	Outline
DM87 SCHEDULING, TIMETABLING AND ROUTING	1. An Overview of Software for CP
Lecture 7 Constraint Programming in Practice Marco Chiarandini	2. CP Modelling Techniques Propagators Global Constraints Symmetry Breaking Reification CP in Scheduling
	3. Exercise
Outline	Constraint Programming Systems
 An Overview of Software for CP CP Modelling Techniques Propagators Global Constraints Symmetry Breaking Reification CP in Scheduling Exercise 	 CP systems must provide reusable services for: Variable domains finite domain integer, finite sets, multisets, intervals, Constraints distinct, arithmetic, scheduling, graphs, Solving propagation, branching, exploration, Modelling variables, values, constraints, heuristics, symmetries,

3

DM87 – Scheduling, Timetabling and Routing

DM87 – Scheduling, Timetabling and Routing

4

CP Systems	CP Systems
	 Language-based SICStus Prolog (commericial) www.sics.se/sicstus Prolog language, library
 Library-based CHOCO (free) http://choco.sourceforge.net/ 	 ECLiPSe (free) www.eclipse-clp.org Prolog language, library
Kaolog (commercial) http://www.koalog.com/php/index.php	 Mozart (free) http://www.mozart-oz.org Oz language
 Gecode (free) www.gecode.org Programming interfaces Java and MiniZinc, library C++ 	 ILOG CP Optimizer http://www.ilog.com/products/ OPL Language, libraries C/C++/
	 CHIP (commercial) http://www.cosytec.com Prolog language, library C/C++
	G12 Project http://www.g12.cs.mu.oz.au/
DM87 – Scheduling, Timetabling and Routing 9	DM87 – Scheduling, Timetabling and Routing 10
Outline	Solving CP
1. An Overview of Software for CP	 Compute with possible values rather than enumerating assignments
2. CP Modelling Techniques Propagators Global Constraints	 Prune inconsistent values constraint propagation
Symmetry Breaking Reification CP in Scheduling	 Search branch: define search tree explore: explore search tree for solution
3. Exercise	best solution search (in optimization)

Propagators

CP Systems do not compute constraints extensionally (as a collection of assignments):

- impractical (space)
- would make difficult to take advantage of structure

A Constraint c is implemented by a set of propagators (also known as filtering algorithms and narrowing operators).

A propagator p is a function that maps domains to domains. They are decreasing and monotonic.

A set of propagators implements a constraint c if all $p \in P$ are correct for c and P is checking for c. Notation: P = prop(c)

DM87 - Scheduling, Timetabling and Routing

Execution of propagator p narrows domains of variables in var(p) signals failure Execution computes largest simultaneous fixpoint fixpoint: propagators cannot narrow any further largest: no solutions lost Propagator is either fix: has reached fixpoint runnable: not known to have reached fixpoint Propagation execution maintains propagator sets Propagators know their variables to perform domain modifications passed as parameters to propagator creation Variables know dependent propagators to perform efficient computation of dependent propagators 13 DM87 – Scheduling, Timetabling and Routing 14 **Global Constraints** Kinds of symmetries • Classic example: $x, y, z \in \{1, 2\}, x \neq y, x \neq z, y \neq z$ ► Variable symmetry: permuting variables keeps solutions invariant No solution! $\{x_i \rightarrow v_i\} \in sol(P) \Leftrightarrow \{x_{\pi(i)} \rightarrow v_i\} \in sol(P)$ But: each individual constraint still satisfiable! ▶ Value symmetry: permuting values keeps solutions invariant no propagation possible! $\{x_i \rightarrow v_i\} \in sol(P) \Leftrightarrow \{x_i \rightarrow \pi(v_i)\} \in sol(P)$ ► Solution: look at several constraints at once ► Variable/value symmetry: distinct(x,y,z)permute both variables and values $\{x_i \rightarrow v_i\} \in sol(P) \Leftrightarrow \{x_{\pi(i)} \rightarrow \pi(v_i)\} \in sol(P)$ Specialization

Symmetry	Reified constraints
 inherent in the problem (sudoku, queens) artefact of the model (order of groups) How can we avoid it? by model reformulation (eg, use set variables, by adding constraints to the model (ruling out symmetric solutions) during search by dominance detection 	 Constraints are in a big conjunction How about disjunctive constraints? A + B = C ∨ C = 0 Solution: reify the constraints: (A + B = C ⇔ b₀) ∧ (C = 0 ⇔ b₁) ∧ (b₀ ∨ b₁ ⇔ true)
DM87 – Scheduling, Timetabling and Routing 17	DM87 – Scheduling, Timetabling and Routing 18 Propagators for Scheduling
 Variable for start-time of task a start(a) Precedence constraint: start(a) + dur(a) ≤ start(b) (a before b) Disjunctive constraint: start(a) + dur(a) ≤ start(b) (a before b) or start(b) + dur(b) ≤ start(a) (b before a) Solved by reification Cumulative Constraints (renewable resources) For tasks a and b on resource R use(a) + use(b) ≤ cap(R) or start(a) + dur(a) ≤ start(b) or start(b) + dur(b) ≤ start(a) 	 Serialization: ordering of tasks on one machine Consider all tasks on one resource Deduce their order as much as possible Propagators: Timetabling: look at free/used time slots Edge-finding: which task first/last? Not-first / not-last

Job Shop Problem	References
 Hard problem! 6x6 instance solvable using Gecode disjunction by reification normal branching Classic 10x10 instance not solvable using Gecode! specialized propagators (edge-finding) and branchings needed 	 Lecture notes by Christian Schulte for courses at KTH, Sweden Lecture notes by Marco Kuhlmann and Guido Tack for courses at Saarland University
DM87 - Scheduling, Timetabling and Routing 21	DM87 – Scheduling, Timetabling and Routing 22 Exercise
 An Overview of Software for CP CP Modelling Techniques 	Write a MiniZinc model for the instance of Resource Constraint Project Scheduling Problem and solve the instance made available. An installation of minizinc-0.7 might be sufficient (uses G12 to solve the problem)
Propagators Global Constraints Symmetry Breaking Reification CP in Scheduling	<pre>> mzn2fzndata rcpsp.data rcpsp.mzn > flatzinc jobshop.fzn Otherwise, it is possible to use the interface gecode-flatzinc-1.1 for gecode-2.0.1</pre>
3. Exercise	<pre>> mzn2fzndata rcpsp.data rcpsp.mzn > fz jobshop.fzn</pre>
DM87 – Scheduling, Timetabling and Routing 23	DM87 – Scheduling, Timetabling and Routing 24