
DM87
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 7

Constraint Programming in Practice

Marco Chiarandini

Outline

1. An Overview of Software for CP

2. CP Modelling Techniques
Propagators
Global Constraints
Symmetry Breaking
Reification
CP in Scheduling

3. Exercise

DM87 – Scheduling, Timetabling and Routing 2

Outline

1. An Overview of Software for CP

2. CP Modelling Techniques
Propagators
Global Constraints
Symmetry Breaking
Reification
CP in Scheduling

3. Exercise

DM87 – Scheduling, Timetabling and Routing 3

Constraint Programming Systems

CP systems must provide reusable services for:

I Variable domains
finite domain integer, finite sets, multisets, intervals, ...

I Constraints
distinct, arithmetic, scheduling, graphs, ...

I Solving
propagation, branching, exploration, ...

I Modelling
variables, values, constraints, heuristics, symmetries, ...

DM87 – Scheduling, Timetabling and Routing 4



CP modelling

Greater expressive power than mathematical programming

I constraints involving disjunction can be represented directly

I constraints can be encapsulated (as predicates) and used in the
definition of further constrains

However, CP models can often be translated into MIP model by

I eliminating disjunctions in favor of auxiliary Boolean variables

I unfolding predicates into their definitions

DM87 – Scheduling, Timetabling and Routing 5

CP System Interfaces

Two possible interfaces:

I host language

I libraries

DM87 – Scheduling, Timetabling and Routing 6

Modelling Language

I Fundamental difference to LP
I language has structure (global constraints)
I different solvers support different constraints

I In its infancy

I Key questions:
I what level of abstraction?

I solving approach independent: LP, CP, ...?
I how to map to different systems?

I Modelling is very difficult for CP
I requires lots of knowledge and tinkering

DM87 – Scheduling, Timetabling and Routing 7

Modelling Languages

I Prolog
I B-Prolog (Prolog based, proprietary)
I CHIP V5 (Prolog based, also includes C++ and C libraries, proprietary)
I Ciao Prolog (Prolog based, Free software: GPL/LGPL)
I ECLiPSe (Prolog based, open source)
I SICStus (Prolog based, proprietary)
I GNU Prolog

I OPL

I Zinc, MiniZinc, FlatZinc

DM87 – Scheduling, Timetabling and Routing 8



CP Systems

I Library-based
I CHOCO (free) http://choco.sourceforge.net/

I Kaolog (commercial) http://www.koalog.com/php/index.php

I Gecode (free) www.gecode.org
Programming interfaces Java and MiniZinc, library C++

DM87 – Scheduling, Timetabling and Routing 9

CP Systems

I Language-based
I SICStus Prolog (commericial) www.sics.se/sicstus

Prolog language, library

I ECLiPSe (free) www.eclipse-clp.org
Prolog language, library

I Mozart (free) http://www.mozart-oz.org
Oz language

I ILOG CP Optimizer http://www.ilog.com/products/
OPL Language, libraries C/C++/

I CHIP (commercial) http://www.cosytec.com
Prolog language, library C/C++

I G12 Project http://www.g12.cs.mu.oz.au/

DM87 – Scheduling, Timetabling and Routing 10

Outline

1. An Overview of Software for CP

2. CP Modelling Techniques
Propagators
Global Constraints
Symmetry Breaking
Reification
CP in Scheduling

3. Exercise

DM87 – Scheduling, Timetabling and Routing 11

Solving CP

I Compute with possible values
rather than enumerating assignments

I Prune inconsistent values
constraint propagation

I Search
branch: define search tree
explore: explore search tree for solution
branching heuristics
best solution search (in optimization)

DM87 – Scheduling, Timetabling and Routing 12



Propagators

CP Systems do not compute constraints extensionally (as a collection of
assignments):

I impractical (space)
I would make difficult to take advantage of structure

A Constraint c is implemented by a set of propagators (also known as
filtering algorithms and narrowing operators).

A propagator p is a function that maps domains to domains. They are
decreasing and monotonic.

A set of propagators implements a constraint c if all p ∈ P are correct for c
and P is checking for c. Notation: P = prop(c)

DM87 – Scheduling, Timetabling and Routing 13

Execution of Propagators

I Execution of propagator p
I narrows domains of variables in var(p)
I signals failure

I Execution computes largest simultaneous fixpoint
I fixpoint: propagators cannot narrow any further
I largest: no solutions lost

I Propagator is either
fix: has reached fixpoint
runnable: not known to have reached fixpoint

I Propagation execution maintains propagator sets
I Propagators know their variables

I to perform domain modifications
I passed as parameters to propagator creation

I Variables know dependent propagators
I to perform efficient computation of dependent propagators

DM87 – Scheduling, Timetabling and Routing 14

Global Constraints

I Classic example: x, y, z ∈ {1, 2}, x 6= y, x 6= z, y 6= z

I No solution!

I But: each individual constraint still satisfiable!
no propagation possible!

I Solution: look at several constraints at once
distinct(x,y,z)

I Specialization

DM87 – Scheduling, Timetabling and Routing 15

Kinds of symmetries

I Variable symmetry:
permuting variables keeps solutions invariant
{xi → vi} ∈ sol(P) ⇔ {xπ(i) → vi} ∈ sol(P)

I Value symmetry: permuting values keeps solutions invariant
{xi → vi} ∈ sol(P) ⇔ {xi → π(vi)} ∈ sol(P)

I Variable/value symmetry:
permute both variables and values
{xi → vi} ∈ sol(P) ⇔ {xπ(i) → π(vi)} ∈ sol(P)

DM87 – Scheduling, Timetabling and Routing 16



Symmetry

I inherent in the problem (sudoku, queens)
I artefact of the model (order of groups)

How can we avoid it?

I ... by model reformulation (eg, use set variables,
I ... by adding constraints to the model

(ruling out symmetric solutions)
I ... during search
I ... by dominance detection

DM87 – Scheduling, Timetabling and Routing 17

Reified constraints

I Constraints are in a big conjunction

I How about disjunctive constraints?

A+ B = C ∨ C = 0

I Solution: reify the constraints:

(A+ B = C ⇔ b0) ∧

(C = 0 ⇔ b1) ∧

(b0 ∨ b1 ⇔ true)

DM87 – Scheduling, Timetabling and Routing 18

Scheduling Models

I Variable for start-time of task a start(a)

I Precedence constraint:
start(a) + dur(a) ≤ start(b) (a before b)

I Disjunctive constraint:
start(a) + dur(a) ≤ start(b) (a before b)
or
start(b) + dur(b) ≤ start(a) (b before a)
Solved by reification

I Cumulative Constraints (renewable resources)
For tasks a and b on resource R
use(a) + use(b) ≤ cap(R)

or start(a) + dur(a) ≤ start(b)
or start(b) + dur(b) ≤ start(a)

DM87 – Scheduling, Timetabling and Routing 19

Propagators for Scheduling

Serialization: ordering of tasks on one machine
I Consider all tasks on one resource

I Deduce their order as much as possible

I Propagators:
I Timetabling: look at free/used time slots

I Edge-finding: which task first/last?

I Not-first / not-last

DM87 – Scheduling, Timetabling and Routing 20



Job Shop Problem

I Hard problem!

I 6x6 instance solvable using Gecode
I disjunction by reification

I normal branching

I Classic 10x10 instance not solvable using Gecode!
I specialized propagators (edge-finding) and branchings needed

DM87 – Scheduling, Timetabling and Routing 21

References

I Lecture notes by Christian Schulte for courses at KTH, Sweden

I Lecture notes by Marco Kuhlmann and Guido Tack for courses at
Saarland University

DM87 – Scheduling, Timetabling and Routing 22

Outline

1. An Overview of Software for CP

2. CP Modelling Techniques
Propagators
Global Constraints
Symmetry Breaking
Reification
CP in Scheduling

3. Exercise

DM87 – Scheduling, Timetabling and Routing 23

Exercise

Write a MiniZinc model for the instance of Resource Constraint Project
Scheduling Problem and solve the instance made available.

An installation of minizinc-0.7 might be sufficient (uses G12 to solve the
problem)

> mzn2fzn --data rcpsp.data rcpsp.mzn
> flatzinc jobshop.fzn

Otherwise, it is possible to use the interface gecode-flatzinc-1.1 for
gecode-2.0.1

> mzn2fzn --data rcpsp.data rcpsp.mzn
> fz jobshop.fzn

DM87 – Scheduling, Timetabling and Routing 24


