
DM87
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 9

Single and Parallel Machine Models

Marco Chiarandini

Outline

1. Single Machine Models

2. Parallel Machine Models

DM87 – Scheduling, Timetabling and Routing 2

1 | |
∑
wjCj : weighted shortest processing time first is optimal

1 | prec| Lmax : backward dynamic programming in O(n2) [Lawler, 1973]

1 | rj, (prec) | Lmax branch and bound

1 | |
∑
jUj Moore’s algorithm

1 | |
∑
wjTj branch and Bound, Dynasearch

1 | |
∑
hj(Cj) : dynamic programming in O(2n)

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

Pm | prmp| Cmax Linear Programming, dispatching rules

DM87 – Scheduling, Timetabling and Routing 3

1 | |
∑
wjCj : weighted shortest processing time first is optimal

1 | prec| Lmax : backward dynamic programming in O(n2) [Lawler, 1973]

1 | rj, (prec) | Lmax branch and bound

1 | |
∑
jUj Moore’s algorithm

1 | |
∑
wjTj branch and Bound, Dynasearch

1 | |
∑
hj(Cj) : dynamic programming in O(2n)

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

Pm | prmp| Cmax Linear Programming, dispatching rules

DM87 – Scheduling, Timetabling and Routing 3

Outline

1. Single Machine Models

2. Parallel Machine Models

DM87 – Scheduling, Timetabling and Routing 4

1 | sjk | Cmax1 | sjk | Cmax1 | sjk | Cmax

[Makespan with sequence-dependent setup]
Resuming the final algorithm [Gilmore and Gomory, 1964]:

Step 1: Arrange bj in order of size and renumber jobs so that
bj ≤ bj+1, j = 1, . . . , n.

Step 2: Arrange aj in order of size.

Step 3: Define φ by φ(j) = k where k is the j+ 1-smallest of the aj.

Step 4: Compute the interchange costs cδj,j+1 , j = 0, . . . , n− 1

cδj,j+1 = ‖ [bj, bj+1] ∩ [aφ(j), aφ(i)] ‖
Step 5: While G has not one single component, Add to Gφ the arc of

minimum cost c(δj,j+1) such that j and j+ 1 are in two
different components.

Step 6: Divide the arcs selected in Step 5 in Type I and II.
Sort Type I in decreasing and Type II increasing order of index.
Apply the relative interchanges in the order.

DM87 – Scheduling, Timetabling and Routing 5

1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax

[Maximum lateness with release dates]

I Strongly NP-hard (reduction from 3-partition)

I might have optimal schedule which is not non-delay

I Branch and bound algorithm (valid also for 1 | rj, prec | Lmax)
I Branching:

schedule from the beginning (level k, n!/(k− 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J

{max (t, rl) + pl} J jobs to schedule, t current time

I Lower bounding: relaxation to preemptive case for which EDD is optimal

DM87 – Scheduling, Timetabling and Routing 6

Branch and Bound
S root of the branching tree

1 LIST := {S};
2 U:=value of some heuristic solution;
3 current_best := heuristic solution;
4 while LIST 6= ∅
5 Choose a branching node k from LIST;
6 Remove k from LIST;
7 Generate children child(i), i = 1, . . . , nk, and calculate corresponding

lower bounds LBi;
8 for i:=1 to nk
9 if LBi < U then
10 if child(i) consists of a single solution then
11 U:=LBi;
12 current_best:=solution corresponding to child(i)
13 else add child(i) to LIST

DM87 – Scheduling, Timetabling and Routing 7

1 | |
∑

jUj1 | |
∑

jUj1 | |
∑

jUj

[Number of tardy jobs]

I [Moore, 1968] algorithm in O(n logn)

I Add jobs in increasing order of due dates
I If inclusion of job j∗ results in this job being completed late

discard the scheduled job k∗ with the longest processing time

I 1 | |
∑
jwjUj is a knapsack problem hence NP-hard

DM87 – Scheduling, Timetabling and Routing 8

1 | |
∑
wjTj1 | |

∑
wjTj1 | |

∑
wjTj

[single-machine total weighted tardiness]

I 1 | |
∑
Tj is hard in ordinary sense, hence admits a pseudo polynomial

algorithm (dynamic programming)

I 1 | |
∑
wjTj strongly NP-hard

I branch and bound
I time indexed integer program
I dynaserach

DM87 – Scheduling, Timetabling and Routing 9

Branch and bound
I Branching:

I work backward in time
I elimination criterion:

if pj ≤ pk and dj ≤ dk and wj ≥ wk then there is an optimal schedule
with j before k

I Lower Bounding:
relaxation to preemptive case
transportation problem

min
n∑
j=1

Cmax∑
t=1

cjtxjt

s.t.
Cmax∑
t=1

xjt = pj, ∀j = 1, . . . , n

n∑
j=1

xjt ≤ 1, ∀t = 1, . . . , Cmax

xjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax

[Pan and Shi, 2007]’s lower bounding through time indexed
Stronger but computationally more expensive

min
n∑
j=1

T−pj∑
t=1

hj(t+ pj)yjt

s.t.
T−pj∑
t=1

yjt = 1, ∀j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

yjt ≤ 1, ∀t = 1, . . . , Cmax

yjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax

DM87 – Scheduling, Timetabling and Routing 11

Dynasearch
I Two interchanges δjk and δlm are independent

if max{j, k} < min{l,m} or min{l, k} > max{l,m}.

I The dynasearch neighborhood is obtained by a series of independent
interchanges

I It has size 2n−1 − 1 but a best move can be found in O(n3).

I It yields in average better results than the interchange neighborhood
alone.

I Searched by dynamic programming

DM87 – Scheduling, Timetabling and Routing 12

I state (k, π)

I πk is the partial sequence at state (k, π) that has min
∑
wT

I πk is obtained from state (i, π){
appending job π(k) after π(i) i = k− 1

appending job π(k) and interchanging π(i+ 1) and π(k) 0 ≤ i < k− 1

I F(π0) = 0; F(π1) = wπ(1)

(
pπ(1) − dπ(1)

)+;

F(πk) = min


F(πk−1) +wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F(πi) +wπ(k)

(
Cπ(i) + pπ(k) − dπ(k)

)+
+

+
∑k−1
j=i+2wπ(j)

(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(j)

)+
+

+wπ(i+1)

(
Cπ(k) − dπ(i+1)

)+
}

DM87 – Scheduling, Timetabling and Routing 13

I The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F(πn) is found by backtrack.

I Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F(πtn) = F(π

(t−1)
n), for iteration t).

I Speedups:
I pruning with considerations on pπ(k) and pπ(i+1)

I maintainig a string of late, no late jobs
I ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F(π

(t−1)
k) = F(π

(t−2)
k) for k = 1, . . . , ht and at iter t no need to consider

i < ht.

DM87 – Scheduling, Timetabling and Routing 14

Dynasearch, refinements:

I [Grosso et al. 2004] add insertion moves to interchanges.

I [Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).

DM87 – Scheduling, Timetabling and Routing 15

Performance:
I exact solution via branch and bound feasible up to 40 jobs

[Potts and Wassenhove, Oper. Res., 1985]

I exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

I dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

DM87 – Scheduling, Timetabling and Routing 16

Complexity resume

Single machine, single criterion problems 1 | | γ1 | | γ1 | | γ:

Cmax P
Tmax P
Lmax P
hmax P∑
Cj P∑
wjCj P∑
U P∑
wjUj weakly NP-hard∑
T weakly NP-hard∑
wjTj strongly NP-hard∑
hj(Cj) strongly NP-hard

DM87 – Scheduling, Timetabling and Routing 17

Extensions

Non regular objectives
I 1 | dj = d |

∑
Ej +

∑
Tj

I In an optimal schedule,
I early jobs are scheduled according to LPT
I late jobs are scheduled according to SPT

DM87 – Scheduling, Timetabling and Routing 18

Multicriteria scheduling
Resolution process and decision maker intervention:

I a priori methods (definition of weights, importance)
I goal programming
I weighted sum
I ...

I interactive methods

I a posteriori methods (Pareto optima)
I lexicographic with goals
I ...

DM87 – Scheduling, Timetabling and Routing 19

Outline

1. Single Machine Models

2. Parallel Machine Models

DM87 – Scheduling, Timetabling and Routing 20

Pm | | CmaxPm | | CmaxPm | | Cmax (without Preemption)

Pm | | Cmax LPT heuristic, approximation ratio: 43 − 1
3m

P∞ | | Cmax CPM

Pm | prec | Cmax strongly NP-hard, LNS heuristic (non optimal)

Pm | pj = 1,Mj | Cmax LFJ-LFM heuristic (if Mj are nested, then LFJ is
optimal)

DM87 – Scheduling, Timetabling and Routing 21

Pm | prmp| CmaxPm | prmp| CmaxPm | prmp| Cmax

Not NP hard:

I Linear Programming, xij: time job j in machine i

I Construction based on lower bound

LWB = max

p1,
n∑
j=1

pj

m


I Dispatching rule: longest remaining processing time (LRPT)

optimal in discrete time

DM87 – Scheduling, Timetabling and Routing 22

Qm | prmp| CmaxQm | prmp| CmaxQm | prmp| Cmax

I Construction based on

LWB = max

{
p1

v1
,
p1 + p2

v1 + v2
, . . . ,

∑n
j=1 pj∑m
j=1 vj

}

I Dispatching rule: longest remaining processing time on the fastest
machine first (processor sharing)
optimal in discrete time

DM87 – Scheduling, Timetabling and Routing 23

