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Introduction

Heuristic methods make use of two search paradigms:

I construction rules (extends partial solutions)

I local search (modifies complete solutions)

These components are problem specific and implement informed search.

They can be improved by use of metaheuristics which are general-purpose
guidance criteria for underlying problem specific components.

Final heuristic algorithms are often hybridization of several components.
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Construction Heuristics

(aka Dispatching Rules, in scheduling)
Closely related to search tree techniques
Correspond to a single path from root to leaf

I search space = partial candidate solutions
I search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
While s is not a complete solution:
|| choose a solution component c
b add the solution component to s
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Greedy best-first search
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Greedy best-first search
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I An important class of Construction Heuristics are greedy algorithms
Always make the choice which is the best at the moment.

I Sometime it can be proved that they are optimal
(Minimum Spanning Tree, Single Source Shortest Path,
1||
∑
wjCj, 1||Lmax)

I Other times it can be proved an approximation ratio

I Another class can be derived by the (variable, value) selection rules in
CP and removing backtracking (ex, MRV, least-constraining-values).
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Examples of Dispatching Rules in Scheduling
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Local Search

Example: Local Search for CSP

DM87 – Scheduling, Timetabling and Routing 10

Local Search

Components

I solution representation

I initial solution

I neighborhood structure

I acceptance criterion
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Solution Representation

The solution representation determines the search space S

I permutations
I linear (scheduling)
I circular (routing)

I assignment arrays (timetabling)

I sets or lists (timetabling)
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Initial Solution

I Random

I Construction heuristic
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Neighborhood Structure

I Neighborhood structure (relation): equivalent definitions:
I N : S× S→ {T, F}

I N ⊆ S× S
I N : S→ 2S

I Neighborhood (set) of a candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}

I A neighborhood structure is also defined by an operator.
An operator ∆ is a collection of operator functions δ : S→ S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′

Example

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs
from s ′ in at most k solution components
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Acceptance Criterion

The acceptance criterion defines how the neighborhood is searched and which
neighbor is selected.
Examples:

I uninformed random walk

I iterative improvement (hill climbing)

I best improvement
I first improvement
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Evaluation function

I function f(π) : S(π) 7→ R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;

I used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
I Evaluation function: part of LS algorithm.
I Objective function: integral part of optimization problem.
I Some LS methods use evaluation functions different from

given objective function (e.g., dynamic local search).
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Implementation Issues

At each iteration, the examination of the neighborhood must be fast!!

I Incremental updates (aka delta evaluations)
I Key idea: calculate effects of differences between

current search position s and neighbors s ′ on
evaluation function value.

I Evaluation function values often consist of independent contributions of
solution components; hence, f(s) can be efficiently calculated from f(s ′)
by differences between s and s ′ in terms of solution components.

I Special algorithms for solving efficiently the
neighborhood search problem
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Local Optima

Definition:

I Local minimum: search position without improving neighbors w.r.t.
given evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f(s) ≤ f(s ′) for all s ′ ∈ N(s).

I Strict local minimum: search position s ∈ S such that
f(s) < f(s ′) for all s ′ ∈ N(s).

I Local maxima and strict local maxima: defined analogously.
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Example: Iterative Improvement

First improvement for TSP

procedure TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)

∆ = 0;
Improvement=FALSE;
do

for i = 1 to n− 2 do
if i = 1 then n ′ = n− 1 else n ′ = n

for j = i+ 2 to n ′ do
∆ij = d(ci, cj) + d(ci+1, cj+1) − d(ci, ci+1) − d(cj, cj+1)

if ∆ij < 0 then
UpdateTour(s,i,j);
Improvement=TRUE;

end
end

until Improvement==TRUE;
return: a local optimum s ∈ S(π)

end TSP-2opt-first
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Permutations

Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
I πi is the element at position i
I posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π ′ is the composition (π · π ′)i = π ′(π(i))

For each π there exists a permutation such that π−1 · π = ι

∆N ⊂ Π
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Neighborhood Operators for Linear Permutations

Swap operator
∆S = {δiS|1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δ

ij
X |1 ≤ i < j ≤ n}

δ
ij
X(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

Insert operator
∆I = {δ

ij
I |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δ
ij
I (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j

(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j
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Neighborhood Operators for Circular Permutations

Reversal (2-edge-exchange)

∆R = {δ
ij
R |1 ≤ i < j ≤ n}

δ
ij
R (π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δ
ijk
B |1 ≤ i < j < k ≤ n}

δ
ij
B (π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δ
ij
SB|1 ≤ i < j ≤ n}

δ
ij
SB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)
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Neighborhood Operators for Assignments

An assignment can be represented as a mapping
σ : {X1 . . . Xn}→ {v : v ∈ D, |D| = k}:

σ = {Xi = vi, Xj = vj, . . .}

One exchange operator

∆1E = {δil1E|1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ : σ ′(Xi) = vl and σ ′(Xj) = σ(Xj) ∀j 6= i

}
Two exchange operator

∆2E = {δ
ij
2E|1 ≤ i < j ≤ n}

δ
ij
2E

{
σ : σ ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ ′(Xl) = σ(Xl) ∀l 6= i, j
}
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Neighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s : {X}→ {C,C}

(it can also be represented by a bit string)

One addition operator
∆1E = {δv1E|v ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C

′
= C \ v}

One deletion operator
∆1E = {δv1E|v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E|v ∈ C,u ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}
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Construction Heuristics (Extensions)
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Rollout/Pilot Method

Derived from A∗

I Each candidate solution is a collection of m components
s = (s1, s2, . . . , sm).

I Master process add components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

I At the k-th iteration the master process evaluates seemly feasible
components to add based on a look-ahead strategy based on heuristic
algorithms.

I The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

I Sub-heuristics are combined in H(Sk+1) by
I weighted sum
I maximal value
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Speed-ups:

I halt whenever cost of current partial solution exceeds current upper
bound

I evaluate only a fraction of possible components
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It is optimal if H(Sk) is an

I admissible heuristic: never overestimates the cost to reach the goal
I consistent: h(n) ≤ c(n, a, n ′) + h(n ′); c(n, a, n ′) cost to go from node
n to n ′ with action a

Possible choices for admissible heuristic functions

I optimal solution to an easily solvable relaxed problem
I optimal solution to an easily solvable subproblem
I learning from experience by gathering statistics on state features
I preferred heuristics functions with higher values

(provided they do not overestimate)
I if several heuristics available h1, h2, . . . , hm and not clear which is the

best then:

h(x) = max{h1(x), . . . , hm(x)}
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Beam Search

Possible extension of tree based construction heuristics:
I maintains a set B of bw (beam width) partial candidate solutions

I at each iteration extend each solution from B in fw (filter width)
possible ways

I rank each bw× fw candidate solutions and take the best bw partial
solutions

I complete candidate solutions obtained by B are maintained in Bf

I stop when no partial solution in B is to be extended
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Iterated Greedy

Key idea: use greedy construction

I alternation of Construction and Deconstruction phases
I an acceptance criterion decides whether the search continues from the

new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r
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Greedy Randomized Adaptive Search Procedure (GRASP)

Key Idea: Combine randomized constructive search with subsequent local
search.

Greedy Randomized Adaptive Search Procedure (GRASP):
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary greedy randomized constructive search
||b perform subsidiary local search on s
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Restricted candidate lists (RCLs)

I Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

I RCLs are constructed in each step using a heuristic function h.

I RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

I RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

DM87 – Scheduling, Timetabling and Routing 40

Simulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
While termination condition is not satisfied:
|| While maintain same temperature T according to annealing schedule:
|| || probabilistically choose a neighbor s ′ of s
|| || using proposal mechanism
|| || If s ′ satisfies probabilistic acceptance criterion (depending on T):
|| b s := s ′
b update T according to annealing schedule
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Note:

I 2-stage neighbor selection procedure
I proposal mechanism (often uniform random choice from N(s))
I acceptance criterion (often Metropolis condition)

p(T, s, s ′) :=

{
1 if g(s ′) ≤ f(s)
exp f(s)−f(s ′)

T
otherwise

I Annealing schedule
(function mapping run-time t onto temperature T(t)):

I initial temperature T0

(may depend on properties of given problem instance)
I temperature update scheme

(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)

I number of search steps to be performed at each temperature
(often multiple of neighborhood size)

I Termination predicate: often based on acceptance ratio,
i.e., ratio of proposed vs accepted steps or number of idle iterations
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Example: Simulated Annealing for the TSP

Extension of previous PII algorithm for the TSP, with

I proposal mechanism: uniform random choice from
2-exchange neighborhood;

I acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [(f(s) − f(s ′))/T ]);

I annealing schedule: geometric cooling T := 0.95 · T with n · (n− 1)
steps at each temperature (n = number of vertices in given graph), T0
chosen such that 97% of proposed steps are accepted;

I termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

I neighborhood pruning (e.g., candidate lists for TSP)
I greedy initialization (e.g., by using NNH for the TSP)
I low temperature starts (to prevent good initial candidate solutions from

being too easily destroyed by worsening steps)
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Tabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

I Associate tabu attributes with candidate solutions or
solution components.

I Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best improving candidate solution s ′ in N ′
|||| update tabu attributes based on s ′
b s := s ′

DM87 – Scheduling, Timetabling and Routing 44

Note:
I Non-tabu search positions in N(s) are called

admissible neighbors of s.
I After a search step, the current search position

or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

I Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

I Crucial for efficient implementation:
I keep time complexity of search steps minimal

by using special data structures, incremental updating
and caching mechanism for evaluation function values;

I efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx; x is tabu if
it− itx < tt, where it = current search step number.
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Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

I tt too low ⇒ search stagnates due to inability to escape
from local minima;

I tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)
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Iterated Local Search

Key Idea: Use two types of LS steps:
I subsidiary local search steps for reaching

local optima as efficiently as possible (intensification)
I perturbation steps for effectively

escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:
|| r := s
|| perform perturbation on s
|| perform subsidiary local search on s
|||| based on acceptance criterion,
b keep s or revert to s := r
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Memetic Algorithm

Population based method inspired by evolution

determine initial population sp
perform subsidiary local search on sp
While termination criterion is not satisfied:
|| generate set spr of new candidate solutions
|| by recombination
|||| perform subsidiary local search on spr
|||| generate set spm of new candidate solutions
|| from spr and sp by mutation
|||| perform subsidiary local search on spm
|||| select new population sp from
b candidate solutions in sp, spr , and spm
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Selection

Main idea: selection should be related to fitness

I Fitness proportionate selection (Roulette-wheel method)

pi =
fi∑
j fj

I Tournament selection: a set of chromosomes is chosen and compared
and the best chromosome chosen.

I Rank based and selection pressure
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Recombination (Crossover)
I Binary or assignment representations

I one-point, two-point, m-point (preference to positional bias
w.r.t. distributional bias

I uniform cross over (through a mask controlled by
a Bernoulli parameter p)

I Non-linear representations
I (Permutations) Partially mapped crossover
I (Permutations) mask based

I More commonly ad hoc crossovers are used as this appears to be a
crucial feature of success

I Two off-springs are generally generated
I Crossover rate controls the application of the crossover. May be

adaptive: high at the start and low when convergence
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Example: crossovers for binary representations
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Mutation

I Goal: Introduce relatively small perturbations in candidate solutions in
current population + offspring obtained from recombination.

I Typically, perturbations are applied stochastically and independently to
each candidate solution; amount of perturbation is controlled by
mutation rate.

I Mutation rate controls the application of bit-wise mutations. May be
adaptive: low at the start and high when convergence

I Possible implementation through Poisson variable which determines the
m genes which are likely to change allele.

I Can also use subsidiary selection function to determine subset of
candidate solutions to which mutation is applied.

I The role of mutation (as compared to recombination) in
high-performance evolutionary algorithms has been often underestimated
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New Population

I Determines population for next cycle (generation) of the algorithm by
selecting individual candidate solutions from current population + new
candidate solutions obtained from recombination, mutation (+
subsidiary local search). (λ, µ) (λ+ µ)

I Goal: Obtain population of high-quality solutions while maintaining
population diversity.

I Selection is based on evaluation function (fitness) of candidate solutions
such that better candidate solutions have a higher chance of ‘surviving’
the selection process.

I It is often beneficial to use elitist selection strategies, which ensure that
the best candidate solutions are always selected.

I Most commonly used: steady state in which only one new chromosome
is generated at each iteration

I Diversity is checked and duplicates avoided
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Ant Colony Optimization

The Metaheuristic
I The optimization problem is transformed into the problem of finding the

best path on a weighted graph G(V, E) called construction graph

I The artificial ants incrementally build solutions by moving on the graph.

I The solution construction process is
I stochastic
I biased by a pheromone model, that is, a set of parameters associated

with graph components (either nodes or edges) whose values are
modified at runtime by the ants.

I All pheromone trails are initialized to the same value, τ0.

I At each iteration, pheromone trails are updated by decreasing
(evaporation) or increasing (reinforcement) some trail levels
on the basis of the solutions produced by the ants
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Ant Colony Optimization

Example: A simple ACO algorithm for the TSP

I Construction graph

I To each edge ij in G associate
I pheromone trails τij

I heuristic values ηij := 1
cij

I Initialize pheromones

I Constructive search:

pij =
[τij]

α · [ηij]β∑
l∈Nk

i

[τil]α · [ηil]β , α and β are parameters.

I Update pheromone trail levels

τij ← (1− ρ) · τij + ρ · Reward
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Example: A simple ACO algorithm for the TSP (1)

I Search space and solution set as usual (all Hamiltonian cycles in given
graph G).

I Associate pheromone trails τij with each edge (i, j) in G.

I Use heuristic values ηij := 1
cij

I Initialize all weights to a small value τ0 (τ0 = 1).

I Constructive search: Each ant starts with randomly chosen
vertex and iteratively extends partial round trip πk by selecting
vertex not contained in πk with probability

pij =
[τij]

α · [ηij]β∑
l∈Nk

i

[τil]α · [ηil]β

α and β are parameters.
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Example: A simple ACO algorithm for the TSP (2)

I Subsidiary local search: Perform iterative improvement
based on standard 2-exchange neighborhood on each
candidate solution in population (until local minimum is reached).

I Update pheromone trail levels according to

τij := (1− ρ) · τij +
∑
s∈sp ′

∆ij(s)

where ∆ij(s) := 1/Cs

if edge (i, j) is contained in the cycle represented by s ′, and 0 otherwise.

Motivation: Edges belonging to highest-quality candidate solutions
and/or that have been used by many ants should be preferably used in
subsequent constructions.

I Termination: After fixed number of cycles
(= construction + local search phases).


