	Outline
DM87 SCHEDULING, TIMETABLING AND ROUTING	
	1. Resume
Lecture 2 Complexity hierarchies, PERT,	2. Complexity Hierarchy
Mathematical programming	3. CPM/PERT
Marco Chiarandini	4. Mathematical Programming
	2
Outline	Outline
Outline	Outline
Outline 1. Resume	Outline 1. Resume
Outline 1. Resume 2. Complexity Hierarchy	Outline 1. Resume 2. Complexity Hierarchy
Outline 1. Resume 2. Complexity Hierarchy 3. CPM/PERT	Outline 1. Resume 2. Complexity Hierarchy 3. CPM/PERT
Outline 1. Resume 2. Complexity Hierarchy 3. CPM/PERT 4. Mathematical Programming	Outline 1. Resume 2. Complexity Hierarchy 3. CPM/PERT 4. Mathematical Programming
Outline 1. Resume 2. Complexity Hierarchy 3. CPM/PERT 4. Mathematical Programming	Outline 1. Resume 2. Complexity Hierarchy 3. CPM/PERT 4. Mathematical Programming

A problem \mathcal{A} is reducible to \mathcal{B} if a procedure for \mathcal{B} can be used also for \mathcal{A} .

Complexity hierarchy describes relationships between different scheduling

Interest in characterizing the borderline: polynomial vs NP-hard problems

Ex: $1 \| \sum C_i \propto 1 \| \sum w_i C_i \|$

problems.

Partition

- \blacktriangleright Input: finte set A and a size $s(a)\in {\bf Z}^+$ for each $a\in A$
- Question: is there a subset $A' \subseteq A$ such that

$$\sum_{\mathfrak{a}\in A^{\,\prime}} \mathfrak{s}(\mathfrak{a}) = \sum_{\mathfrak{a}\in A-A^{\,\prime}} \mathfrak{s}(\mathfrak{a})?$$

3-Partition

5

- ▶ Input: set A of 3m elements, a bound $B \in \mathbb{Z}^+$, and a size $s(a) \in \mathbb{Z}^+$ for each $a \in A$ such that B/4 < s(a) < B/2 and such that $\sum_{a \in A} s(a) = mB$
- ► Question: can A be partitioned into m diskoint sets A₁,..., A_m such that for 1 ≤ i ≤ m, ∑_{a∈Ai} s(a) = B (note that each A_i must therefore contain exactly three elements from A)?

6

Complexity Hierarchy of Problems

TABLE D.1 POLYNOMIAL TIME SOLVABLE PROBLEMS

Single machine
Single machine $1 \mid r_j, p_j = 1, prec \mid \sum C_j$ $1 \mid r_j, prmp \mid \sum C_j$ $1 \mid tree \mid \sum w_j C_j$ $1 \mid prec \mid L_{max}$ $1 \mid j, prmp, prec \mid L_{max}$ $1 \mid \sum U_j$ $1 \mid \sum U_j$ $1 \mid r_j, prmp \mid \sum U_j$ $1 \mid r_j, p_j = 1 \mid \sum w_j U_j$ $1 \mid r_j, p_j = 1 \mid \sum w_j T_j$

TABLE D.2 NP-HARD PROBLEMS IN THE ORDINARY SENSE

Single machine	Parallel machines	Shops
$1 \parallel \sum w_j U_j$ (*)	P2 C _{max} (*)	$O2 \mid prmp \mid \sum C_j$
$ r_j, prmp \sum w_j U_j (*)$ $ \sum T_j (*)$	$\begin{array}{c} P2 \mid r_j, prmp \mid \sum C_j \\ P2 \mid \mid \sum w_j C_j \ (*) \\ P2 \mid r_j, prmp \mid \sum U_j \end{array}$	$\begin{array}{c} O3 \parallel C_{max} \\ O3 \mid prmp \mid \sum w_j U_j \end{array}$
	$Pm \mid prmp \mid \sum w_j C_j$	
	$Qm \mid\mid \sum w_j C_j$ (*)	2 · · ·
	$\begin{array}{l} Rm \mid r_j \mid C_{max} \left(* \right) \\ Rm \mid \sum w_j U_j \left(* \right) \\ Rm \mid prmp \mid \sum w_j U_j \end{array}$	

Complexity Hierarchy TABLE D.3 STRONGLY NP-HARD PROBLEMS Single machine Parallel machines Shops 1 | Sik | Cmax P2 | chains | Cmax $F2 \mid r_j \mid C_{max}$ Elementary reductions for machine environment P2 | chains | $\sum C_j$ F2 | rj, prmp | Cmax $\begin{array}{l} P2 \mid prmp, chains \mid \sum C_j \\ P2 \mid p_j = 1, tree \mid \sum w_j C_j \end{array}$ $1|r_i|\sum C_i$ $F2 \parallel \sum C_j$ $1 \mid prec \mid \sum C_j$ $F2 \mid prmp \mid \sum C_j$ $1 \mid r_j, prmp, tree \mid \sum C_j$ F2 || Lmax $\begin{array}{l}1 \mid r_j, prmp \mid \sum w_j C_j\\1 \mid r_j, p_j = 1, tree \mid \sum w_j C_j\\1 \mid p_j = 1, prec \mid \sum w_j C_j\end{array}$ R2 | prmp, chains | Cmax F2 | prmp | Lmax Rm FJc F3 || Cmax F3 | prmp | Cmax $1 \mid r_j \mid L_{max}$ F3 | nwt | Cmax Qm FFc Jm $1|r_j|\sum U_j$ 02 | r, | Cmax $O2 \parallel \sum C_j$ $1 \mid p_i = 1$, chains $\mid \sum U_i$ $O2 \mid prmp \mid \sum w_i C_i$ PmFm Om $1 | r_j | \sum T_j$ 02 || L.max $1 \mid p_j = 1, chains \mid \sum T_j$ *1 || $\sum w_i T_i$ $O3 \mid prmp \mid \sum C_i$ 1 J2 | recrc | Cmax $J3 \mid p_{ij} = 1$, recrc $\mid C_{\max}$ http://www.mathematik.uni-osnabrueck.de/research/OR/class/ 10 **Complexity Hierarchy Complexity Hierarchy of Problems** Elementary reductions for regular objective functions $Jm || C_{\max}$ FFc || C_{max} Hard Easy $\Sigma w_j T_j$ $\Sigma w_j U_j$ $P2||C_{\max}|$ $F2 || C_{\max}$ ΣU_j $\Sigma w_j C_j$ ΣT_i $1 \| C_{\max}$ L_{\max} ΣC_i $1|r_i prmp|L_{max}$ $Pm||L_{max}$ $1|r_i|L_{\max}$ $C_{\rm max}$ 1 prmp Lmax

Hard Easy

 $1 \| L_{\max}$

1. Resume

2. Complexity Hierarchy

3. CPM/PERT

4. Mathematical Programming

Milwaukee General Hospital Project

Activity	Description	Immediate Predecessor	Duration	
А	Build internal components	-	2	
в	Modify roof and floor	nd floor –		
С	Construct collection stack	A	2	
D	Pour concrete and install frame	A,B	4	
E	Build high-temperature burner	С	4	
E	Install pollution control system	С	3	
G	G Install air pollution device D,		5	
Н	Inspect and test	F,G	2	

Project Planning

Milwaukee General Hospital Project								
Activity	Description	Immediate Predecessor	Duration	EST	EFT	LST	LFT	Slack
А	Build internal components	1-	2	0	2	0	2	0
в	Modify roof and floor	5. 	3	0	З	1	4	1
С	Construct collection stack	A	2	2	4	2	4	0
D	Pour concrete and install frame	A,B	4	3	7	6	10	3
Е	Build high-temperature burner	С	4	4	8	6	10	2
F	Install pollution control system	С	3	4	7	10	13	6
G	Install air pollution device	D,E	5	8	13	8	13	0
н	Inspect and test	F,G	2	13	15	13	15	0
		Expecte	d project d	duration	15			

Project Planning

14

13

15

17

Milwaukee General Hospital Projec Time Activity Estimates Varianc Immediate Predecessor (a+4m+b)/e Description EST EFT LST LFT Slack Activity a m b ((b-a)/6)^2 2 Build internal components 0 0 2 0 3 0.1111 A 2 2 В Modify roof and floor 3 0 З 1 4 2 0.1111 1 Construct collection stack Α 2 2 4 2 4 3 0 1 1 1 1 C 0 1 our concrete and install frame A,B 4 3 7 4 0.4444 8 D 1 С 4 4 8 4 4 7 1.0000 Build high-temperature burne 8 0 F nstall pollution control system С 3 4 7 10 13 1 2 9 1.7778 6 13 3 4 11 1.7778 Install air pollution device D,E 5 8 8 13 0 G Inspect and test F,G 13 15 13 15 1 2 3 0.1111 н 2 0 Expected project duration 15 Variance of project duration 3.1111 4. Mathematical Programming 14 Linear, Integer, Nonlinear Programming Linear Programming program = optimization problemmin f(x)Linear Program in standard form $g_i(x) = 0, i = 1, 2, \dots, k$ $h_i(x) \le 0, \ j = 1, 2, \dots, m$ min $c_1x_1 + c_2x_2 + \ldots c_nx_n$ $\mathbf{x} \in \mathbf{R}^n$ s.t. $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ min $c^{\mathsf{T}}x$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ general (nonlinear) program (NLP) Ax = b $x \ge 0$ min $c^{\mathsf{T}}x$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_n$ min $c^{\mathsf{T}}x$ Ax = a $x_1, x_2, \ldots, x_n \geq 0$ Ax = aBx < b $Bx \leq b$ $x \ge 0$ $x \ge 0$ $(\mathbf{x} \in \mathbf{Z}^n)$ $(\mathbf{x} \in \mathbf{R}^n)$ $(x \in \{0, 1\}^n)$ linear program (LP) integer (linear) program (IP, MIP) 16

Historic Roots

IP Solvability	
 Theorem Integer, 0/1, and mixed integer programming are NP-hard. Consequence special cases special purposes heuristics 	 Algorithms for the solution of nonlinear programs Algorithms for the solution of linear programs 1) Fourier-Motzkin Elimination (hopeless) 2) The Simplex Method (good, above all with duality) 3) The Ellipsoid Method (total failure) 4) Interior-Point/Barrier Methods (good) Algorithms for the solution of integer programs 1) Branch & Bound 2) Cutting Planes
Algorithms for nonlinear programming	Algorithms for linear programming
 Iterative methods that solve the equation and inequality systems representing the necessary local optimality conditions. Steepest descent (Kuhn-Tucker sufficient conditions) Newton method Subgradient method 	 The Simplex Method Dantzig, 1947: primal Simplex Method Lemke, 1954; Beale, 1954: dual Simplex Method Dantzig, 1953: revised Simplex Method Underlying Idea: Find a vertex of the set of feasible LP solutions (polyhedron) and move to a better neighbouring vertex, if possible.

