
DM87
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 8

Single Machine Models

Marco Chiarandini

Outline

1. Dispatching Rules

2. Single Machine Models

DM87 – Scheduling, Timetabling and Routing 2

Outline

1. Dispatching Rules

2. Single Machine Models

DM87 – Scheduling, Timetabling and Routing 3

Dispatching rules

Distinguish static and dynamic rules.

I Service in random order (SIRO)

I Earliest release date first (ERD=FIFO)
I tends to min variations in waiting time

I Earliest due date (EDD)

I Minimal slack first (MS)
I j∗ = arg minj{max(dj − pj − t, 0)}.
I tends to min due date objectives (T,L)

DM87 – Scheduling, Timetabling and Routing 4

I (Weighted) shortest processing time first (WSPT)
I j∗ = arg maxj{wj/pj}.
I tends to min

∑
wjCj and max work in progress and

I Loongest processing time first (LPT)
I balance work load over parallel machines

I Shortest setup time first (SST)
I tends to min Cmax and max throughput

I Least flexible job first (LFJ)
I eligibility constraints

DM87 – Scheduling, Timetabling and Routing 5

I Critical path (CP)
I first job in the CP
I tends to min Cmax

I Largest number of successors (LNS)

I Shortest queue at the next operation (SQNO)
I tends to min idleness of machines

DM87 – Scheduling, Timetabling and Routing 6

DM87 – Scheduling, Timetabling and Routing 7

When dispatching rules are optimal?

DM87 – Scheduling, Timetabling and Routing 8

Composite dispatching rules

Why composite rules?
I Example: 1 | |

∑
wjTj:

I WSPT, optimal if due dates are zero
I EDD, optimal if due dates are loose
I MS, tends to minimize T

ä The efficacy of the rules depends on instance factors

DM87 – Scheduling, Timetabling and Routing 9

Instance characterization
I Job attributes: {weight, processing time, due date, release date}

I Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible }

Possible instance factors:

θ1 = 1−
d̄

cmax
(due date tightness)

θ2 =
dmax − dmin

cmax
(due date range)

θ3 =
s̄

p̄
(set up time severity)

(estimated Ĉmax =
∑n
j=1 pj + ns̄)

DM87 – Scheduling, Timetabling and Routing 10

I Dynamic apparent tardiness cost (ATC)

Ij(t) =
wj

pj
exp

(
−
max(dj − pj − t, 0)

Kp̄

)
I Dynamic apparent tardiness cost with setups (ATCS)

Ij(t, l) =
wj

pj
exp

(
−
max(dj − pj − t, 0)

K1p̄

)
exp

(
−sjk

K2s̄

)
after job l has finished.

DM87 – Scheduling, Timetabling and Routing 11

Summary

I Scheduling classification

I Solution methods

I Practice with general solution methods
I Mathematical Programming
I Constraint Programming
I Heuristic methods

DM87 – Scheduling, Timetabling and Routing 12

Remainder on Scheduling

Objectives:
Look closer into scheduling models and learn:

I special algorithms

I application of general methods

Cases:
I Single Machine

I Parallel Machine

I Permutation Flow Shop

I Job Shop

I Resource Constrained Project Scheduling

DM87 – Scheduling, Timetabling and Routing 13

Outline

1. Dispatching Rules

2. Single Machine Models

DM87 – Scheduling, Timetabling and Routing 14

Summary

Single Machine Models:

I Cmax is sequence independent

I if rj = 0 and hj is monotone in Cj then optimal schedule is nondelay
and has no preemption.

DM87 – Scheduling, Timetabling and Routing 15

1 | |
∑
wjCj1 | |

∑
wjCj1 | |

∑
wjCj

[Total weighted completion time]

I Theorem: The weighted shortest processing time first (WSPT) rule is
optimal.

Extensions to 1 | prec |
∑
wjCj

I in the general case strongly NP-hard

I chain precedences:
process first chain with highest ρ-factor up to, and included, job with
highest ρ-factor.

I poly also for tree and sp-graph precedences

DM87 – Scheduling, Timetabling and Routing 16

Extensions to 1 | rj, prmp |
∑
wjCj

I in the general case strongly NP-hard

I preemptive version of the WSPT if equal weights

I however, 1 | rj |
∑
wjCj is strongly NP-hard

DM87 – Scheduling, Timetabling and Routing 17

1 | prec| Lmax1 | prec| Lmax1 | prec| Lmax

[maximum lateness]
I generalization: hmax = max{h(C1), h(C2), . . . , h(Cn)}

I Solved by backward dynamic programming in O(n2):

J set of jobs already scheduled;
Jc set of jobs still to schedule;
J ′ ⊆ Jc set of schedulable jobs

Step 1: Set J = ∅, Jc = {1, . . . , n} and J ′ the set of all jobs with no
successor

Step 2: Select j∗ such that j∗ = argminj∈J ′ {hj
(∑

k∈Jc pk
)
};

add j∗ to J; remove j∗ from Jc; update J ′.
Step 3: If Jc is empty then stop, otherwise go to Step 2.

I For 1 | | Lmax Earliest Due Date first
I 1|rj|Lmax is instead strongly NP-hard

DM87 – Scheduling, Timetabling and Routing 18

1 | |
∑
hj(Cj)1 | |

∑
hj(Cj)1 | |

∑
hj(Cj)

I generalization of
∑
wjTj hence strongly NP-hard

I efficient (forward) dynamic programming algorithm O(2n)

J set of job already scheduled;

V(J) =
∑
j∈J hj(Cj)

Step 1: Set J = ∅, V(j) = hj(pj), j = 1, . . . , n

Step 2: V(J) = minj∈J
(
V(J− {j}) + hj

(∑
k∈J pk

))
Step 3: If J = {1, 2, . . . , n} then V({1, 2, . . . , n}) is optimum,

otherwise go to Step 2.

DM87 – Scheduling, Timetabling and Routing 19

1 | sjk | Cmax1 | sjk | Cmax1 | sjk | Cmax

[Makespan with sequence-dependent setup times]

I general case is NP-hard (traveling salesman reduction).

I special case:

parameters aj, bj for job j with

sjk ∝ |ak − bj|

[Gilmore and Gomory, 1964] give a O(n2) algorithm

DM87 – Scheduling, Timetabling and Routing 20

I assume b0 ≤ b1 ≤ . . . ≤ bn (k > j and bk ≥ bj)

I one-to-one correspondence with solution of
TSP with n+ 1 cities
city 0 has a0, b0
start at b0 finish at a0

I tour representation φ : {0, 1, . . . , n} 7→ {0, 1, . . . , n}

(permutation map, single linked array)

I Hence,

min c(φ) =

n∑
i=1

ci,φ(i) (1)

φ(S) 6= S ∀S ⊂ V (2)

I find φ∗ by ignoring (2)
make φ∗ a tour through swaps
(swap chosen solving a min spanning tree and applied in a certain order)

DM87 – Scheduling, Timetabling and Routing 21

I Interchange δjk

δjk(φ) = {φ ′ | φ ′(j) = φ(k), φ(k) = φ(j), φ ′(l) = φ(l), ∀l 6= j, k}

I Cost

cφ(δjk) = c(δjk(φ)) − c(φ)

= ‖ [bj, bk] ∩ [aφ(j), aφ(k)] ‖

I Theorem: Let φ∗ be a permutation that ranks the a that is k > j
implies aφ(k) ≥ aφ(j) then

c(φ∗) = min
φ
c(φ)

.

I Lemma: If φ is a permutation consisting of cycles C1, . . . , Cp and δjk

is an interchange with j ∈ Cr and k ∈ Cs, r 6= s, then δjk(φ) contains
the same cycles except that Cr and Cs have been replaced by a single
cycle containing all their nodes.

DM87 – Scheduling, Timetabling and Routing 22

I Theorem: Let δj1k1 , δj2k2 , . . . , δjpkp be the interchanges
corresponding to the arcs of a spanning tree of Gφ∗ . The arcs may be
taken in any order. Then φ ′,

φ ′ = δj1k1 ◦ δj2k2 ◦ . . . ◦ δjpkp(φ∗)

is a tour.

I The p− 1 interchanges can be found by greedy algorithm
(similarity to Kruskal for min spanning tree)

I Lemma: There is a minimum spanning tree in Gφ∗ that contains only
arcs δj,j+1.

I Generally, c(φ ′) 6= c(δj1k1) + c(δj2k2) + . . .+ c(δjpkp).

DM87 – Scheduling, Timetabling and Routing 23

I

node j in φ is of

{
Type I, if bj ≤ aφ(j)

Type II, otherwise

interchange jk is of

{
Type I, if lower node of type I
Type II, if lower node of type II

I Order:
interchanges in Type I in decreasing order
interchanges in Type II in increasing order

I Apply to φ∗ interchanges of Type I and Type II in that order.

I Theorem: The tour found is a minimal cost tour.

DM87 – Scheduling, Timetabling and Routing 24

Resuming the final algorithm [Gilmore and Gomory, 1964]:

Step 1: Arrange bj in order of size and renumber jobs so that
bj ≤ bj+1, j = 1, . . . , n.

Step 2: Arrange aj in order of size.

Step 3: Define φ by φ(j) = k where k is the j+ 1-smallest of the aj.

Step 4: Compute the interchange costs cδj,j+1 , j = 0, . . . , n− 1

cδj,j+1 = ‖ [bj, bj+1] ∩ [aφ(j), aφ(i)] ‖

Step 5: While G has not one single component, Add to Gφ the arc of
minimum cost c(δj,j+1) such that j and j+ 1 are in two
different components.

Step 6: Divide the arcs selected in Step 5 in Type I and II.
Sort Type I in decreasing and Type II increasing order of index.
Apply the relative interchanges in the order.

DM87 – Scheduling, Timetabling and Routing 25

Summary

Single Machine Models:

1 | |
∑
wjCj : weighted shortest processing time first is optimal

1 | prec| Lmax : dynamic programming in O(n2)

1 | |
∑
hj(Cj) : dynamic programming in O(2n)

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

DM87 – Scheduling, Timetabling and Routing 26

