
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Issued: March 27, 2009

Marco Chiarandini

DM204 - Scheduling, Timetabling and Routing

Exam Project, Fall 2009 Problem A

1 Practical Notes

Note 1 The project consists in modeling a real-life problem, designing a solution al-
gorithm, implementing a solver, experimenting with some real or synthetic instances of
the problem and documenting the work in a written report.

The evaluation of the project is based on the written report only, which may be in
English or in Danish. However, a program that implements the solver described in the
report must also be delivered. The program can be used to check the correctness of the
solutions discussed.

The grade of the project will contribute to 40% of the final grade of the course. There
is no external censorship on the project.

Note 2 Additional material to the project description, like input data, is available on
the web at:
http://www.imada.sdu.dk/~marco/DM204/. Corrections or updates to this project de-
scription or to the web page above will be posted in the announcement list of the Black-
board system.

Note 3 Submission. An archive containing the electronic version of the written report
and the source code of the program must be handed in through the Blackboard system
before 14:00 of Monday, June 19, 2009. This is the procedure:

- go at the course page in the Blackboard system;

- choose ”Exam Project Submission” in the menu on the left;

- fill the form and conclude with submit;

- print and keep the receipt (there will be a receipt also per email).

See Appendix C for details on how to organize the electronic archive. Reports and
codes handed in after the deadline will generally not be accepted. System failures,
illness, etc. will not automatically give extra time.

2 Problem Description

The following problem arises in several related variants in the manufacturing industry,
whenever items are to be moved by robots around a set of machines to receive some
kind of treatment. In the anodizing plant of the Danish company Anodize Efficiently,
items are metal components, robots are cranes that move the components and machines

1



DM204 – Fall 2009 Exam Project

Figure 1: The layout of the anodizing plant at Anodize Efficiently.

are tanks filled with different fluids, at different acidity and temperatures. The plant
of Anodize Efficiently consists of 57 separate tanks of equal dimensions arranged in
sequence in a process line and of a buffer line.

Each aluminum component has to go through a predefined set of tanks in a par-
ticular order to acquire the desired characteristics. Each visit of a component to a tank
defines a stage, and a series of stages in some order defines a recipe or a treatment program.
Each stage is determined by the tank number, the minimum and maximum treatment
times, and other data concerning the specific processing occurring in the tank.

Components with the equal recipe are grouped together and mounted on bars that
fit into the tanks. When a bar is ready to be processed it is placed in a buffer line next
to the process line where tanks are disposed. Figure 1 gives an overview of the overall
anodizing plant.

Bars are moved around the plant by a set of cranes, or hoists. There are two cranes
operating the buffer line. One takes new bars from the buffer line into the process line,
and the other takes processed bars out of the process line and back to the buffer line.
There are three cranes operating the process line, each handling about one third of the
line and overlapping on some tanks with the cranes next to it. The tanks where they
overlap are called exchange tanks. In the beginning of the operations each crane stays in
a starting position that is the same where it ended in the previous operating period.

Anodize Efficiently wants to automate the control of the anodizing plant. More
precisely, there are two kinds of decisions that may be controlled: (i) the dispatching
that indicates which is the next bar to be moved from the buffer line into the system,
and (ii) the hoist scheduling that determines the lifting, sinking and carrying times of
the bars through the process line. These decisions have strong interdependencies and
hence they must be considered together. The focus can be restricted to the process line
and to the three cranes that operate it, since the other two cranes are for most of the
time unused and can always accomplish the service requirements of the process line.
Thus, the operations of the system can be controlled by deciding a schedule from which
both dispatching and hoist scheduling can be deduced. It is enough that the schedule
indicate the starting time for each operation of the cranes. A crane operation must then
be defined by indicating: the type, lift, sink or move; the tanks involved (initial and
final); and the specific bar involved. In a schedule, the dispatching decision can be
determined by the bar that has to be moved away from the first tank into the process
line.

In order to be feasible a schedule must satisfy a number of constraints. They can be

2



DM204 – Fall 2009 Exam Project

distinguished in two types: constraints that affect the cranes and constraints that affect
the bars.

Figure 2: Left: Two colliding cranes. Right: The collision is avoided by postponing one
of the crane operations, extending the bars stay in a tank.

Crane Constraints The following are physical constraints imposed on the cranes.

• Blocking In the process line there are no intermediate buffers. Therefore bars can
be moved out of a tank only if the next tank is free.

• Crane speed Cranes have a limited speed to travel from one tank to another. This
speed takes into account accelerations and decelerations.

• Lift and sink time Once arrived at the tank, the cranes take a certain amount of time
to lift a bar from the tank and a certain amount of time to sink the bar into the
tank. These times may vary according to bar and tank as they may include times
for dripping the bar or for heating and cleaning color tanks.

• Waiting A crane cannot wait when handling a bar. Once a crane has been assigned
to pick up a bar and move it to the next tank it has to do so without interruption.
Once a crane has lowered a bar into its tank it is finished with that bar, and it is
in a lowered position ready to lift another bar, or the same bar again. This means
that it does not lift empty, when moving without a bar, it stays down, ready to lift
the new bar as soon as it reaches its position.

• Operating area and Safety distance The three cranes operate about a third of the
process line each and there are few tanks that can be served by two cranes (see
Figure 1). In this area, cranes cannot pass each others and must maintain a distance
above a safety limit (see Figure 2).

Bar Constraints The following are the constraint is imposed to the bars by the recipe.

• Unique processing and no preemption A bar can only be in one tank at a time and
no more than one bar can be in one tank at the same time. A treatment cannot be
interrupted and restarted before it is finished.

• Minimum and Maximum time The duration of the stay in a tank must strictly adhere
to the minimum and maximum duration defined in the recipe, otherwise the part
is damaged and must be discarded.

3



DM204 – Fall 2009 Exam Project

All these constraints are strict, in the sense that a violation of any of them causes the
waste of the bar.

The anodizing plant of Anodize Efficiently operates without interruptions from Sun-
day night to Friday night. During this time there is a constant flow of bars and the
system is prepared to work with on line decisions, that is, a different schedule can be
issued and put into operation each time a new bar arrives in the buffer line. The interest
of the managers is in maximizing the throughput of bars, that is, the output rate.

There are two sets of data available for the problem described. The snapshot in-
stance collects data of an off-line problem with 10 bars waiting in the buffer line at the
beginning and no more bars arriving. This instance should be used to validate a solver
and check its feasibility. Observations at the plant revealed that this is about the number
of bars that are in the buffer whenever a new decision has to be taken.

The one-week instance provides, instead, data for the whole week with bars arriving
at different times.

3 Your Task

Your task is the following:

• Model the problem as a scheduling problem, using the terminology and the clas-
sification presented in the course, and defining mathematically the variables, the
constraints and the objectives. If this is possible, find a mixed integer program-
ming (MIP) formulation for the off-line problem, that is, the one defined by the
snapshot instance.

• If a MIP model is produced, write a ZIMPL program for it and solve the snapshot
instance.

• If the MIP formulation turns out to be infeasible either in modelling terms or
in terms of computation times, try using other approaches of your choice (e.g.,
constraint programming, heuristics) to achieve at least a feasible solution.

• If a feasible solution has been obtained solve the one-week instance.

• Analyze and discuss experimental results on the one-week instance.

It is not necessary to accomplish all the points above to achieve the highest grade in
the project.

4 Remarks

Remark 1 The following criteria will be kept in consideration in the evaluation:

• Good model structure, keeping the model as simple as possible.

• The quality of the solution found and the solution time.

• Clear reporting with focus on the relevant key performance.

4



DM204 – Fall 2009 Exam Project

Remark 2 If you find issues that are not specified in full detail make your own as-
sumptions, i.e., try to guess what is probably happening in practice, describe the way
how you suggest the issue should be handled, and formulate the models according to
your version of the anodizing plant problem.1

Few issues have been purposely left out from the description but are present in
practice. Tanks are grouped according to type of treatment and a stage in the recipe can
be accomplished in any of the tanks that offer the treatment required. Maximizing the
throughput is not the only criterion to evaluate a schedule. There might be priorities
assigned to the bars or due dates and deadlines. Finally, it might be necessary to avoid
that some bars remain too long in the buffer line. These issues should not be considered
in the project.

Remark 3 In case the solution is found by exact methods, the source code of the model
must be delivered and it must be stated which program is used to solve it (e.g., CPLEX,
SCIP, GECODE, etc.). Only freeware software is allowed. For heuristic algorithms, the
programs must output the solution in a reasonable amount of time. Solutions must be
written in a file in text format as described in Appendix B.

Remark 4 The total length of the report should not be less than 10 pages and not be
more than 15 pages, appendix included (lengths apply to font size of 11pt and 3cm
margins). Although these bounds are not strict, their violation is highly discouraged.
Do not include source code in the report.

Acknowledgments This document is based on the Master thesis of Jacob Skov, IMADA,
SDU, Odense, 2007.

1This situation is very typical in practice. In the meetings with the company, the engineers might have
forgotten to tell some details that then become necessary while modelling the problem. Often for reasons
of time, these issues must be resolved by making some additional reasonable assumptions. Hopefully, then
practitioners agree. Otherwise something must be changed.

5



DM204 – Fall 2009 Exam Project

Appendix A Instance Format

There are 2 instances, a small one for testing purposes and a large one taken from real
life data. In the instances bars are identified by an identity number from 1 to n and
tanks by an identity number from 1 to m. Tank 1 and tank m are the entering tank and
the leaving tank. All times are expressed in seconds starting from 0 when the first bar
arrives in the system. Each instance is composed by 4 text files. In the following we
describe the content and the format of these files.

cranes.txt for each of the three cranes, a line indicating in the order:

• the crane identifier number

• the first tank covered

• the last tank covered

• the tank on which the crane is positioned at the beginning of the schedule

followed by a matrix indicating the time distances between each pair of the tanks
covered. In each matrix, the tanks in the columns and in the rows run from the
first tank to the last tank covered by the crane.

Example:

1 1 17 5
0 6 8 9 10 10 11 12 13 13 14 15 15 16 17
6 0 6 8 9 10 10 11 12 13 13 14 15 15 16
8 6 0 6 8 9 10 10 11 12 13 13 14 15 16
9 8 6 0 6 8 9 10 10 11 12 12 13 14 15
...

bars.txt the list of bars with arrival time in the buffer and with output time from the
last tank of its recipe that occurred in practice. Each row of data comprises:

• bar number;

• time of arrival in the buffer;

• output time (this is the time recorded by Anodize Efficiently. It can be used
for comparisons, although they are not exactly based on the same problem
specifics);

Example:

1 0 4835
2 423 5046
3 697 8312
4 1034 9550
5 1283 9941
6 1744 12600
7 2349 7513
8 2826 11317
...

6



DM204 – Fall 2009 Exam Project

recipes.txt for each bar a recipe is reported indicating the itinerary of the bar through
the process line. Each line reports:

• the bar number;

• the stage number going from 1 to ai, where ai is the number of tanks the bar
has to visit;

• the identifier of the tank to be visited in the corresponding stage;

• the minimal duration of the stay at the tank;

• the maximal duration of the stay at the tank;

• the sink time;

• the lift time;

Examples:

1 1 1 0 0 14 20
1 2 3 2 6 14 13
1 3 3 5 10 14 13
...
1 18 57 0 0 14 20
2 1 1 0 0 14 19
2 2 5 3 14 14 13
2 3 3 3 14 14 13
2 4 4 5 55 14 13
...

Note that the recipe includes the arrival buffer and the exit buffer. The minimal
and relative times in this cases are to be ignored as well as the sink and the lift
times respectively.

The following data must be assumed implicitly:

Tanks: there are 57 tanks, ordered from 1 to 57. Some tanks are never used.

Minimal safety distance between cranes: 2617 mm.

Originally the large instance is in XML format. A JAVA application for reading
this format and preprocessing data is made available together with the instance files
mentioned above. The application makes it possible to change easily the format of the
files described above, in case needed.

Appendix B Solution Format

In order to check the validity of the results reported, the program submitted must output
the solution in a text file when finishing.

The file must report the operations of the cranes. Each change in the status of one of
the cranes is documented by a line. Precisely, each line of the solution file reports:

• the identifier of the crane;

7



DM204 – Fall 2009 Exam Project

• one among UP, DOWN, MOVE to indicate which operation is performed

• the bar that is handled (-1 if the operation does not involve a specific bar);

• the stage of the bar handled (-1 if the operation does not involve a specific bar);

• the starting tank;

• the final tank;

• the starting time of the operation.

Example

1 MOVE -1 -1 5 1 0
1 UP 1 1 1 1 10
...
2 MOVE -1 -1 22 16 30
2 UP 1 1 16 16 41
...

Appendix C Electronic Submission

The electronic submission must be organized in an archive that expands in a main
directory named with your full CPR number and with content

<CPR-NUM>/README
<CPR-NUM>/report/
<CPR-NUM>/src/
<CPR-NUM>/zimpl/

The file README contains the instructions for compiling and running the solver. The
directory src contains the sources which may be in C, C++, JAVA or other languages. If
needed a Makefile can be included either in the root directory or in src. After compila-
tion the executable must be placed in src. For JAVA programs, a jar package can also
be submitted. The directory zimpl contains models to be interpreted by ZIMPL.

Programs must work on IMADA’s computers under Linux environment and with
the compilers and other applications present on IMADA’s computers. Students are
free to develop their program at home, but it is their own responsibility to transfer the
program to IMADA’s system and make the necessary adjustments such that it works at
IMADA.2

2Past issue: make sure the JAVA compiler and virtual machine are the ones you intend to use (check
the path: ls -l /etc/alternatives/javacpath); in C, any routine that uses subroutines from the math.c
library should be compiled with the -lm flag – eg, cc floor.c -lm.

8


