|                                                 | Outline                                      |
|-------------------------------------------------|----------------------------------------------|
| DM87<br>SCHEDULING,<br>TIMETABLING AND ROUTING  | 1. An Overview of Software for LS Methods    |
| Lecture 6<br>Local Search Heuristics, Exercises | 2. The Code Delivered                        |
| Marco Chiarandini                               | 3. Practical Exercise                        |
|                                                 |                                              |
|                                                 | DM87 – Scheduling, Timetabling and Routing 2 |
|                                                 |                                              |

**2.1.** Consider the instance of  $1 \parallel \sum w_j C_j$  with the following processing times and weights.

| jobs           | 1 | 2  | 3 | 4 |
|----------------|---|----|---|---|
| wi             | 6 | 11 | 9 | 5 |
| p <sub>j</sub> | 3 | 5  | 7 | 4 |

- (a) Find the optimal sequence and compute the value of the objective.
- (b) Give an argument for positioning jobs with larger weight more toward the beginning of the sequence and jobs with smaller weight more toward the end of the sequence.
- (c) Give an argument for positioning jobs with smaller processing time more toward the beginning of the sequence and jobs with larger processing time more toward the end of the sequence.
- (d) Determine which one of the following two generic rules is the most suitable for the problem:
  - i. sequence the jobs in decreasing order of  $w_i p_i$ ;
  - ii. sequence the jobs in decreasing order of  $w_j/p_j$ .

**2.2.** Consider the instance of 1 ||  $L_{\text{max}}$  with the following processing times and due dates.

| jobs  | 1 | 2 | 3  | 4  |
|-------|---|---|----|----|
| $p_j$ | 5 | 4 | 3  | 6  |
| $d_j$ | 3 | 5 | 11 | 12 |

- (a) Find the optimal sequence and compute the value of the objective.
- (b) Give an argument for positioning jobs with earlier due dates more toward the beginning of the sequence and jobs with later due dates more toward the end of the sequence.
- (c) Give an argument for positioning jobs with smaller processing time more toward the beginning of the sequence and jobs with larger processing time more toward the end of the sequence.
- (d) Determine which one of the following four rules is the most suitable generic rule for the problem:
  - i. sequence the jobs in increasing order of  $d_j + p_j$ ;
  - ii. sequence the jobs in increasing order of  $d_j p_j$ ;
  - iii. sequence the jobs in increasing order of  $d_j$ ;
  - iv. sequence the jobs in increasing order of  $p_j$ .

3

| Outline                                    |                                                                                                                    | Software Tools                                           |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1. An Overview of Software for LS Methods  | <ul> <li>Modeling language<br/>interpreted language</li> <li>Software libraries<br/>collections of sub-</li> </ul> | ges<br>ages with a precise syntax and semantics          |
| 2. The Code Delivered                      | collections of suc                                                                                                 | programs used to develop software                        |
|                                            | <ul> <li>Software framework</li> <li>set of abstract cl</li> </ul>                                                 | orks<br>asses and their interactions                     |
| 3. Practical Exercise                      | ► frozen spots                                                                                                     | (remain unchanged in any instantiation of the framework) |
|                                            | <ul> <li>hot spots (pa</li> </ul>                                                                                  | rts where programmers add their own code)                |
|                                            |                                                                                                                    |                                                          |
|                                            |                                                                                                                    |                                                          |
| DM87 – Scheduling, Timetabling and Routing | 5 DM87 – Scheduling, Timetabling                                                                                   | and Routing 6                                            |

## No well established software tool for Local Search:

- the apparent simplicity of Local Search induces to build applications from scratch.
- crucial roles played by delta/incremental updates which is problem dependent
- the development of Local Search is in part a craft, beside engineering and science.
- ► lack of a unified view of Local Search.

# Software tools for Local Search and Metaheuristics

| ΤοοΙ        | Reference                         | Language        | Туре     |
|-------------|-----------------------------------|-----------------|----------|
| ILOG        | [Shaw et al., 2002]               | C++, Java, .NET | LS       |
| GAlib       | [Wall, 1996]                      | C++             | GA       |
| GAUL        | [Adcock, 2005]                    | С               | GA       |
| Localizer++ | [Michel and Van Hentenryck, 2000] | C++             | Modeling |
| HotFrame    | [Fink and Voß, 2002]              | C++             | LS       |
| EasyLocal++ | [Di Gaspero and Schaerf, 2003]    | C++, Java       | LS       |
| HSF         | [Dorne and Voudouris, 2004]       | Java            | LS, GA   |
| ParadisEO   | [Cahon et al., 2004]              | C++             | EA, LS   |
| OpenTS      | [Harder et al., 2004]             | Java            | TS       |
| MDF         | [Lau et al., 2007]                | C++             | LS       |
| TMF         | [Watson, 2007]                    | C++             | LS       |
| SALSA       | [Laburthe and Caseau, 2002]       |                 | Language |
| Comet       | [Van Hentenryck and Michel, 2005] | _               | Language |

## table prepared by L. Di Gaspero

# Separation of Concepts in Local Search Algorithms



# Input (util.h, util.c)

## typedef struct {

long int number\_jobs; /\* number of jobs in instance \*/ long int release\_date[MAX\_JOBS]; /\*there is no release date for these instances\*/ long int proc\_time[MAX\_JOBS]; long int weight[MAX\_JOBS]; long int due\_date[MAX\_JOBS]; } instance\_type;

instance\_type instance;

void read\_problem\_size (char name[100]) void read\_instances (char input\_file\_name[100])

# Outline An Overview of Software for LS Methods The Code Delivered Practical Exercise

### DM87 – Scheduling, Timetabling and Routing

## State/Solution (util.h)

typedef struct {

long int job\_at\_pos[MAX\_JOBS]; /\* Gives the job at a certain pos \*/ long int pos\_of\_job[MAX\_JOBS]; /\* Gives the position of a specific job \*/ long int completion\_time\_job[MAX\_JOBS]; /\* Gives C\_j of job j \*/ long int start\_time\_job[MAX\_JOBS]; /\* Gives start time of job j \*/ long int tardiness\_job[MAX\_JOBS]; /\* Gives T\_j of job j \*/ long int value; /\* Objective function value \*/ sol representation:

} sol\_representation;

sol\_representation sequence;

# Output (util.c)

void print\_sequence (long int k) void print\_completion\_times ()

# State Manager (util.c)

void construct\_sequence\_random () void construct\_sequence\_canonical () long int evaluate () 10

|                                                                                                                                                                                                                                        | Outline                                                                                                                                                                                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Random Generator (random.h, random.c)                                                                                                                                                                                                  |                                                                                                                                                                                                  |  |  |
| <pre>void set_seed (double arg) double MRG32k3a (void) double ranU01 (void) int ranUint (int i, int j) void shuffle (int *X, int size)</pre>                                                                                           | 1. An Overview of Software for LS Methods                                                                                                                                                        |  |  |
| Timer (timer.c)                                                                                                                                                                                                                        | 2. The Code Delivered                                                                                                                                                                            |  |  |
| <u>double</u> getCurrentTime ()                                                                                                                                                                                                        | 3. Practical Exercise                                                                                                                                                                            |  |  |
| DM87 - Scheduling, Timetabling and Routing 13                                                                                                                                                                                          | DM87 – Scheduling. Timetabling and Routing 14                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |  |  |
| Your Task on $1\ \sum_{j} w_{j}T_{j}$                                                                                                                                                                                                  | <ul> <li>Adcock, S. (2005).</li> <li>Genetic algorithms utility library.</li> <li>Web Page.</li> </ul>                                                                                           |  |  |
| <ol> <li>Implement two basic local search procedures that return a local<br/>optimum:</li> </ol>                                                                                                                                       | Cahon, S., Melab, N., and Talbi, E. G. (2004).<br>ParadisEO: A framework for the reusable design of parallel and<br>distributed metaheuristics.<br><i>Journal of Heuristics</i> , 10(3):357–380. |  |  |
| <pre>void ls_swap_first() {};<br/>void ls_interchange_first() {};</pre>                                                                                                                                                                | Di Gaspero, L. and Schaerf, A. (2003).                                                                                                                                                           |  |  |
| <ol> <li>Implement the other neighborhood for permutation representation<br/>mentioned at the lecture from one of the two previous neighborhoods.</li> </ol>                                                                           | EasyLocal++: An object-oriented framework for flexible design of local search algorithms.<br>Software — Practice & Experience, 33(8):733–765.                                                    |  |  |
| <ul> <li>3. Provide computational analysis of the LS implemented. Consider:</li> <li>size of the neighborhood</li> <li>diameter of neighborhood</li> <li>complete neighborhood examination</li> <li>local optima attainment</li> </ul> | <ul> <li>Dorne, R. and Voudouris, C. (2004).<br/>Hsf: the iopt's framework to easily design metaheuristic methods.<br/>pages 237–256.</li> <li>Fink, A. and Voß, S. (2002).</li> </ul>           |  |  |
| 4. Devise speed ups to reduce the computational complexity of the LS implemented                                                                                                                                                       | HotFrame: A heuristic optimization framework.<br>In <i>Optimization Software Class Libraries</i> , pages 81–154. Kluwer<br>Academic Publishers.                                                  |  |  |
| 5. Improve your heuristic in order to find solutions of better quality. (Hint: use a construction heuristic and/or a metaheuristic)                                                                                                    | DM87 - Scheduling, Timetabling and Routing 15                                                                                                                                                    |  |  |

| <ul> <li>Harder, R., Hill, R., and Moore, J. (2004).</li> <li>A java universal vehicle router for routing unmanned vehicles.</li> <li>International Transactions in Operations Research, 11:259–275.</li> </ul> | <ul> <li>Wall, M. B. (1996).</li> <li>A Genetic Algorithm for Resource-Constrained Scheduling.</li> <li>PhD thesis, MIT Mechanical Engineering Department.</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laburthe, F. and Caseau, Y. (2002).<br>Salsa: A language for search algorithms.<br><i>Constraints</i> , 7(3-4):255–288.                                                                                         | Watson, JP. (2007).<br>The templatized metaheuristic framework.<br>In Proceedings of the 7th Metaheuristics International Conference (MIC                             |
| Lau, H. C., Wan, W. C., Halim, S., and Toh, K. Y. (2007).<br>A software framework for rapid hybridization of meta-heuristics.<br><i>International Transactions in Operations Research</i> , 14(2).              | 2007).                                                                                                                                                                |
| Michel, L. and Van Hentenryck, P. (2000).<br>Localizer.<br>Constraints, 5(1–2):43–84.                                                                                                                           |                                                                                                                                                                       |
| Shaw, P., De Backer, B., and Furnon, V. (2002).<br>Improved local search for cp toolkits.<br>Annals of Operations Research, 20(1–4):31–50.                                                                      |                                                                                                                                                                       |
| <ul> <li>Van Hentenryck, P. and Michel, L. (2005).</li> <li>Constraint-based Local Search.</li> <li>MIT Press.</li> </ul>                                                                                       |                                                                                                                                                                       |
| DM87 – Scheduling, Timetabling and Routing 15                                                                                                                                                                   | DM87 – Scheduling, Timetabling and Routing 15                                                                                                                         |