
DM87
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 3

Mathematical Programming Formulations,
Constraint Programming

Marco Chiarandini

Outline

1. Special Purpose Algorithms

2. Constraint Programming

DM87 – Scheduling, Timetabling and Routing 2

Modeling: Mixed Integer Formulations

I Transportation Problem

I Weighted Bipartite Matching Problem (if m = n ⇒ assignment)

Set Covering

min
n∑

j=1

cjxj

n∑
j=1

aijxj ≥ 1 ∀i
xj ∈ {0, 1}

Set Partitioning

min
n∑

j=1

cjxj

n∑
j=1

aijxj = 1 ∀i
xj ∈ {0, 1}

Set Packing

max
n∑

j=1

cjxj

n∑
j=1

aijxj ≤ 1 ∀i
xj ∈ {0, 1}

DM87 – Scheduling, Timetabling and Routing 3

Traveling Salesman Problem

DM87 – Scheduling, Timetabling and Routing 4

Traveling Salesman Problem

DM87 – Scheduling, Timetabling and Routing 4

Traveling Salesman Problem

DM87 – Scheduling, Timetabling and Routing 4

Traveling Salesman Problem

DM87 – Scheduling, Timetabling and Routing 4

Traveling Salesman Problem

DM87 – Scheduling, Timetabling and Routing 4

Traveling Salesman Problem

DM87 – Scheduling, Timetabling and Routing 4

Traveling Salesman Problem

DM87 – Scheduling, Timetabling and Routing 4

minimize cTx subject to

0 ≤ xe ≤ 1 for all edges e,∑
(xe : v is am emd of e) = 2 for all cities v,∑

(xe : e has one end in S and one end not in S) ≥ 2

for all nonempty proper subsets S of cities,∑i=3
i=0(

∑
(xe : e has one end in Si and one end not in Si) ≥ 10,

for any comb

DM87 – Scheduling, Timetabling and Routing 5

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu

Modeling: Mixed Integer Formulations

I Formulation for Qm|pj = 1|
∑

hj(Cj) and relation with transportation
problems

I Totally unimodular matrices and sufficient conditions for total
unimodularity i) two ones per column and ii) consecutive 1’s property

I Formulation of 1|prec|
∑

wjCj and Rm||
∑

Cj as weighted bipartite
matching and assignment problems.

I Formulation of set covering, set partitioning and set packing
I Formulation of Traveling Salesman Problem
I Formulation of 1|prec|

∑
wjCj and how to deal with disjunctive

constraints
I Graph coloring

DM87 – Scheduling, Timetabling and Routing 7

Outline

1. Special Purpose Algorithms

2. Constraint Programming

DM87 – Scheduling, Timetabling and Routing 8

Special Purpose Algorithms

Dynamic programming
procedure based on divide and conquer

Based on principle of optimality the completion of an optimal sequence of
decisions must be optimal

I Break down the problem in stages at which the decisions take place
I Find a recurrence relation that takes us backward (forward) from one

stage to the previous (next)

In scheduling, this can be typically done only for objectives that are sequence
independent (eg, the makespan).

DM87 – Scheduling, Timetabling and Routing 9

Special Purpose Algorithms

Branch and Bound
divide and conquer + lower bounding technique

[Jens Clausen. (2003)]

DM87 – Scheduling, Timetabling and Routing 10

Outline

1. Special Purpose Algorithms

2. Constraint Programming

DM87 – Scheduling, Timetabling and Routing 11

Constraint Satisfaction Problem

I Input:

I a set of variables X1, X2, . . . , Xn

I each variable has a non-empty domain Di of possible values
I a set of constraints. Each constraint Ci involves some subset of the

variables and specify the allowed combination of values for that subset.

[A constraint C on variables Xi and Xj, C(Xi, Xj), defines the subset of
the Cartesian product of variable domains Di ×Dj of the consistent
assignments of values to variables. A constraint C on variables Xi, Xj is
satisfied by a pair of values vi, vj if (vi, vj) ∈ C(Xi, Xj).]

I Task:

I find an assignment of values to all the variables {Xi = vi, Xj = vj, . . .}

I such that it is consistent, that is, it does not violate any constraint

If assignments are not all equally good, but some are preferable this is
reflected in an objective function.

DM87 – Scheduling, Timetabling and Routing 12

Search Problem

I initial state: the empty assignment {} in which all variables are
unassigned

I successor function: a value can be assigned to any unassigned variable,
provided that it does not conflict with previously assigned variables

I goal test: the current assignment is complete
I path cost: a constant cost

Two search paradigms:
I search tree of depth n

I complete state formulation: local search

DM87 – Scheduling, Timetabling and Routing 13

Types of Variables and Values

I Discrete variables with finite domain:
complete enumeration is O(dn)

I Discrete variables with infinite domains:
Impossible by complete enumeration.
Instead a constraint language (constraint logic programming and
constraint reasoning)
Eg, project planning.

Sj + pj ≤ Sk

NB: if only linear constraints, then integer linear programming

I variables with continuous domains
NB: if only linear constraints or convex functions then mathematical
programming

DM87 – Scheduling, Timetabling and Routing 14

Types of constraints

I Unary constraints

I Binary constraints (constraint graph)

I Higher order (constraint hypergraph)
Eg, Alldiff()
Every higher order constraint can be reconduced to binary
(you may need auxiliary constraints)

I Preference constraints
cost on individual variable assignments

DM87 – Scheduling, Timetabling and Routing 16

General Purpose Solution Algorithms

Search algorithms
tree with branching factor at the top level nd

at the next level (n − 1)d.
The tree has n! · dn even if only dn possible complete assignments.

I CSP is commutative in the order of application of any given set of
action. (the order of the assignment does not influence)

I Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each node
in the search tree.

Backtracking search
depth first search that chooses one variable at a time and backtracks when a
variable has no legal values left to assign.

DM87 – Scheduling, Timetabling and Routing 17

Backtrack Search

DM87 – Scheduling, Timetabling and Routing 18

Backtrack Search

I No need to copy solutions all the times but rather extensions and undo
extensions

I Since CSP is standard then the alg is also standard and can use general
purpose algorithms for initial state, successor function and goal test.

I Backtracking is uninformed and complete. Other search algorithms may
use information in form of heuristics

DM87 – Scheduling, Timetabling and Routing 19

General Purpose backtracking methods

1) Which variable should we assign next, and in what order should its
values be tried?

2) What are the implications of the current variable assignments for the
other unassigned variables?

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

DM87 – Scheduling, Timetabling and Routing 20

Which variable should we assign next, and in what order should its values be
tried?

I Select-Initial-Unassigned-Variable
degree heuristic (reduces the branching factor) also used as tied breaker

I Select-Unassigned-Variable
Most constrained variable (DSATUR) = fail-first heuristic
= Minimum remaining values (MRV) heuristic (speeds up pruning)

I Order-Domain-Values
least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

NB: If we search for all the solutions or a solution does not exists, then the
ordering does not matter.

DM87 – Scheduling, Timetabling and Routing 21

What are the implications of the current variable assignments for the other
unassigned variables?

Propagating information through constraints
I Implicit in Select-Unassigned-Variable

I Forward checking (coupled with MRV)

I Constraint propagation
I arc consistency: force all (directed) arcs uv to be consistent: ∃ a value in

D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (MAC, Maintaining Arc Consistency)

Applied repeatedly

I k-consistency: if for any set of k − 1 variables, and for any consistent
assignment to those variables, a consistent value can always be assigned
to any k-th variable.

determining the appropriate level of consistency checking is mostly an
empirical science.

DM87 – Scheduling, Timetabling and Routing 22

Arc Consistency Algorithm: AC-3

DM87 – Scheduling, Timetabling and Routing 23

Arc Consistency Algorithm: AC-3

DM87 – Scheduling, Timetabling and Routing 24

Incomplete Search

General purpose algorithms:

DM87 – Scheduling, Timetabling and Routing 25

Limited Discrepancy Search

I A discrepancy is a branch against the value of an heuristic

I Ex: count one discrepancy if second best is chosen
count two discrepancies either if third best is chosen or twice the second
best is chosen

I Explore the tree in order of an increasing number of discrepancies

DM87 – Scheduling, Timetabling and Routing 26

Handling special constraints (higher order constraints)

Special purpose algorithms

I Alldiff
I for m variables and n values cannot be satisfied if m > n,
I consider first singleton variables
I propagation based on bipartite matching considerations

I Resource Constraint atmost
I check the sum of minimum values of single domains

delete maximum values if not consistent with minimum values of others.
I for large integer values not possible to represent the domain as a set of

integers but rather as bounds.
Then bounds propagation: Eg,
Flight271 ∈ [0, 165] and Flight272 ∈ [0, 385]

Flight271 + Flight272 ∈ [420, 420]

Flight271 ∈ [35, 165] and Flight272 ∈ [255, 385]

DM87 – Scheduling, Timetabling and Routing 27

When a path fails – that is, a state is reached in which a variable has no legal
values can the search avoid repeating this failure in subsequent paths?

Backtracking-Search
I chronological backtracking, the most recent decision point is revisited
I backjumping, backtracks to the most recent variable in the conflict set

(set of previously assigned variables connected to X by constraints).

every branch pruned by backjumping is also pruned by forward checking

idea remains: backtrack to reasons of failure.

DM87 – Scheduling, Timetabling and Routing 28

Incomplete Search

General purpose algorithms:

DM87 – Scheduling, Timetabling and Routing 29

An Empirical Comparison

Mendian number of consistency checks

DM87 – Scheduling, Timetabling and Routing 30

The structure of problems

I Decomposition in subproblems:
I connected components in the constraint graph
I O(dcn/c) vs O(dn)

I Constraint graphs that are tree are solvable in poly time by reverse
arc-consistency checks.

I Reduce constraint graph to tree:
I removing nodes (cutset conditioning: find the smallest cycle cutset. It is

NP-hard but good approximations exist)
I collapsing nodes (tree decomposition)

divide-and-conquer works well with small subproblems

DM87 – Scheduling, Timetabling and Routing 31

Optimization Problems

Objective function F(X1, X2, . . . , Xn)

I Solve a modified Constraint Satisfaction Problem by setting a (lower)
bound z∗ in the objective function

I Dichotomic search: U upper bound, L lower bound

M =
U + L

2

DM87 – Scheduling, Timetabling and Routing 32

Constraint Logic Programming

Language is first-order logic.
I Syntax – Language

I Alphabet
I Well-formed Expressions

E.g., 4X + 3Y = 10; 2X - Y = 0
I Semantics – Meaning

I Interpretation
I Logical Consequence

I Calculi – Derivation
I Inference Rule
I Transition System

DM87 – Scheduling, Timetabling and Routing 33

Logic Programming

A logic program is a set of axioms, or rules, defining relationships
between objects.

A computation of a logic program is a deduction of consequences of
the program.

A program defines a set of consequences, which is its meaning.

The art of logic programming is constructing concise and elegant
programs that have desired meaning.

Sterling and Shapiro: The Art of Prolog, Page 1.

DM87 – Scheduling, Timetabling and Routing 34

Local Search for CSP

I Uses a complete-state formulation: a value assigned to each variable
(randomly)

I Changes the value of one variable at a time

I Min-conflicts heuristic is effective particularly when given a good initial
state.

I Run-time independent from problem size

I Possible use in online settings in personal assignment: repair the
schedule with a minimum number of changes

DM87 – Scheduling, Timetabling and Routing 35

