
DM87
SCHEDULING,

TIMETABLING AND ROUTING

Constraint Programming, Heuristic Methods

Marco Chiarandini

Outline

1. Heuristic Methods
Construction Heuristics and Local Search
Solution Representations and Neighborhood Structures in LS
Metaheuristics

Metaheuristics for Construction Heuristics
Metaheuristics for Local Search and Hybrids

DM87 – Scheduling, Timetabling and Routing 2

Outline

1. Heuristic Methods
Construction Heuristics and Local Search
Solution Representations and Neighborhood Structures in LS
Metaheuristics

Metaheuristics for Construction Heuristics
Metaheuristics for Local Search and Hybrids

DM87 – Scheduling, Timetabling and Routing 3

Introduction

Heuristic methods make use of two search paradigms:

I construction rules (extends partial solutions)

I local search (modifies complete solutions)

These components are problem specific and implement informed search.

They can be improved by use of metaheuristics which are general-purpose
guidance criteria for underlying problem specific components.

Final heuristic algorithms are often hybridization of several components.

DM87 – Scheduling, Timetabling and Routing 4

Construction Heuristics

(aka Dispatching Rules, in scheduling)
Closely related to search tree techniques
Correspond to a single path from root to leaf

I search space = partial candidate solutions
I search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
While s is not a complete solution:
|| choose a solution component c
b add the solution component to s

DM87 – Scheduling, Timetabling and Routing 5

Greedy best-first search

DM87 – Scheduling, Timetabling and Routing 6

Greedy best-first search

DM87 – Scheduling, Timetabling and Routing 7

I An important class of Construction Heuristics are greedy algorithms
Always make the choice which is the best at the moment.

I Sometime it can be proved that they are optimal
(Minimum Spanning Tree, Single Source Shortest Path,
1||
∑
wjCj, 1||Lmax)

I Other times it can be proved an approximation ratio

I Another class can be derived by the (variable, value) selection rules in
CP and removing backtracking (ex, MRV, least-constraining-values).

DM87 – Scheduling, Timetabling and Routing 8

Examples of Dispatching Rules in Scheduling

DM87 – Scheduling, Timetabling and Routing 9

Local Search

Example: Local Search for CSP

DM87 – Scheduling, Timetabling and Routing 10

Local Search

Components

I solution representation

I initial solution

I neighborhood structure

I acceptance criterion

DM87 – Scheduling, Timetabling and Routing 11

Solution Representation

The solution representation determines the search space S

I permutations
I linear (scheduling)
I circular (routing)

I assignment arrays (timetabling)

I sets or lists (timetabling)

DM87 – Scheduling, Timetabling and Routing 12

Initial Solution

I Random

I Construction heuristic

DM87 – Scheduling, Timetabling and Routing 13

Neighborhood Structure

I Neighborhood structure (relation): equivalent definitions:
I N : S× S→ {T, F}

I N ⊆ S× S
I N : S→ 2S

I Neighborhood (set) of a candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}

I A neighborhood structure is also defined by an operator.
An operator ∆ is a collection of operator functions δ : S→ S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′

Example

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs
from s ′ in at most k solution components

DM87 – Scheduling, Timetabling and Routing 14

Acceptance Criterion

The acceptance criterion defines how the neighborhood is searched and which
neighbor is selected.
Examples:

I uninformed random walk

I iterative improvement (hill climbing)

I best improvement
I first improvement

DM87 – Scheduling, Timetabling and Routing 17

Evaluation function

I function f(π) : S(π) 7→ R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;

I used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
I Evaluation function: part of LS algorithm.
I Objective function: integral part of optimization problem.
I Some LS methods use evaluation functions different from

given objective function (e.g., dynamic local search).

DM87 – Scheduling, Timetabling and Routing 18

Implementation Issues

At each iteration, the examination of the neighborhood must be fast!!

I Incremental updates (aka delta evaluations)
I Key idea: calculate effects of differences between

current search position s and neighbors s ′ on
evaluation function value.

I Evaluation function values often consist of independent contributions of
solution components; hence, f(s) can be efficiently calculated from f(s ′)
by differences between s and s ′ in terms of solution components.

I Special algorithms for solving efficiently the
neighborhood search problem

DM87 – Scheduling, Timetabling and Routing 19

Local Optima

Definition:

I Local minimum: search position without improving neighbors w.r.t.
given evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f(s) ≤ f(s ′) for all s ′ ∈ N(s).

I Strict local minimum: search position s ∈ S such that
f(s) < f(s ′) for all s ′ ∈ N(s).

I Local maxima and strict local maxima: defined analogously.

DM87 – Scheduling, Timetabling and Routing 20

Example: Iterative Improvement

First improvement for TSP

procedure TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)

∆ = 0;
Improvement=FALSE;
do

for i = 1 to n− 2 do
if i = 1 then n ′ = n− 1 else n ′ = n

for j = i+ 2 to n ′ do
∆ij = d(ci, cj) + d(ci+1, cj+1) − d(ci, ci+1) − d(cj, cj+1)

if ∆ij < 0 then
UpdateTour(s,i,j);
Improvement=TRUE;

end
end

until Improvement==TRUE;
return: a local optimum s ∈ S(π)

end TSP-2opt-first

DM87 – Scheduling, Timetabling and Routing 21

Permutations

Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
I πi is the element at position i
I posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π ′ is the composition (π · π ′)i = π ′(π(i))

For each π there exists a permutation such that π−1 · π = ι

∆N ⊂ Π

DM87 – Scheduling, Timetabling and Routing 22

Neighborhood Operators for Linear Permutations

Swap operator
∆S = {δiS|1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δ

ij
X |1 ≤ i < j ≤ n}

δ
ij
X(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

Insert operator
∆I = {δ

ij
I |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δ
ij
I (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j

(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j

DM87 – Scheduling, Timetabling and Routing 23

Neighborhood Operators for Circular Permutations

Reversal (2-edge-exchange)

∆R = {δ
ij
R |1 ≤ i < j ≤ n}

δ
ij
R (π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δ
ijk
B |1 ≤ i < j < k ≤ n}

δ
ij
B (π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δ
ij
SB|1 ≤ i < j ≤ n}

δ
ij
SB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

DM87 – Scheduling, Timetabling and Routing 24

Neighborhood Operators for Assignments

An assignment can be represented as a mapping
σ : {X1 . . . Xn}→ {v : v ∈ D, |D| = k}:

σ = {Xi = vi, Xj = vj, . . .}

One exchange operator

∆1E = {δil1E|1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ : σ ′(Xi) = vl and σ ′(Xj) = σ(Xj) ∀j 6= i

}
Two exchange operator

∆2E = {δ
ij
2E|1 ≤ i < j ≤ n}

δ
ij
2E

{
σ : σ ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ ′(Xl) = σ(Xl) ∀l 6= i, j
}

DM87 – Scheduling, Timetabling and Routing 25

Neighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s : {X}→ {C,C}

(it can also be represented by a bit string)

One addition operator
∆1E = {δv1E|v ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C

′
= C \ v}

One deletion operator
∆1E = {δv1E|v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E|v ∈ C,u ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}

DM87 – Scheduling, Timetabling and Routing 26

Construction Heuristics (Extensions)

DM87 – Scheduling, Timetabling and Routing 27 DM87 – Scheduling, Timetabling and Routing 28

Rollout/Pilot Method

Derived from A∗

I Each candidate solution is a collection of m components
s = (s1, s2, . . . , sm).

I Master process add components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

I At the k-th iteration the master process evaluates seemly feasible
components to add based on a look-ahead strategy based on heuristic
algorithms.

I The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

I Sub-heuristics are combined in H(Sk+1) by
I weighted sum
I maximal value

DM87 – Scheduling, Timetabling and Routing 29 DM87 – Scheduling, Timetabling and Routing 30

DM87 – Scheduling, Timetabling and Routing 31

Speed-ups:

I halt whenever cost of current partial solution exceeds current upper
bound

I evaluate only a fraction of possible components

DM87 – Scheduling, Timetabling and Routing 32

It is optimal if H(Sk) is an

I admissible heuristic: never overestimates the cost to reach the goal
I consistent: h(n) ≤ c(n, a, n ′) + h(n ′); c(n, a, n ′) cost to go from node
n to n ′ with action a

Possible choices for admissible heuristic functions

I optimal solution to an easily solvable relaxed problem
I optimal solution to an easily solvable subproblem
I learning from experience by gathering statistics on state features
I preferred heuristics functions with higher values

(provided they do not overestimate)
I if several heuristics available h1, h2, . . . , hm and not clear which is the

best then:

h(x) = max{h1(x), . . . , hm(x)}

DM87 – Scheduling, Timetabling and Routing 34

Beam Search

Possible extension of tree based construction heuristics:
I maintains a set B of bw (beam width) partial candidate solutions

I at each iteration extend each solution from B in fw (filter width)
possible ways

I rank each bw× fw candidate solutions and take the best bw partial
solutions

I complete candidate solutions obtained by B are maintained in Bf

I stop when no partial solution in B is to be extended

DM87 – Scheduling, Timetabling and Routing 36

Iterated Greedy

Key idea: use greedy construction

I alternation of Construction and Deconstruction phases
I an acceptance criterion decides whether the search continues from the

new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

DM87 – Scheduling, Timetabling and Routing 37

Greedy Randomized Adaptive Search Procedure (GRASP)

Key Idea: Combine randomized constructive search with subsequent local
search.

Greedy Randomized Adaptive Search Procedure (GRASP):
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary greedy randomized constructive search
||b perform subsidiary local search on s

DM87 – Scheduling, Timetabling and Routing 39

Restricted candidate lists (RCLs)

I Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

I RCLs are constructed in each step using a heuristic function h.

I RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

I RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

DM87 – Scheduling, Timetabling and Routing 40

Simulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
While termination condition is not satisfied:
|| While maintain same temperature T according to annealing schedule:
|| || probabilistically choose a neighbor s ′ of s
|| || using proposal mechanism
|| || If s ′ satisfies probabilistic acceptance criterion (depending on T):
|| b s := s ′
b update T according to annealing schedule

DM87 – Scheduling, Timetabling and Routing 41

Note:

I 2-stage neighbor selection procedure
I proposal mechanism (often uniform random choice from N(s))
I acceptance criterion (often Metropolis condition)

p(T, s, s ′) :=

{
1 if g(s ′) ≤ f(s)
exp f(s)−f(s ′)

T
otherwise

I Annealing schedule
(function mapping run-time t onto temperature T(t)):

I initial temperature T0

(may depend on properties of given problem instance)
I temperature update scheme

(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)

I number of search steps to be performed at each temperature
(often multiple of neighborhood size)

I Termination predicate: often based on acceptance ratio,
i.e., ratio of proposed vs accepted steps or number of idle iterations

DM87 – Scheduling, Timetabling and Routing 42

Example: Simulated Annealing for the TSP

Extension of previous PII algorithm for the TSP, with

I proposal mechanism: uniform random choice from
2-exchange neighborhood;

I acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [(f(s) − f(s ′))/T]);

I annealing schedule: geometric cooling T := 0.95 · T with n · (n− 1)
steps at each temperature (n = number of vertices in given graph), T0
chosen such that 97% of proposed steps are accepted;

I termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

I neighborhood pruning (e.g., candidate lists for TSP)
I greedy initialization (e.g., by using NNH for the TSP)
I low temperature starts (to prevent good initial candidate solutions from

being too easily destroyed by worsening steps)

DM87 – Scheduling, Timetabling and Routing 43

Tabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

I Associate tabu attributes with candidate solutions or
solution components.

I Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best improving candidate solution s ′ in N ′
|||| update tabu attributes based on s ′
b s := s ′

DM87 – Scheduling, Timetabling and Routing 44

Note:
I Non-tabu search positions in N(s) are called

admissible neighbors of s.
I After a search step, the current search position

or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

I Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

I Crucial for efficient implementation:
I keep time complexity of search steps minimal

by using special data structures, incremental updating
and caching mechanism for evaluation function values;

I efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx; x is tabu if
it− itx < tt, where it = current search step number.

DM87 – Scheduling, Timetabling and Routing 45

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

I tt too low ⇒ search stagnates due to inability to escape
from local minima;

I tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

DM87 – Scheduling, Timetabling and Routing 46

Iterated Local Search

Key Idea: Use two types of LS steps:
I subsidiary local search steps for reaching

local optima as efficiently as possible (intensification)
I perturbation steps for effectively

escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:
|| r := s
|| perform perturbation on s
|| perform subsidiary local search on s
|||| based on acceptance criterion,
b keep s or revert to s := r

DM87 – Scheduling, Timetabling and Routing 47

Memetic Algorithm

Population based method inspired by evolution

determine initial population sp
perform subsidiary local search on sp
While termination criterion is not satisfied:
|| generate set spr of new candidate solutions
|| by recombination
|||| perform subsidiary local search on spr
|||| generate set spm of new candidate solutions
|| from spr and sp by mutation
|||| perform subsidiary local search on spm
|||| select new population sp from
b candidate solutions in sp, spr , and spm

DM87 – Scheduling, Timetabling and Routing 48

Selection

Main idea: selection should be related to fitness

I Fitness proportionate selection (Roulette-wheel method)

pi =
fi∑
j fj

I Tournament selection: a set of chromosomes is chosen and compared
and the best chromosome chosen.

I Rank based and selection pressure

DM87 – Scheduling, Timetabling and Routing 49

Recombination (Crossover)
I Binary or assignment representations

I one-point, two-point, m-point (preference to positional bias
w.r.t. distributional bias

I uniform cross over (through a mask controlled by
a Bernoulli parameter p)

I Non-linear representations
I (Permutations) Partially mapped crossover
I (Permutations) mask based

I More commonly ad hoc crossovers are used as this appears to be a
crucial feature of success

I Two off-springs are generally generated
I Crossover rate controls the application of the crossover. May be

adaptive: high at the start and low when convergence

DM87 – Scheduling, Timetabling and Routing 50

Example: crossovers for binary representations

DM87 – Scheduling, Timetabling and Routing 51

Mutation

I Goal: Introduce relatively small perturbations in candidate solutions in
current population + offspring obtained from recombination.

I Typically, perturbations are applied stochastically and independently to
each candidate solution; amount of perturbation is controlled by
mutation rate.

I Mutation rate controls the application of bit-wise mutations. May be
adaptive: low at the start and high when convergence

I Possible implementation through Poisson variable which determines the
m genes which are likely to change allele.

I Can also use subsidiary selection function to determine subset of
candidate solutions to which mutation is applied.

I The role of mutation (as compared to recombination) in
high-performance evolutionary algorithms has been often underestimated

DM87 – Scheduling, Timetabling and Routing 52

New Population

I Determines population for next cycle (generation) of the algorithm by
selecting individual candidate solutions from current population + new
candidate solutions obtained from recombination, mutation (+
subsidiary local search). (λ, µ) (λ+ µ)

I Goal: Obtain population of high-quality solutions while maintaining
population diversity.

I Selection is based on evaluation function (fitness) of candidate solutions
such that better candidate solutions have a higher chance of ‘surviving’
the selection process.

I It is often beneficial to use elitist selection strategies, which ensure that
the best candidate solutions are always selected.

I Most commonly used: steady state in which only one new chromosome
is generated at each iteration

I Diversity is checked and duplicates avoided

DM87 – Scheduling, Timetabling and Routing 53

Ant Colony Optimization

The Metaheuristic
I The optimization problem is transformed into the problem of finding the

best path on a weighted graph G(V, E) called construction graph

I The artificial ants incrementally build solutions by moving on the graph.

I The solution construction process is
I stochastic
I biased by a pheromone model, that is, a set of parameters associated

with graph components (either nodes or edges) whose values are
modified at runtime by the ants.

I All pheromone trails are initialized to the same value, τ0.

I At each iteration, pheromone trails are updated by decreasing
(evaporation) or increasing (reinforcement) some trail levels
on the basis of the solutions produced by the ants

DM87 – Scheduling, Timetabling and Routing 54

Ant Colony Optimization

Example: A simple ACO algorithm for the TSP

I Construction graph

I To each edge ij in G associate
I pheromone trails τij

I heuristic values ηij := 1
cij

I Initialize pheromones

I Constructive search:

pij =
[τij]

α · [ηij]β∑
l∈Nk

i

[τil]α · [ηil]β , α and β are parameters.

I Update pheromone trail levels

τij ← (1− ρ) · τij + ρ · Reward
DM87 – Scheduling, Timetabling and Routing 55

Example: A simple ACO algorithm for the TSP (1)

I Search space and solution set as usual (all Hamiltonian cycles in given
graph G).

I Associate pheromone trails τij with each edge (i, j) in G.

I Use heuristic values ηij := 1
cij

I Initialize all weights to a small value τ0 (τ0 = 1).

I Constructive search: Each ant starts with randomly chosen
vertex and iteratively extends partial round trip πk by selecting
vertex not contained in πk with probability

pij =
[τij]

α · [ηij]β∑
l∈Nk

i

[τil]α · [ηil]β

α and β are parameters.

DM87 – Scheduling, Timetabling and Routing 56

Example: A simple ACO algorithm for the TSP (2)

I Subsidiary local search: Perform iterative improvement
based on standard 2-exchange neighborhood on each
candidate solution in population (until local minimum is reached).

I Update pheromone trail levels according to

τij := (1− ρ) · τij +
∑
s∈sp ′

∆ij(s)

where ∆ij(s) := 1/Cs

if edge (i, j) is contained in the cycle represented by s ′, and 0 otherwise.

Motivation: Edges belonging to highest-quality candidate solutions
and/or that have been used by many ants should be preferably used in
subsequent constructions.

I Termination: After fixed number of cycles
(= construction + local search phases).

