	Outline
DM87 SCHEDULING, TIMETABLING AND ROUTING	
Lecture 9 Single and Parallel Machine Models	1. Single Machine Models
Marco Chiarandini	2. Parallel Machine Models
	DM87 – Scheduling, Timetabling and Routing 2
$ \geq w_j C_j$: weighted shortest processing time first is optimal	$ \geq w_j C_j$: weighted shortest processing time first is optimal
$1 prec L_{max} $: backward dynamic programming in $O(n^2)$ [Lawler, 1973]	$1 prec L_{max}$: backward dynamic programming in $O(n^2)$ [Lawler, 1973]
	$1 r_j, (prec) L_{max}$ branch and bound
	$1 \mid \sum_{j} U_{j}$ Moore's algorithm
	$1 \mid \sum w_j T_j$ branch and Bound, Dynasearch
$1 \mid \mid \sum h_j(C_j) :$ dynamic programming in $O(2^n)$	$1 \mid \mid \sum h_j(C_j)$: dynamic programming in $O(2^n)$
$1 \mid s_{jk} \mid C_{m\alpha x} \;$: in the special case, Gilmore and Gomory algorithm optimal in $O(n^2)$	$1 \mid s_{jk} \mid C_{max}$: in the special case, Gilmore and Gomory algorithm optimal in $O(n^2)$
	$Pm prmp C_{max}$ Linear Programming, dispatching rules

Outline	$1 s_{jk} C_{max}$
 Single Machine Models Parallel Machine Models 	[Makespan with sequence-dependent setup] Resuming the final algorithm [Gilmore and Gomory, 1964]:
	Step 1: Arrange b_j in order of size and renumber jobs so that $b_j \leq b_{j+1}, j = 1,, n$.
	Step 2: Arrange a_j in order of size.
	Step 3: Define ϕ by $\phi(j) = k$ where k is the $j + 1$ -smallest of the a_j .
	Step 4: Compute the interchange costs $c_{\delta^{j,j+1}},j=0,\ldots,n-1$
	$c_{\delta^{\mathfrak{j},\mathfrak{j+1}}} = \ [b_{\mathfrak{j}},b_{\mathfrak{j+1}}] \cap [a_{\varphi(\mathfrak{j})},a_{\varphi(\mathfrak{i})}] \ $
	Step 5: While G has not one single component, Add to G_{Φ} the arc of minimum cost $c(\delta^{j,j+1})$ such that j and $j+1$ are in two different components.
	Step 6: Divide the arcs selected in Step 5 in Type I and II. Sort Type I in decreasing and Type II increasing order of index. Apply the relative interchanges in the order.
DM87 – Scheduling, Timetabling and Routing 4	DM87 – Scheduling, Timetabling and Routing 5
$1 \mathbf{r}_j \mathbf{L}_{\max}$	Branch and Bound S root of the branching tree
[Maximum lateness with release dates]	 LIST := {S}; U:=value of some heuristic solution:
 Strongly NP-hard (reduction from 3-partition) 	3 current_best := heuristic solution; 4 while LIST $\neq \emptyset$
might have optimal schedule which is not non-delay	5 Choose a branching node k from LIST; 6 Remove k from LIST;
• Branch and bound algorithm (valid also for $1 r_j, prec L_{max}$)	7 Generate children child(i), $i = 1,, n_k$, and calculate corresponding lower bounds LB _i :
Branching: schedule from the beginning (level k. n!/(k - 1)! nodes)	8 <u>for</u> i:=1 to n_k
elimination criterion: do not consider job j_k if:	9 <u>if</u> $LB_i < U$ then if shild(i) consists of a single solution than
$r_{j} > \min_{l \in I} \{ \max(t, r_{l}) + p_{l} \}$ J jobs to schedule, t current time	11 $U:=LB_i;$
ι _E j	12 current_best:=solution corresponding to child(i)

6

 $1 \mid \sum_{i} U_{i}$ $1 \mid \sum w_i T_i$ [single-machine total weighted tardiness] [Number of tardy jobs] ▶ 1 || $\sum T_i$ is hard in ordinary sense, hence admits a pseudo polynomial • [Moore, 1968] algorithm in $O(n \log n)$ algorithm (dynamic programming) Add jobs in increasing order of due dates ▶ 1 || $\sum w_i T_i$ strongly NP-hard If inclusion of job j* results in this job being completed late discard the scheduled job k^* with the longest processing time branch and bound time indexed integer program ▶ 1 || $\sum_{i} w_{i} U_{i}$ is a knapsack problem hence NP-hard dynaserach DM87 - Scheduling, Timetabling and Routing 8 DM87 - Scheduling, Timetabling and Routing 9 Branch and bound Branching: [Pan and Shi, 2007]'s lower bounding through time indexed work backward in time Stronger but computationally more expensive elimination criterion: if $p_i < p_k$ and $d_i < d_k$ and $w_i > w_k$ then there is an optimal schedule with *j* before k $\min \sum_{j=1}^{n} \sum_{t=1}^{T-p_j} h_j(t+p_j) y_{jt}$ ► Lower Bounding: relaxation to preemptive case $T - p_i$ s.t. $\sum_{j=1}^{n-p_j} y_{jt} = 1, \quad \forall j = 1, \dots, n$ transportation problem $\min\sum_{j=1}^n\sum_{t=1}^{C_{max}}c_{jt}x_{jt}$ $\sum_{j=1}^{n} \sum_{s=t-p_{j}+1}^{t} y_{jt} \leq 1, \qquad \forall t = 1, \dots, C_{max}$ s.t. $\sum_{t=1}^{C_{max}} x_{jt} = p_j, \qquad \forall j = 1, \dots, n$ $\sum_{j=1}^{n} x_{jt} \le 1, \qquad \forall t = 1, \dots, C_{max}$ $y_{it} \ge 0$ $\forall j = 1, \dots, n; t = 1, \dots, C_{max}$

 $x_{it} > 0$ $\forall j = 1, ..., n; t = 1, ..., C_{max}$

DM87 – Scheduling, Timetabling and Routing

Dynasearch

interchanges

alone.

- pruning with considerations on $p_{\pi(k)}$ and $p_{\pi(i+1)}$
- maintainig a string of late, no late jobs
- h_t largest index s.t. $\pi^{(t-1)}(k) = \pi^{(t-2)}(k)$ for $k = 1, \ldots, h_t$ then $F(\pi_k^{(t-1)}) = F(\pi_k^{(t-2)})$ for $k = 1, ..., h_t$ and at iter t no need to consider $i < h_t$.
- $F(\pi_n^t) = F(\pi_n^{(t-1)})$, for iteration t). Speedups:
- Local search with dynasearch neighborhood starts from an initial sequence, generated by ATC, and at each iteration applies the best dynasearch move, until no improvement is possible (that is,
- The best choice is computed by recursion in $O(n^3)$ and the optimal series of interchanges for $F(\pi_n)$ is found by backtrack.

- DM87 Scheduling, Timetabling and Routing

The dynasearch neighborhood is obtained by a series of independent

▶ It yields in average better results than the interchange neighborhood

▶ It has size $2^{n-1} - 1$ but a best move can be found in $O(n^3)$.

Searched by dynamic programming

• Two interchanges δ_{ik} and δ_{lm} are independent if $\max\{j, k\} < \min\{l, m\}$ or $\min\{l, k\} > \max\{l, m\}$.

- \blacktriangleright state (k, π)
- π_k is the partial sequence at state (k, π) that has min $\sum wT$
- π_k is obtained from state (i, π)
 - appending job $\pi(k)$ after $\pi(i)$ i = k - 1) appending job $\pi(k)$ and interchanging $\pi(i+1)$ and $\pi(k)$ $0 \le i < k-1$
- $F(\pi_0) = 0;$ $F(\pi_1) = w_{\pi(1)} (p_{\pi(1)} d_{\pi(1)})^+;$

$$F(\pi_{k}) = \min \begin{cases} F(\pi_{k-1}) + w_{\pi(k)} \left(C_{\pi(k)} - d_{\pi(k)} \right)^{+}, \\ \min_{1 \le i < k-1} \{F(\pi_{i}) + w_{\pi(k)} \left(C_{\pi(i)} + p_{\pi(k)} - d_{\pi(k)} \right)^{+} + \\ + \sum_{i=i+2}^{k-1} w_{\pi(j)} \left(C_{\pi(j)} + p_{\pi(k)} - p_{\pi(i+1)} - d_{\pi(j)} \right)^{+} + \end{cases}$$

 $+w_{\pi(i+1)}(C_{\pi(k)}-d_{\pi(i+1)})^{+}$

DM87 – Scheduling, Timetabling and Routing

Dvnasearch. refinements:

- ▶ [Grosso et al. 2004] add insertion moves to interchanges.
- ▶ [Ergun and Orlin 2006] show that dynasearch neighborhood can be searched in $O(n^2)$.

12

13

Performance:

- exact solution via branch and bound feasible up to 40 jobs [Potts and Wassenhove, Oper. Res., 1985]
- exact solution via time-indexed integer programming formulation used to lower bound in branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]
- dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

Single machine, single criterion problems $1 || \gamma$:

 C_{max} \mathcal{P} \mathcal{P} T_{max} Lmax \mathcal{P} \mathcal{P} h_{max} $\sum_{j=1}^{N_{int}} C_{j}$ $\sum_{j=1}^{N_{ij}} w_{j} C_{j}$ $\sum_{j=1}^{N_{ij}} w_{j} U_{j}$ $\sum_{j=1}^{N_{ij}} w_{j} T_{j}$ \mathcal{P} \mathcal{P} \mathcal{P} weakly \mathcal{NP} -hard weakly \mathcal{NP} -hard strongly \mathcal{NP} -hard $\sum h_j(C_j)$ strongly \mathcal{NP} -hard

DM87 – Scheduling, Timetabling and Routing

Multicriteria scheduling

DM87 – Scheduling, Timetabling and Routing

Resolution process and decision maker intervention:

- > a priori methods (definition of weights, importance)
 - goal programming
 - weighted sum
 - ► ...
- interactive methods
- a posteriori methods (Pareto optima)
 - lexicographic with goals
 - ► ...

16

17

Outline	Pm C _{max} (without Preemption)
 Single Machine Models Parallel Machine Models 	$Pm \mid C_{max}$ LPT heuristic, approximation ratio: $\frac{4}{3} - \frac{1}{3m}$ $P\infty \mid C_{max}$ CPM $Pm \mid prec \mid C_{max}$ strongly NP-hard, LNS heuristic (non optimal) $Pm \mid p_j = 1, M_j \mid C_{max}$ LFJ-LFM heuristic (if M_j are nested, then LFJ is optimal)
DM87 – Scheduling, Timetabling and Routing 20 Pm prmp C _{max}	DM87 – Scheduling, Timetabling and Routing 21
Not NP hard: • Linear Programming, x_{ij} : time job j in machine i • Construction based on lower bound $LWB = \max\left\{p_1, \sum_{j=1}^n \frac{p_j}{m}\right\}$ • Dispatching rule: longest remaining processing time (LRPT) optimal in discrete time	 Construction based on LWB = max