\end{array}
$$

If feasible solutions to both the primal and the dual problem in a pair of dual LP problems exist, then there is an optimum solution to both systems and the optimal values are equal.

LP Theory

- Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given (multicommodity flow)
- The Duality Theorem of Integer Programming

$$
\begin{array}{ll}
\max & c^{\top} x \\
& A x \leq b \\
& x \geq 0
\end{array}
$$

$$
x \in \mathbf{Z}^{n}
$$

\leq

$$
\begin{array}{ll}
\min & y^{\top} b \\
& y^{\top} A \geq c^{\top} \\
& y \geq 0
\end{array}
$$

$$
y \in \mathbf{Z}^{n}
$$

LP Solvability

- Linear programs can be solved in polynomial time with the Ellipsoid Method (Khachiyan, 1979)
Interior Point Methods (Karmarkar, 1984, and others)
- Open: is there a strongly polynomial time algorithm for the solution of LPs?
- Certain variants of the Simplex Algorithm run - under certain conditions - in expected polynomial time (Borgwardt, 1977...)
- Open: Is there a polynomial time variant of the Simplex Algorithm?
- Theorem

Integer, 0/1, and mixed integer programming are NP-hard.

- Consequence
- special cases
- special purposes
- heuristics
- Algorithms for the solution of nonlinear programs
- Algorithms for the solution of linear programs
- 1) Fourier-Motzkin Elimination (hopeless)
- 2) The Simplex Method (good, above all with duality)
- 3) The Ellipsoid Method (total failure)
- 4) Interior-Point/Barrier Methods (good)
- Algorithms for the solution of integer programs
- 1) Branch \& Bound
- 2) Cutting Planes

Algorithms for nonlinear programming

- Iterative methods that solve the equation and inequality systems representing the necessary local optimality conditions.
- Steepest descent (Kuhn-Tucker sufficient conditions)
- Newton method
- Subgradient method

Algorithms for linear programming

The Simplex Method

- Dantzig, 1947: primal Simplex Method
- Lemke, 1954; Beale, 1954: dual Simplex Method
- Dantzig, 1953: revised Simplex Method
-
- Underlying Idea: Find a vertex of the set of feasible LP solutions (polyhedron) and move to a better neighbouring vertex, if possible.

The simplex method
$\min / \max +x 1+3 x 2$
(1) $\quad-\quad x 2<=0$
(2) - x1 - $x 2<=-1$
(3) $-x 1+x 2<=3$
(4) $+x 1$
5) $+x 1+2 \times 2<=9$

The simplex method

The simplex method

Hirsch Conjecture
If P is a polytope of dimension n with m facets then every vertex of P can be reached from any other vertex of P on a path of length at most m-n.

In the example before: $\mathrm{m}=5, \mathrm{n}=2$ and $\mathrm{m}-\mathrm{n}=3$, conjecture is true.

At present, not even a polynomial bound on the path length is known. Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an n-dimensional polyhedron with m facets is at most $m(\log n+1)$.
Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).

Algorithms for Integer Programming

special „simple" combinatorial optimization problems Finding a:

- minimum spanning tree
- shortest path
- maximum matching
- maximal flow through a network
- cost-minimal flow
- ...
solvable in polynomial time by special purpose algorithms

Algorithms for Integer Programs

special ,,hard" combinatorial optimization problems

- traveling salesman problem
- location and routing
- set-packing, partitioning, -covering
- max-cut
- linear ordering
- scheduling (with a few exceptions)
- node and edge colouring
-

NP-hard (in the sense of complexity theory)
The most successful solution techniques employ linear programming.

Algorithms for Integer Programs

- 1) Branch \& Bound

2) Cutting Planes

Branch \& cut, Branch \& Price (column generation), Branch \& Cut \& Price

- We can solve today explicit LPs with
- up to 500,000 of variables and
- up to 5,000,000 of constraints routinely
in relatively short running times.
- We can solve today structured implicit LPs (employing column generation and cutting plane techniques) in special cases with hundreds of million (and more) variables and almost infinitely many constraints in acceptable running times. (Examples: TSP, bus circulation in Berlin)
[Martin Grötschel, Block Course at TU Berlin,
"Combinatorial Optimization at Work", 2005 http://co-at-work.zib.de/berlin/]

