	Outline
DM87 SCHEDULING, TIMETABLING AND ROUTING	
Lecture 8 Single Machine Models	1. Dispatching Rules
Marco Chiarandini	2. Single Machine Models
	 DM87 – Scheduling, Timetabling and Routing 2
Outline	Dispatching rules
	Distinguish static and dynamic rules.
1. Dispatching Rules	 Service in random order (SIRO) Earliest release date first (ERD=FIFO) tends to min variations in waiting time
2. Single Machine Models	 Earliest due date (EDD)
	 Minimal slack first (MS) j* = arg min_j{max(d_j - p_j - t, 0)}. tends to min due date objectives (T,L)
DM87 - Scheduling, Timetabling and Routing	3 DM87 - Scheduling, Timetabling and Routing 4

- $j^* = \arg \max_{j} \{w_j/pj\}.$
- tends to min $\sum w_j C_j$ and max work in progress and
- Loongest processing time first (LPT)
 - balance work load over parallel machines
- Shortest setup time first (SST)
 - tends to min C_{max} and max throughput
- Least flexible job first (LFJ)
 - eligibility constraints

DM87 – Scheduling, Timetabling and Routing

- Critical path (CP)
 - ► first job in the CP
 - \blacktriangleright tends to min C_{max}
- Largest number of successors (LNS)
- Shortest queue at the next operation (SQNO)
 - tends to min idleness of machines

DM87 – Scheduling, Timetabling and Routing

	RULE	DATA	OBJECTIVES
Rules Dependent on Release Dates and Due Dates	ERD EDD MS	$egin{array}{c} r_j \ d_j \ d_j \ d_j \end{array}$	Variance in Throughput Times Maximum Lateness Maximum Lateness
Rules Dependent on Processing Times	LPT SPT WSPT CP LNS	p_j p_j p_j, w_j $p_j, prec$ $p_j, prec$	Load Balancing over Parallel Machines Sum of Completion Times, WIP Weighted Sum of Completion Times, WIF Makespan Makespan
Miscellaneous	SIRO SST LFJ SQNO	$ s_{jk}$ M_j $-$	Ease of Implementation Makespan and Throughput Makespan and Throughput Machine Idleness

When dispatching rules are optimal?

	RULE	DATA	ENVIRONMENT
1	SIRO	_	—
2	ERD	r_i	$1 \mid r_i \mid \operatorname{Var}(\sum (C_i - r_i)/n)$
3	EDD	d_i	1 L _{max}
4	MS	d_i	$1 \parallel L_{\max}$
5	SPT	p_i	$Pm \mid\mid \sum C_i; Fm \mid p_{ij} = p_j \mid \sum C_j$
6	WSPT	w_i, p_i	$Pm \parallel \sum w_i C_i$
7	LPT	p_j	$Pm \mid\mid \overline{C_{\max}}$
8	SPT-LPT	p_i	$Fm \mid block, p_{ij} = p_j \mid C_{max}$
9	CP	$p_i, prec$	$Pm \mid prec \mid C_{max}$
10	LNS	$p_i, prec$	$Pm \mid prec \mid C_{max}$
11	SST	Sjk	$1 \mid s_{jk} \mid C_{\max}$
12	LFJ	M_{j}	$Pm \mid M_j \mid C_{\max}$
13	LAPT	p_{ij}	$O2 \parallel C_{\max}$
14	SQ	_	$Pm \mid \sum C_j$
15	SQNO	_	$Jm \parallel \gamma$

5

Composite dispatching rules

Why composite rules?

• Example: $1 \mid \mid \sum w_j T_j$:

DM87 – Scheduling, Timetabling and Routing

- ▶ WSPT, optimal if due dates are zero
- EDD, optimal if due dates are loose
- ► MS, tends to minimize T
- > The efficacy of the rules depends on instance factors

Instance characterization

- ► Job attributes: {weight, processing time, due date, release date}
- Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible }

Possible instance factors:

$$\begin{aligned} \theta_1 &= 1 - \frac{\bar{d}}{c_{\max}} & (\text{due date tightness}) \\ \theta_2 &= \frac{d_{\max} - d_{\min}}{c_{\max}} & (\text{due date range}) \\ \theta_3 &= \frac{\bar{s}}{\bar{p}} & (\text{set up time severity}) \end{aligned}$$

(estimated
$$\hat{C}_{max} = \sum_{j=1}^{n} p_j + n\bar{s}$$
)

DM87 – Scheduling, Timetabling and Routing

$$I_{j}(t) = \frac{w_{j}}{p_{j}} \exp \left(-\frac{\max(d_{j} - p_{j} - t, 0)}{K\bar{p}}\right)$$

Dynamic apparent tardiness cost with setups (ATCS)

$$I_j(t,l) = \frac{w_j}{p_j} \exp\left(-\frac{\max(d_j - p_j - t, 0)}{K_1 \bar{p}}\right) \exp\left(\frac{-s_{jk}}{K_2 \bar{s}}\right)$$

after job l has finished.

Summary

- Scheduling classification
- Solution methods
- Practice with general solution methods
 - Mathematical Programming
 - Constraint Programming
 - Heuristic methods

9

Remainder on Scheduling	Outline
 Objectives: Look closer into scheduling models and learn: special algorithms 	
 application of general methods 	1. Dispatching Rules
Cases:	
 Single Machine 	2. Single Machine Models
Parallel Machine	
 Permutation Flow Shop 	
► Job Shop	
 Resource Constrained Project Scheduling 	
DM87 – Scheduling, Timetabling and Routing 13	DM87 – Scheduling, Timetabling and Routing 14
Summary	$1 \sum w_j C_j$
Single Machine Models:	 [Total weighted completion time] Theorem: The weighted shortest processing time first (WSPT) rule is optimal.
 C_{max} is sequence independent if r_j = 0 and h_j is monotone in C_j then optimal schedule is nondelay and has no preemption. 	 Extensions to 1 prec ∑ w_jC_j in the general case strongly NP-hard chain precedences: process first chain with highest ρ-factor up to, and included, job with highest ρ-factor. poly also for tree and sp-graph precedences
DM87 - Scheduling Timetabling and Routing 15	DM87 - Scheduling Timetabling and Routing

1 | prec| L_{max}

	[maximum lateness]
Extensions to $1 r_j, prmp \sum w_j C_j$	• generalization: $h_{max} = \max\{h(C_1), h(C_2), \dots, h(C_n)\}$
 in the general case strongly NP-hard preemptive version of the WSPT if equal weights however, 1 r_j ∑ w_jC_j is strongly NP-hard 	 Solved by backward dynamic programming in O(n²): J set of jobs already scheduled; J^c set of jobs still to schedule; J' ⊆ J^c set of schedulable jobs Step 1: Set J = Ø, J^c = {1,,n} and J' the set of all jobs with no successor Step 2: Select j* such that j* = arg min_{j∈J'}{h_j (∑_{k∈J^c} p_k)}; add j* to J; remove j* from J^c; update J'. Step 3: If J^c is empty then stop, otherwise go to Step 2. For 1 L _{max} Earliest Due Date first 1 r_i L_{max} is instead strongly NP-hard
DM87 – Scheduling, Timetabling and Routing 17	DM87 – Scheduling, Timetabling and Routing 18
$1 \mid \mid \sum h_j(C_j)$	1 s _{jk} C _{max}
 ▶ generalization of ∑ w_jT_j hence strongly NP-hard ▶ efficient (forward) dynamic programming algorithm O(2ⁿ) 	[Makespan with sequence-dependent setup times]
J set of job already scheduled;	 general case is NP-hard (traveling salesman reduction).
$V(I) = \sum_{i=1}^{n} I_i(C_i)$	
$\mathbf{V}(\mathbf{J}) = \sum_{\mathbf{j} \in \mathbf{J}} \mathbf{n}_{\mathbf{j}}(\mathbf{C}_{\mathbf{j}})$	► special case:

DM87 – Scheduling, Timetabling and Routing

- assume $b_0 \leq b_1 \leq \ldots \leq b_n$ (k > j and $b_k \geq b_j$)
- one-to-one correspondence with solution of TSP with n + 1 cities city 0 has a₀, b₀ start at b₀ finish at a₀
- ▶ tour representation $\phi : \{0, 1, ..., n\} \mapsto \{0, 1, ..., n\}$ (permutation map, single linked array)
- ► Hence,

min
$$c(\phi) = \sum_{i=1}^{n} c_{i,\phi(i)}$$
 (1)

$$\phi(S) \neq S \qquad \forall S \subset V \tag{2}$$

- find φ* by ignoring (2)
 make φ* a tour through swaps
 (swap chosen solving a min spanning tree and applied in a certain order)
- DM87 Scheduling, Timetabling and Routing

• Interchange δ^{jk}

 $\delta^{jk}(\varphi) = \{\varphi' \mid \varphi'(j) = \varphi(k), \quad \varphi(k) = \varphi(j), \quad \varphi'(l) = \varphi(l), \quad \forall l \neq j, k\}$

Cost

$$\begin{split} c_{\varphi}(\delta^{jk}) &= c(\delta^{jk}(\varphi)) - c(\varphi) \\ &= \| \left[b_{j}, b_{k} \right] \cap \left[a_{\varphi(j)}, a_{\varphi(k)} \right] \end{split}$$

▶ Theorem: Let ϕ^* be a permutation that ranks the a that is k > j implies $a_{\phi(k)} \ge a_{\phi(j)}$ then

$$c(\phi^*) = \min_{\phi} c(\phi)$$

▶ Lemma: If ϕ is a permutation consisting of cycles C_1, \ldots, C_p and δ^{jk} is an interchange with $j \in C_r$ and $k \in C_s$, $r \neq s$, then $\delta^{jk}(\phi)$ contains the same cycles except that C_r and C_s have been replaced by a single cycle containing all their nodes.

```
DM87 – Scheduling, Timetabling and Routing
```

• **Theorem:** Let $\delta^{j_1k_1}, \delta^{j_2k_2}, \ldots, \delta^{j_pk_p}$ be the interchanges corresponding to the arcs of a spanning tree of G_{Φ^*} . The arcs may be taken in any order. Then Φ' ,

$$\Phi' = \delta^{j_1k_1} \circ \delta^{j_2k_2} \circ \ldots \circ \delta^{j_pk_p}(\Phi^*)$$

is a tour.

- ► The p 1 interchanges can be found by greedy algorithm (similarity to Kruskal for min spanning tree)
- Lemma: There is a minimum spanning tree in G_{φ^*} that contains only arcs $\delta^{j,j+1}$.
- Generally, $c(\phi') \neq c(\delta^{j_1k_1}) + c(\delta^{j_2k_2}) + \ldots + c(\delta^{j_pk_p})$.

node j in ϕ is of $\begin{cases}
\text{Type I,} & \text{if } b_j \leq a_{\phi(j)} \\
\text{Type II,} & \text{otherwise}
\end{cases}$ interchange jk is of $\begin{cases}
\text{Type I,} & \text{if lower node of type I} \\
\text{Type II,} & \text{if lower node of type II}
\end{cases}$

- Order: interchanges in Type I in decreasing order interchanges in Type II in increasing order
- \blacktriangleright Apply to φ^* interchanges of Type I and Type II in that order.
- **Theorem:** The tour found is a minimal cost tour.

21

Resuming the final algorithm [Gilmore and Gomory, 1964]:	Summary
Step 1: Arrange b _j in order of size and renumber jobs so that b _j ≤ b _{j+1} , j = 1,, n. Step 2: Arrange a _j in order of size. Step 3: Define ϕ by $\phi(j) = k$ where k is the j + 1-smallest of the a _j . Step 4: Compute the interchange costs c _{δj,j+1} , j = 0,, n - 1 c _{δj,j+1} = [b _j , b _{j+1}] ∩ [a _{φ(j)} , a _{φ(i)}] Step 5: While G has not one single component, Add to G _φ the arc of minimum cost c(δ ^{j,j+1}) such that j and j + 1 are in two different components. Step 6: Divide the arcs selected in Step 5 in Type I and II. Sort Type I in decreasing and Type II increasing order of index. Apply the relative interchanges in the order.	Single Machine Models: $1 \sum w_j C_j$: weighted shortest processing time first is optimal $1 \operatorname{prec} L_{\max}$: dynamic programming in $O(n^2)$ $1 \sum h_j(C_j)$: dynamic programming in $O(2^n)$ $1 s_{jk} C_{\max}$: in the special case, Gilmore and Gomory algorithm optimal in $O(n^2)$
DM87 – Scheduling, Timetabling and Routing 25	DM87 – Scheduling, Timetabling and Routing 26