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Outline Dispatching rules

Distinguish static and dynamic rules.

v

Service in random order (SIRO)
1. Dispatching Rules

> Earliest release date first (ERD=FIFO)
» tends to min variations in waiting time

» Earliest due date (EDD)

» Minimal slack first (MS)

> j* = arg minj{max(d; — p; — t,0)}.

> tends to min due date objectives (T L)
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v

(Weighted) shortest processing
> j* = argmax;{w;/pj}.

time first (WSPT)

> tends to min }_ w;C; and max work in progress and

v

» balance work load over paral

v

Shortest setup time first (SST)

Loongest processing time first (LPT)

lel machines

» tends to min Cyax and max throughput

v

Least flexible job first (LFJ)

» eligibility constraints

» Critical path (CP)
» first job in the CP

» tends to min Ciax

» Largest number of successors (LNS)

» Shortest queue at the next operation (SQNO)

» tends to min idleness of machines
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Table C.1. Summary of Dispatching Rules

RULE |DATA

OBJECTIVES

Rules Dependent| ERD  |r;
on Release Dates| EDD |d;
and Due Dates |MS d;

Variance in Throughput Times
Maximum Lateness
Maximum Lateness

—
LPT |p;
Rules Dependent|SPT  |p;
on Processing WSPT|p;, w;

Load Balancing over Parallel Machines
Sum of Completion Times, WIP
Weighted Sum of Completion Times, WIP

Times CP ps, prec| Makespan
LNS |pj, precMakespan
SIRO |- Ease of Implementation
Miscellaneous SST sk Makespan and Throughput
LFJ | M; Makespan and Throughput
SQNO |- Machine Idleness
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When dispatching rules are optimal?

RULE DATA | ENVIRONMENT
1 | swo 2 | s
2 | ERD " |11 | Var(R(Cs — /)
3 EDD d; |11l Lo
4 MS d}' L || Linex
5 SPT pj Pm||YCiiFmlpy=p;|>C;
6 WSPT Wy, p; Pm || Y w;C;
7 LPT Pj Pm “ Cm.ax
8 SPT-LPT Dj Fm | block, pi; = p; | Cmax
9 CP p;, prec Pm | prec | Chpax
10 LNS Pj.prec Pm | prec| Cpax
11 SST Sk 1] 8k | Coax
12 | LR M; Pm | M; | Caex
13 LAPT Pij ‘ 02 || Crax
14 SQ - Pm || % C;
15 SQNO — Jm ||y
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Composite dispatching rules

Why composite rules?
» Example: T[] > w;T;:
» WSPT, optimal if due dates are zero

» EDD, optimal if due dates are loose

» MS, tends to minimize T

» The efficacy of the rules depends on instance factors
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Instance characterization
» Job attributes: {weight, processing time, due date, release date}

» Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible }

Possible instance factors:

d

Cmax

01 =1-— (due date tightness)

dmax - dmin

0= ———— (due date range)

CTTLCIX

03 = (set up time severity)

TI| »i

(estimated Cnax = Z)T; p;j +ns)
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» Dynamic apparent tardiness cost (ATC)

» Dynamic apparent tardiness cost with setups (ATCS)

; di—p; —t,0 —S;
Lt 1) = Wi exp (— max(d; ?] ’ )> exp (S)k>
Pj Kip Kzs

)

after job 1 has finished.
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Summary

» Scheduling classification
» Solution methods

» Practice with general solution methods
» Mathematical Programming
» Constraint Programming

» Heuristic methods
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Remainder on Scheduling Outline

Objectives:
Look closer into scheduling models and learn:

» special algorithms

» application of general methods
Cases:

» Single Machine 2. Single Machine Models

» Parallel Machine

» Permutation Flow Shop

» Job Shop

» Resource Constrained Project Scheduling
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Summary 11 ¥ w;C;

Single Machine Models:

» Ciax is sequence independent

» if r; =0 and h; is monotone in Cj then optimal schedule is nondelay
and has no preemption.
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[Total weighted completion time]
» Theorem: The weighted shortest processing time first (WSPT) rule is

optimal.

Extensions to 1|prec| }_ w;C;

> in the general case strongly NP-hard

» chain precedences:
process first chain with highest p-factor up to, and included, job with
highest p-factor.

» poly also for tree and sp-graph precedences
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Extensions to 1|vj,prmp | >~ w;C;

» in the general case strongly NP-hard
» preemptive version of the WSPT if equal weights

» however, 1|15 > w;C;j is strongly NP-hard

1|prec| Linax
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[maximum lateness]
» generalization: hyqx = max{h(C;),h(C2),...,h(Cyr)}

» Solved by backward dynamic programming in O(n?):

J set of jobs already scheduled;
J¢ set of jobs still to schedule;
J' C J¢ set of schedulable jobs

Step 1: Set =10, J¢ ={1,...,n} and J’ the set of all jobs with no
successor

Step 2: Select j* such that j* = argminjcj {h; (Zke]c ‘Pk)}?
add j* to J; remove j* from J¢; update J'.

Step 3: If J¢ is empty then stop, otherwise go to Step 2.

» For 1|]| Ly ax Earliest Due Date first

> 11j|Limax is instead strongly NP-hard
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11 2 h(G)

» generalization of )~ w;T; hence strongly NP-hard
» efficient (forward) dynamic programming algorithm O(2™)
] set of job already scheduled;
V() = 550 1(C)
Step 1: Set ] =0, V(j) = h;(p;), j=1,...,n

Step 2: V(]) = minj¢; (V(I —{i}) +h; (Zke]pk))

Step 3: If ] ={1,2,...,n} then V({1,2,...,1}) is optimum,
otherwise go to Step 2.

lls)‘klc‘max
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[Makespan with sequence-dependent setup times]

» general case is NP-hard (traveling salesman reduction).

» special case:
parameters aj, bj for job j with

Sjk o< |ax — bj]

[Gilmore and Gomory, 1964] give a O(n?) algorithm
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v

assume by < by <...<b, (k>jand by > bj)
> one-to-one correspondence with solution of

TSP with n+ 1 cities

city 0 has ap, by

start at by finish at ag

» tour representation ¢ : {0,1,...,n}—{0,1,...,n}
(permutation map, single linked array)

» Hence,

min C(d)) = Zci‘d,m (1)
i=1

d(S)£S  VSCV ()

v

find ¢* by ignoring (2)
make ¢* a tour through swaps
(swap chosen solving a min spanning tree and applied in a certain order)
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v

Interchange &%
S P)={d" | ¢'G)=0d(k), &K =0d(), ¢'(V=d(l), VI#jk}
» Cost

cp (%) = (8% (d)) — c()
= || [bj, bi] N [ag 5y, ag )] |l

v

Theorem: Let ¢* be a permutation that ranks the a that is k > j
implies ag (k) > ag(j) then

c(dp”) = mq}ﬂC(d))

v

Lemma: If ¢ is a permutation consisting of cycles Cy,...,C, and &%
is an interchange with j € C, and k € Cg, 1 # s, then §'%(¢) contains
the same cycles except that C, and Cg have been replaced by a single
cycle containing all their nodes.
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v

Theorem: Let §1%1 §l2k2 §vke be the interchanges
corresponding to the arcs of a spanning tree of Gg+. The arcs may be
taken in any order. Then ¢/,

O =57 052K o o 5k (¢7)

is a tour.

v

The p — 1 interchanges can be found by greedy algorithm
(similarity to Kruskal for min spanning tree)

» Lemma: There is a minimum spanning tree in G4~ that contains only
arcs & +1
> Generally, c(d’) # c(87%1) +¢(82%2) + ... 4 c(§)rFr).

Typel, ifb; < .
node j in ¢ is of ype "5 _-a‘b[”
Type I, otherwise

T I, ifl de of t I
interchange jk is of ype I ower node of type
Type Il, if lower node of type Il

» Order:
interchanges in Type | in decreasing order
interchanges in Type Il in increasing order
> Apply to ¢* interchanges of Type | and Type Il in that order.

v

Theorem: The tour found is a minimal cost tour.
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Resuming the final algorithm [Gilmore and Gomory, 1964]:

Step 1:

Step 2:
Step 3:
Step 4:

Step 5:

Step 6:

Arrange bj in order of size and renumber jobs so that
bj Sbj—H- ] :],...,TL

Arrange a; in order of size.
Define ¢ by ¢(j) = k where k is the j + 1-smallest of the a;.

Compute the interchange costs cg5,5+1, j =0,...,n—1
cgri+r = || [b5, 05011 Nlag ), apw] |

While G has not one single component, Add to G, the arc of
minimum cost ¢(&7*") such that j and j + 1 are in two
different components.

Divide the arcs selected in Step 5 in Type | and II.
Sort Type | in decreasing and Type Il increasing order of index.
Apply the relative interchanges in the order.

Summary
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Single Machine Models:

11l > w;C;j : weighted shortest processing time first is optimal
1| prec| Linax : dynamic programming in O(n?)
111 > hi(C;j) : dynamic programming in O(2™")

115sji | Cinax @ in the special case, Gilmore and Gomory algorithm
optimal in O(n?)
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