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Complexity Hierarchy

A problem A is reducible to B if a procedure for B can be used also for A.

Ex: 1||
∑

Cj ∝ 1||
∑

wjCj

Complexity hierarchy describes relationships between different scheduling
problems.

Interest in characterizing the borderline: polynomial vs NP-hard problems
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Problems Involving Numbers

Partition

I Input: finte set A and a size s(a) ∈ Z+ for each a ∈ A

I Question: is there a subset A ′ ⊆ A such that∑
a∈A ′

s(a) =
∑

a∈A−A ′
s(a)?

3-Partition

I Input: set A of 3m elements, a bound B ∈ Z+, and a size s(a) ∈ Z+

for each a ∈ A such that B/4 < s(a) < B/2 and such that∑
a∈A s(a) = mB

I Question: can A be partitioned into m diskoint sets A1, . . . , Am such
that for 1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B (note that each Ai must therefore
contain exactly three elements from A)?
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Complexity Hierarchy of Problems



http://www.mathematik.uni-osnabrueck.de/research/OR/class/

Complexity Hierarchy

Elementary reductions for machine environment
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Complexity Hierarchy

Elementary reductions for regular objective functions
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Complexity Hierarchy of Problems
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Project Planning
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Project Planning
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Linear, Integer, Nonlinear Programming

program = optimization problem

min f(x)
gi(x) = 0, i = 1, 2, . . . , k

hj(x) ≤ 0, j = 1, 2, . . . , m

x ∈ Rn

general (nonlinear) program (NLP)

min cTx

Ax = a

Bx ≤ b

x ≥ 0

(x ∈ Rn)

linear program (LP)

min cTx

Ax = a

Bx ≤ b

x ≥ 0

(x ∈ Zn)
(x ∈ {0, 1}n)

integer (linear) program (IP, MIP)
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Linear Programming

Linear Program in standard form

min c1x1 + c2x2 + . . . cnxn

s.t. a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
a21x1 + a22x2 + . . . + a2nxn = bn

x1, x2, . . . , xn ≥ 0

min cTx

Ax = b

x ≥ 0
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Historic Roots

I 1939 L. V. Kantorovitch: Foundations of linear programming (Nobel
Prize 1975)

I George J. Stigler’s 1945 (Nobel Prize 1982) “Diet Problem”: “the first
linear program”
find the cheapest combination of foods that will
satisfy the daily requirements of a person
Army’s problem had 77 unknowns and 9 constraints.
http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

I 1947 G. B. Dantzig: Invention of the simplex algorithm

I Founding fathers:
I 1950s Dantzig: Linear Programming 1954, the Beginning of IP G.

Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
I 1960s Gomory: Integer Programming
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LP Theory

I Max-Flow Min-Cut Theorem
The maximal (s,t)-flow in a capaciatetd network is equal to the minimal
capacity of an (s,t)-cut

I The Duality Theorem of Linear Programming

max cTx

Ax ≤ b

x ≥ 0

min yTb

yTA ≥ cT

y ≥ 0

If feasible solutions to both the primal and the dual problem in a pair of
dual LP problems exist, then there is an optimum solution to both
systems and the optimal values are equal.
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LP Theory

I Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow)

I The Duality Theorem of Integer Programming

max cTx

Ax ≤ b

x ≥ 0

x ∈ Zn
≤

min yTb

yTA ≥ cT

y ≥ 0

y ∈ Zn
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LP Solvability

I Linear programs can be solved in polynomial time with
the Ellipsoid Method (Khachiyan, 1979)
Interior Point Methods (Karmarkar, 1984, and others)

I Open: is there a strongly polynomial time algorithm for the solution of
LPs?

I Certain variants of the Simplex Algorithm run - under certain conditions
- in expected polynomial time (Borgwardt, 1977...)

I Open: Is there a polynomial time variant of the Simplex Algorithm?
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IP Solvability

I Theorem
Integer, 0/1, and mixed integer programming are NP-hard.

I Consequence
I special cases
I special purposes
I heuristics
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I Algorithms for the solution of nonlinear programs
I Algorithms for the solution of linear programs

I 1) Fourier-Motzkin Elimination (hopeless)
I 2) The Simplex Method (good, above all with duality)
I 3) The Ellipsoid Method (total failure)
I 4) Interior-Point/Barrier Methods (good)

I Algorithms for the solution of integer programs
I 1) Branch & Bound
I 2) Cutting Planes
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Algorithms for nonlinear programming

I Iterative methods that solve the equation and inequality systems
representing the necessary local optimality conditions.

I Steepest descent (Kuhn-Tucker sufficient conditions)

I Newton method

I Subgradient method
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Algorithms for linear programming

The Simplex Method

I Dantzig, 1947: primal Simplex Method
I Lemke, 1954; Beale, 1954: dual Simplex Method
I Dantzig, 1953: revised Simplex Method
I ....
I Underlying Idea: Find a vertex of the set of feasible LP solutions

(polyhedron) and move to a better neighbouring vertex, if possible.
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The simplex method

26

The simplex method
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The simplex method

Hirsch Conjecture
If P is a polytope of dimension n with m facets then every vertex of P can be
reached from any other vertex of P on a path of length at most m-n.

In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.
Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an
n-dimensional polyhedron with m facets is at most m(log n+1).
Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).
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Algorithms for Integer Programming

special „simple" combinatorial optimization problems Finding a:

I minimum spanning tree
I shortest path
I maximum matching
I maximal flow through a network
I cost-minimal flow
I ...

solvable in polynomial time by special purpose algorithms
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Algorithms for Integer Programs

special „hard" combinatorial optimization problems

I traveling salesman problem
I location and routing
I set-packing, partitioning, -covering
I max-cut
I linear ordering
I scheduling (with a few exceptions)
I node and edge colouring
I ...

NP-hard (in the sense of complexity theory)
The most successful solution techniques employ linear programming.
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Algorithms for Integer Programs

I 1) Branch & Bound
I 2) Cutting Planes

Branch & cut, Branch & Price (column generation), Branch & Cut & Price
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Summary

I We can solve today explicit LPs with
I up to 500,000 of variables and
I up to 5,000,000 of constraints routinely

in relatively short running times.
I We can solve today structured implicit LPs (employing column

generation and cutting plane techniques) in special cases with hundreds
of million (and more) variables and almost infinitely many constraints in
acceptable running times. (Examples: TSP, bus circulation in Berlin)

[Martin Grötschel, Block Course at TU Berlin,
“Combinatorial Optimization at Work”, 2005

http://co-at-work.zib.de/berlin/]
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