DM87

SCHEDULING,
TIMETABLING AND ROUTING

Lecture 6

Local Search Heuristics, Exercises

Marco Chiarandini

Outline

1. An Overview of Software for LS Methods

2. The Code Delivered

3. Practical Exercise

DM87 — Scheduling, Timetabling and Routing

%1, Consider the instance of 1 || 3" w;C; with the following processing times and

weights.
Jjobs 1 2 3 4
w; 6 11 9 5
D; 3 3 7 4

(a) Find the optimal sequence and compute the value of the objective.

(b) Give an argument for positioning jobs with larger weight more toward the be-
ginning of the sequence and jobs with smaller weight more toward the end of
the sequence.

(¢) Give an argument for positioning jobs with smaller processing time more toward
the beginning of the sequence and jobs with larger processing time more toward
the end of the sequence.

(d) Determine which one of the following two generic rules is the most suitable for
the problem:

i. -sequence the jobs in decreasing order of w; — p;;
ii. sequence the jobs in decreasing order of w;/p;.

DM87 — Scheduling, Timetabling and Routing

2.2. Consider the instance of 1 {| L.« with the following processing times and due dates,

jobs 1 2 3 4
Dj 5 4 3 6
d; 3 5 11 12

(a) Find the optimal sequence and compute the value of the objective.

7 (b) Give an argument for positioning jobs with earlier due dates more toward the
beginning of the sequence and jobs with later due dates more toward the end of
the sequence.

{c) Give an argument for positioning jobs with smaller processing time more toward
the beginning of the sequence and jobs with larger processing time more toward
the end of the sequence.

(d) Determine which one of the following four rules is the most suitable generic
rule for the problem:

i. sequence the jobs in increasing order of d; + p;;
ii. sequence the jobs in increasing order of d; p;;
ifi. sequence the jobs in increasing order of d;;
iv. sequence the jobs in increasing order of p;.

DM87 — Scheduling, Timetabling and Routing

QOutline Software Tools

» Modeling languages

interpreted languages with a precise syntax and semantics
1. An Overview of Software for LS Methods P guag P y

» Software libraries
collections of subprograms used to develop software

» Software frameworks
set of abstract classes and their interactions

» frozen spots (remain unchanged in any instantiation of the framework)

> hot spots (parts where programmers add their own code)

DM87 — Scheduling, Timetabling and Routing 5 DM87 — Scheduling, Timetabling and Routing 6

Software tools for Local Search and Metaheuristics

No well established software tool for Local Search: Tool Reference Language Type
» the apparent simplicity of Local Search induces to build applications
from scratch.
» crucial roles played by delta/incremental updates which is problem
dependent
EasyLOCa|++ [Di Gaspero and Schaerf, 2003] C++, Java LS
» the development of Local Search is in part a craft, _
beside engineering and science. ParadisEO [Cahon et al., 2004] C++ EA, LS
» lack of a unified view of Local Search.
Comet [Van Hentenryck and Michel, 2005] — La nguage

table prepared by L. Di Gaspero

DM87 — Scheduling, Timetabling and Routing 7 DM87 — Scheduling, Timetabling and Routing 8

Separation of Concepts in Local Search Algorithms

| User Application |

e s

Solvers
Simple Token-ring N _Vigab:]e d Iterated % Solving
solver solver €1ghbornod Local Search 2 strategy
Descent g
()
Runners Kickers == 2
£
Hill Tabu Simple Multi-modal 2 Meta-heuristic
Climbing Search Kicker Kicker 59_
Helpers _——
State Neighborhood Cost Prohibition Local search
Manager Explorer Component Manager 2 features
]
P
£
o
o .
© Basic data
o

implemented in EasylLocal++

Outline

DM87 — Scheduling, Timetabling and Routing °

2. The Code Delivered

DM87 — Scheduling, Timetabling and Routing

10

Input (util.h, util.c)

typedef struct {
long int number_jobs; /% number of jobs in instance x/
int release_date[MAX_JOBS]; /*there is no release date for these instancesx/
int proc_time[MAX_JOBS];
int weight [MAX_JOBS];
long int due_date[MAX_JOBS];
} instance_type;

gEEE

instance_type instance;

void read_problem_size (char name[100])
void read_instances (char input_file_name[100])

DM87 — Scheduling, Timetabling and Routing 11

State/Solution (util.h)

typedef struct {
long int job_at_pos[MAX_JOBS]; /* Gives the job at a certain pos */
int pos_of_job[MAX_JOBS]; /+ Gives the position of a specific job x/
int completion_time_job[MAX_JOBS]; /* Gives C_j of job j x/
int start_time_job[MAX_JOBS]; /+ Gives start time of job j =/
int tardiness_job[MAX_JOBS]; /* Gives T j of job j x/
int value; /* Objective function value %/

} sol_representation;

GEEBEE

sol_representation sequence;

Output (util.c)
void print_sequence (long int k)

void print_completion_times ()

State Manager (util.c)

void construct_sequence_random ()
void construct_sequence_canonical ()
long int evaluate ()

DM87 — Scheduling, Timetabling and Routing

12

Random Generator (random.h, random.c)

void set_seed (double arg)
double MRG32k3a (void)

double ranU01 (void)

int ranUint (int i, int j)
void shuffle (int *X, int size)

Timer (timer.c)

double getCurrentTime ()

Outline

DM87 — Scheduling, Timetabling and Routing

13

3. Practical Exercise

DM87 — Scheduling, Timetabling and Routing

14

Your Task on 1| 3, w;T;

. Implement two basic local search procedures that return a local
optimum:

void 1s_swap_first() {};
void 1ls_interchange_first() {};

. Implement the other neighborhood for permutation representation
mentioned at the lecture from one of the two previous neighborhoods.

. Provide computational analysis of the LS implemented. Consider:
size of the neighborhood

» diameter of neighborhood

» complete neighborhood examination

> local optima attainment

v

. Devise speed ups to reduce the computational complexity of the LS
implemented

. Improve your heuristic in order to find solutions of better quality. (Hint:
use a construction heuristic and/or a metaheuristic)

[

B

Adcock, S. (2005).
Genetic algorithms utitlity library.
Web Page.

Cahon, S., Melab, N., and Talbi, E. G. (2004).

ParadisEO: A framework for the reusable design of parallel and
distributed metaheuristics.

Journal of Heuristics, 10(3):357-380.

Di Gaspero, L. and Schaerf, A. (2003).

EasylLocal++: An object-oriented framework for flexible design of local
search algorithms.

Software — Practice & Experience, 33(8):733-765.

Dorne, R. and Voudouris, C. (2004).
Hsf: the iopt's framework to easily design metaheuristic methods.
pages 237-256.

Fink, A. and VoB, S. (2002).

HotFrame: A heuristic optimization framework.

In Optimization Software Class Libraries, pages 81-154. Kluwer
Academic Publishers.

DM87 — Scheduling, Timetabling and Routing

15

[

[

Harder, R., Hill, R., and Moore, J. (2004).
A java universal vehicle router for routing unmanned vehicles.

International Transactions in Operations Research, 11:259-275.

Laburthe, F. and Caseau, Y. (2002).
Salsa: A language for search algorithms.
Constraints, 7(3-4):255-288.

Lau, H. C., Wan, W. C,, Halim, S., and Toh, K. Y. (2007).

A software framework for rapid hybridization of meta-heuristics.

International Transactions in Operations Research, 14(2).

Michel, L. and Van Hentenryck, P. (2000).
Localizer.
Constraints, 5(1-2):43-84.

Shaw, P., De Backer, B., and Furnon, V. (2002).
Improved local search for cp toolkits.
Annals of Operations Research, 20(1-4):31-50.

Van Hentenryck, P. and Michel, L. (2005).
Constraint-based Local Search.
MIT Press.

[§ Wall, M. B. (1996).
A Genetic Algorithm for Resource-Constrained Scheduling.
PhD thesis, MIT Mechanical Engineering Department.

[§ Watson, J.-P. (2007).
The templatized metaheuristic framework.

In Proceedings of the 7th Metaheuristics International Conference (MIC

2007).

DM87 — Scheduling, Timetabling and Routing

15

DM87 — Scheduling, Timetabling and Routing

15

