DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 1
Introduction to Scheduling: Terminology,
Classification

Marco Chiarandini

Scheduling
Complexity Hierarchy

Outline

1. Course Introduction

2. Scheduling
Problem Classification

3. Complexity Hierarchy

Outline

Course Introduction
Soheduiing

omplexity Hierarchy

1. Course Introduction

2. Scheduling

3. Complexity Hierarchy

roduction

Course Presentation

Communication media
o Black Board (BB). What we use:

o Mail

@ Announcements

o Course Documents (for Photocopies)
o Blog — Students’ Lecture Diary

o Electronic hand in of the exam project

@ Web-site http://www.imada.sdu.dk/ marco/DM204/
@ Lecture plan and slides
o Literature and Links

@ Exam documents

o Schedule

Third quarter 2008
Tuesday 10:15-12:00
Friday 8:15-10:00

| Fourth quarter 2008
Wednesday ~ 12:15-14:00
Friday 10:15-12:00

® ~ 27 lectures

Evaluation

o Final Assessment (10 ECTS)
o Oral exam: 30 minutes + 5 minutes defense project
meant to assess the base knowledge
o Group project:
free choice of a case study among few proposed ones
Deliverables: program + report
meant to assess the ability to apply

@ Schedule: Project hand in deadline + oral exam in June

Course Content

@ General Optimization Methods
o Mathematical Programming,
o Constraint Programming,
o Heuristics
o Problem Specific Algorithms (Dynamic Programming, Branch and
Bound)
@ Scheduling
o Single and Parallel Machine Models
o Flow Shops and Flexible Flow Shops
@ Job Shops
o Resource-Constrained Project Scheduling
@ Timetabling

Course Introduction
St

Course Material

o Literature
B1 Pinedo, M. Planning and Scheduling in Manufacturing and Services
Springer Verlag, 2005
B2 Pinedo, M. Scheduling: Theory, Algorithms, and Systems Springer
New York, 2008
B3 Toth, P. & Vigo, D. (ed.) The Vehicle Routing Problem SIAM
on Discrete Mathematics and Applications, 2002

o Slides

Course Goals and Project Plan

Course Introdu
Scheduling

How to Tackle Real-life Optimization Problems:
@ Formulate (mathematically) the problem
o Model the problem and recognize possible similar problems
@ Search in the literature (or in the Internet) for:

o complexity results (is the problem N P-hard?)
o solution algorithms for original problem
o solution algorithms for simplified problem

o Design solution algorithms
o Test experimentally with the goals of:

o Interval Scheduling, Reservations o Class exercises (participatory) o configuring
o Educational Timetabling o tuning parameters
o Workforce and Employee Timetabling o comparing
o Transportation Timetabling o studying the behavior (prediction of scaling and deviation from
@ Vehicle Routing optimum)
o Capacited Vehicle Routing
o Vehicle Routing with Time Windows
o rreducion comepiicion o
The problem Solving Cycle Comlacty Werehy Outline Comelay Hlreshy Scheduling o

The real
problem

Modelling ~}

Quick Solution:
Heuristics

Design of
good Solution
Algorithms

Experimental
Analysis

Mathematical
Model

Algorithm
Implementation

1. Course Introduction

2. Scheduling

3. Complexity Hierarchy

o Manufacturing
s Project planning
o Single, parallel machine and job shop systems
o Flexible assembly systems
Automated material handling (conveyor system)
o Lot sizing
 Supply chain planning
@ Services

= different algorithms

Problem Classification

Problem Definition

Constraints
—_—

Objectives

Problem Definition

Problem Classification

s.
Complexity Hierarchy

Visualization

Scheduling are represented by Gantt charts

@ machine-oriented

wa (3 T s

Given: a set of jobs J = {/1.....,.J} that have to be processed Ma
by a set of machines M = {M,..., M,,}
Find: a schedule, M3
i.e., a mapping of jobs to machines and processing times)) .))
subject to feasibility and optimization constraints. ! ! ' ! ! ume
0 5 10 15 20
Notation: o or job-oriented
: jobs

m, i, h machines

Courna Introduction Course Introduction Coursa Introduction

schading Prablem Classification scbuding " problem Clssfcaion Scheduting ™" problem Classifcation

Data Associated to Jobs

@ Processing time p;;
@ Release date r;

@ Due date d; (called deadline, if strict)
o Weight w;

@ A job J; may also consist of a number n; of operations
0j1,0ja,...,0jy, and data for each operation.

@ Associated to each operation a set of machines ji;; C M

Data that depend on the schedule (dynamic)
o Starting times S,
o Completion time C;;, C;

Problem Classification

A scheduling problem is described by a triplet a | 3| ~.
@ o machine environment (one or two entries)
o 3 job characteristics (none or multiple entry)
o objective to be minimized (one entry)

[R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979)
ing and a

and ion in i

survey, Ann. Discrete Math. 4, 287-326.]

a | B |« Classification Scheme

Machine Environment aaz | Bi-..Bis |4
o single machine/multi-machine (a1 = as = 1 or ag = m)
@ parallel machines: identical (1 = P), uniform p;/v; (a1 = Q),
unrelated p;/vi; (a1 = R)
@ multi operations models: Flow Shop (a; = F), Open Shop
(a1 = 0), Job Shop (a; = J), Mixed (or Group) Shop (a; = X)

Flexible Flow Shop
(a=FFc)

Single Machine Open, Job, Mixed Shop

Course Introduction

o | B~ Classification Scheme 7% e

Problem Classification

Job Characteristics ez | Bre.Pis |
o (3 = prmp presence of preemption (resume or repeat)
@ (3, precedence constraints between jobs (with a = P, F)
acyclic digraph G = (V, A)
o f = prec if G is arbitrary
o (2 = {chains, intree, outtree, tree, sp-graph}
@ (33 = r; presence of release dates
© (34 = p; = p preprocessing times are equal
o (5 = d; presence of deadlines)
o 85 = {s-batch, p-batch} batching problem
© (3 = {4, 5,4} sequence dependent setup times

Course Introduction
Scheduling

a | B |~ Classification Scheme &= e

Problem Classification

Job Characteristics (2) ajay | Br... b |y
@ fds = brkdwn machines breakdowns

@ g =
® 319 = prmu permutation flow shop

1 = block presence of blocking in flow shop (limited buffer)

o (12 = nwt no-wait in flow shop (limited buffer)

M; machine eligibility restrictions (if a = Pm)

o (s = recre Recirculation in job shop

aurse Introduction

Scheduling

a | B |~ Classification Scheme <% e

Problem Classification

Objective (always f(C})) a1z | B1afsBs |y

o Lateness L; = C; — d
o Tardiness T; = max{C; — d;,0} = max{L;,0}

o Earliness E; = max{d, — C;,0}
o Unit penalty U; — { PR

Problem Classification

« | 3|~ Classification Scheme

Objective a0 | B BaBsBa |y
o Makespan: Maximum completion Cyqr = max{C}, ...,Cy}
tends to max the use of machines
o Maximum lateness Lyq, = max{Ly, ..., L.}
@ Total completion time 3~ C; (flow time)
@ Total weighted completion time > w; - C;
tends to min the av. num. of jobs in the system, ie, work in
progress, or also the throughput time
@ Discounted total weighted completion time Y- w;(1 — e~
@ Total weighted tardiness Y w; - T}
@ Weighted number of tardy jobs }~ w;U;

)

All regular functions (nondecreasing in C1, ..., C,,) except E;

G roduction
Schedulim
Complexity Hisrarchy

a | B |~ Classification Scheme

Other Objectives a0z | Bifafsba |y
Non regular objectives

o Min 3 wjEj + 3 w”;T; (just in time)

o Min waiting times

o Min set up times/costs

@ Min transportation costs

Course Introduction
Scheduling ,

Exercises

Gate Assignment at an Airport

@ Airline terminal at a airport with dozes of gates and hundreds of
arrivals each day.

o Gates and Airplanes have different characteristics
o Airplanes follow a certain schedule

@ During the time the plane occupies a gate, it must go through a
series of operations

@ There is a scheduled departure time (due date)

o Performance measured in terms of on time departures.

Course Introduction

cheduling

. roblem Classification
Exercises Comelunty Hiasechy
Scheduling Tasks in a Central Processing Unit (CPU)

o Multitasking operating system

o Schedule time that the CPU devotes to the different programs

@ Exact processing time unknown but an expected value might be
known

o Each program has a certain priority level

o Minimize the time expected sum of the weighted completion times
for all tasks

@ Tasks are often sliced into little pieces. They are then rotated such
that low priority tasks of short duration do not stay for ever in the
system.

Course Introduction
Scheduling
Compleity Hisrar

by

Exercises

Paper bag factory

@ Basic raw material for such an operation are rolls of paper.

@ Production process consists of three stages: (i) printing of the logo,
(ii) gluing of the side of the bag, (iii) sewing of one end or both ends.

@ Each stage consists of a number of machines which are not
necessarily identical.

o Each production order indicates a given quantity of a specific bag
that has to be produced and shipped by a committed shipping date
or due date.

o Processing times for the different operations are proportional to the
number of bags ordered.

o There are setup times when switching over different types of bags
(colors, sizes) that depend on the similarities between the two
consecutive orders

o A late delivery implies a penalty that depends on the importance of
the order or the client and the tardiness of the delivery.

Solutions

Distinction between
o sequence
@ schedule

o scheduling policy

Feasible schedule
A schedule is feasible if no two time intervals overlap on the same
machine, and if it meets a number of problem specific constraints.

Optimal schedule
A schedule is optimal if it is feasible and it minimizes the given objective.J

Course Introduction
Scheduling

" Problem Classification
Complexity Hierarchy

Classes of Schedules
Semi-active schedule
A feasible schedule is called semi-active if no operation can be completed

earlier without changing the order of processing on any one of the machines.
(local shift)

Active schedule

A feasible schedule is called active if it is not possible to construct another
schedule by changing the order of processing on the machines and having at
least one operation finishing earlier and no operation finishing later. (global
shift without preemption)

Nondelay schedule

A feasible schedule is called nondelay if no machine is kept idle while an
operation is waiting for processing. (global shift with preemption)

@ There are optimal schedules that are nondelay for most models with
regular objective function

@ There exists for Jm)||y (v regular) an optimal schedule that is active.

@ nondelay = active but active #% nondelay

Outline

1. Course Introduction

2. Scheduling

3. Complexity Hierarchy

Course Introduction
Soheduling
Complexity Hierarchy

Complexity Hierarchy

Reduction

A search problem II is (polynomially) reducible to a search problem II’
(IT — II') if there exists an algorithm A that solves II by using a
hypothetical subroutine S for II" and except for S everything runs in
polynomial time. [Garey and Johnson, 1979]

NP-hard
A search problem I1" is NP-hard if

1 itisin NP

2. there exists some NP-complete problem TT that reduces to TI

In scheduling, complexity hierarchies describe relationships between
different problems.

Ex 150 — 1S u,C;

Interest in characterizing the borderline: polynomial vs NP-hard problems

Problems Involving Numbers

Partition
@ Input: finite set A and a size s(a) € Z* for each a € A
@ Question: is there a subset A’ C A such that
Ssay= > sta)?
acA’ acA-A"
3-Partition
o Input: set A of 3m elements, a bound B € Z*, and a size
s(a) € Z* for each a € A such that B/4 < s(a) < B/2 and such
that 3, 4 s(a) = mB
@ Question: can A be partitioned into m disjoint sets Ay, ..., A,

such that for 1 <i <m, ZusA‘ s(a) = B (note that each A; must
therefore contain exactly three elements from A)?

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 2

Marco Chiarandini

Complexity Hisrarchies

Outline

1. Complexity Hierarchies

Complexity Hierarchies

Outline

1. Complexity Hierarchies

Polynomial time solvable problems

SINGLE MACHINE PARALLEL MACHINES SHOPS
1rpy = Lprec| 05 [P2 | py = Lpree | L |02] Conne
1| ri.prmp | £.C5 P2p; = Lprec| £.C;
1] tree |y Om | ry.prmp | Luws

Pm | p; = Ltree | Coe
1 pree | Luas P | prinp.tree | Cuas | F2 | block | Cuuax

1| prmppree | Lnas | Pm | ps = Louttrec | 5 C; | F2 | nut | o
Pm | p; = Lintree | L,

A P | prmp.intree | Luw | Fm | py =p; | 3265

17y prmp | SU; Fu | py =y | Lines

rp =1 Swl; Q2| prmppree| Coux | Finlpg =p; | SU;
Q2 vy, prmp,pree| Lo

Vg =1 SwyTy T2 || G

w gy = 1M;
Qm | rip=1]50;
Qm | primp | 3-C;

) [poe

By = 1| Lo
Q| primp | S,
Qu|py = 1[5 wU;
Qulpy =11 SuyT;

Rm|| T,
Ro | 75, prmp | Luax

NP-hard problems in the ordinary sense

SINGLE MACHINE | PARALLEL MACHINES SHOPS

IS wt; () P2|| Cunax (%) 02| prmp | €5
1l rprmp| S wiUs (%) | P2 rjprmp | X C5
P2|| Y w;Cy 03 || Cmax

ST () P27y prmp | S Uy 03| prmp | 5 w;Uy

Pm | prmp | 3w, C;

Qm || ZwiCi ()

Rm |1, |
Rm || S

max (¥)
U; (%)
Rm | prmp | ¥ w,U;

Strongly NP-hard problems

SINGLE MACHINE | PARALLEL MACHINES SHOPS

10| o P2 | chains | Cuuax
P2 | chains | £ G

| G

73, prmp | Conas

1) P2 | prmp.chains | Gy 0
1| P2y =1,trec| Y uw,C, prmp | Y0y
1 Lunax
1] R2| prmp.chains | Con Prmp | Luae
1] 5
1p; =1Lpree| CwC; F3| Cuax

F3 | primp | Cuuae
1175 | L F3 | nwt | Cune
1 |0, 02 1) | o
11p; =L chains | Uy 02305

02| prmp | T w,C;
Lir 2T, 02| Lypae
1] pj = L chains | S T;
LIS Ty 03| prmp | 52 C;

J2 | rere | Cunax

I3 pig = 1,rere | Cuuax

http://www.mathematik.uni-osnabrueck.de/research/OR/class/

Complesity Hisrarchies

Complexity Hierarchy

y reductions for machine

Complexity Hisrarchiss

Complexity Hierarchy

Elementary reductions for regular objective functions

Ponl| Lo 117 prmp| Lma

. Scheduling . Scheduling com/peRT
Outline Miath Programming Outline frivey- SN <3
DMP204
SCHEDULING,
TIMETABLING AND ROUTING
1. Scheduling 1. Scheduling
CPM/PERT
Resource Constrained Project Scheduling Model
Lecture 3
RCPSP and Mixed Integer Programming
2. Mathematical Programming 2. Mathematical Programming
Introduction
Marco Chiarandini Solution Algorithms
. . Scheduling com/pERT . . Scheduling com/pERT . . Scheduling cPm/peRT
Project Planning Math Programming Repdr Project Planning Math Progran Rerdr Project Planning Schedulin cem/p
Gantt Chart
Milwaukee General Hospital Project Milwaukee General Hospital Project ,
. immediate
T = = & uidinteral components = 2 o 2 o 2 o .
5 I z 5 5 Moty roof andiflaor - s o s L a B
T Conetruct cotetion stefi ; N € Constructcollecton stack A 2 2 a 2 a o
LT S = + £ ouldhighzemperature bumer c 4 PR 6 10 | 2 [Scks
| resties crrosEE B 3 £ sta poluton controlsystem c s a 7 0 1 e
= o B O e e = G installar pollton devce oe s s 13 s 13 0
s o 2 H inspect and test 7 : ER U R CRN U
. “Expected project duration 13 T 1@ % 3 SR
Time Period
. . Schedulin cpm/pERT RCPSP Scheduling cPM/PERT . Schedul cPm/pERT
Viath Programming RCPYP Miath Programming RCPSP Viath Programming i
Project Planning Resource Constrained Project Scheduling Model Modeling
Given:
o activities (jobs) j =1,....,n
o renewable resources i .m
. " @ amount of resources available R; Assignment 1
Milwaukee General Hospital Projec "5 Exmases Vartant it
immediste ® processing times p; @ A contractor has to complete n activities.
Actun Predecessor e Est 1 st | et sick s m b G
. tCv s lo ;[o o o amount of resource used r; o The duration of activity j is p;
5 35 T T T T R o o precedence constraints j — k o each activity requires a crew of size IV
€ < a4 s 4| o [1a7 i
& rstwodondons DE s s : e | b o [aadinme Further generalizations @ The activities are not subject to precedence constraints.
B re 2 5 s om0 lilasonn - -
= ST o Time dependent resource profile R,(f) @ The contractor has W workers at his disposal
given by (¢! R!') where 0 =t! <2 <...<t™ =T o his objective is to complete all n activities in minimum time.
Disjunctive resource, if R(t) = {0,1}; cumulative resource,
otherwise
o Multiple modes for an activity j
processing time and use of resource depends on its mode m: pj,
Tjkm.-
s 7 s
Scheduling. cpm/pERT cpm/pERT Schedu cem/pERT
Vrath Programming crdp Repsn e crdp

Assignment 2
@ Exams in a college may have different duration.
@ The exams have to be held in a gym with I¥ seats.
@ The enrollment in course j is W; and
o all W} students have to take the exam at the same time.

o The goal is to develop a timetable that schedules all n exams in
minimum time.

o Consider both the cases in which each student has to attend a single

exam as well as the situation in which a student can attend more
than one exam.

Assignment 3

o In a basic high-school timetabling problem we are given m classes
ClieetiCm,

© h teachers aj,...,a; and

o T teaching periods t, ..., 7.

o Furthermore, we have lectures i = 11, ... 1,,.

@ Associated with each lecture is a unique teacher and a unique class.

o A teacher a; may be available only in certain teaching periods.

@ The corresponding timetabling problem is to assign the lectures to
the teaching periods such that
@ each class has at most one lecture in any time period
@ each teacher has at most one lecture in any time period,
@ each teacher has only to teach in time periods where he is available.

Assignment 4
A set of jobs Jy...

Job J; consists of n; tasks (I =

/o are to be processed by auditors Ai,..., Am.

There are precedence constraints iy — iz between tasks i1, iz of the same job.

Each job J; has a release time 7, a due date d; and a weight w;.

Each task must be processed by exactly one auditor. If task i is processed by
auditor Ay, then its processing time is pix.

Auditor Ay, is available during disjoint time intervals s/, 1] (v

. m)
with 1% < s for v =1,...,mj — 1

Furthermore, the total working time of Ay is bounded from below by H;. and
from above by H, with 1~ < H;F (k=

m).

We have to find an assignment a(i) for each task i = 1,

o= Y7 n toan
auditor A ;) such that

o each task is processed without preemption in a time window of the
assigned auditor

the total workload of Ay is bounded by H, and Hf for k
the precedence constraints are satisfied,

all tasks of J; do not start before time 7, and

the total weighted tardiness -, w; T} is minimized,

1.,

ccee

Outline

1. Scheduling

2. Mathematical Programming

Scheduling
Math Programming

Mathematical Programming

Linear, Integer, Nonlinear

program = optimization problem

min f(z)

gi(x) =0, i=1,2.. .k
hi(z) <0, j=1,2,...,m
x € R"

general (nonlinear) program (NLP)

min ¢’z min e
. Av=a
~ Bx<b
< <
<y =20
(e rm) (wezm)

(z € {0,1}")

linear program (LP) integer (linear) program (IP, MIP)

Introduction
Solution Algorith

Linear Programming

Linear Program in standard form

min eyt + oy + .. Culy

st ana +apa + ..+ aya, = by min Tz
a2 @1 + a2rs + ...+ az,xy, = by Az =b
: z>0

az®y +azrs + ...+ agpln =
Z1, @,y T > 0

Scheduling

Introdu
Math Programming s

elution Algorithma

Historic Roots

1939 L. V. Kantorovitch: Foundations of linear programming (Nobel
Prize 1975)

George J. Stigler's 1945 (Nobel Prize 1982) “Diet Problem": “the

first linear program”

find the cheapest combination of foods that will

satisfy the daily requirements of a person

Army's problem had 77 unknowns and 9 constraints.
http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

o 1947 G.B. Dantzig: Invention of the simplex algorithm

Founding fathers:
o 1950s Dantzig: Linear Programming 1954, the Beginning of IP
G. Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
o 1960s Gomory: Integer Programming

Scheduling

Introducti
Math Programming s

LP Theory

@ Max-Flow Min-Cut Theorem
The maximal (s,t)-flow in a capaciatetd network is equal to the
minimal capacity of an (s,t)-cut

o The Duality Theorem of Linear Programming

max Tz min y7b
Az <b yTA> T
x>0 y>0

If feasible solutions to both the primal and the dual problem in a
pair of dual LP problems exist, then there is an optimum solution to
both systems and the optimal values are equal.

Scheduling
Math Programming

introduction
Solution Algerithms

LP Theory

@ Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow)

@ The Duality Theorem of Integer Programming

max min 37
yTA> T
y>0

yezn

I

Introduction

Math Programming. Selunion Algerithm

LP Solvability

@ Linear programs can be solved in polynomial time with
the Ellipsoid Method (Khachiyan, 1979)
Interior Point Methods (Karmarkar, 1984, and others)

@ Open: is there a strongly polynomial time algorithm for the solution
of LPs?

o Certain variants of the Simplex Algorithm run - under certain
conditions - in expected polynomial time (Borgwardt, 1977...)

o Open: Is there a polynomial time variant of the Simplex Algorithm?

Schedulin Introduction
Math Programming Soiuion Algorithms

IP Solvability

@ Theorem
Integer, 0/1, and mixed integer programming are NP-hard.
o Consequence
o special cases
o special purposes
o heuristics

Sch Introduction
Math Programming Solution Algorithms

Solution Algorithms

@ Algorithms for the solution of nonlinear programs
@ Algorithms for the solution of linear programs
o 1) Fourier-Motzkin Elimination (hopeless)
o 2) The Simplex Method (good, above all with duality)
o 3) The Ellipsoid Method (total failure)
o 4) Interior-Point/Barrier Methods (good)
@ Algorithms for the solution of integer programs
o 1) Branch & Bound
o 2) Cutting Planes

Math Programming Solution Algerithma

Nonlinear programming

@ lterative methods that solve the equation and inequality systems
representing the necessary local optimality conditions.

@ Steepest descent (Kuhn-Tucker sufficient conditions)
@ Newton method

@ Subgradient method

Math Programming Selution Alorithms

Linear programming

The Simplex Method

o Dantzig, 1947: primal Simplex Method
Lemke, 1954; Beale, 1954: dual Simplex Method
Dantzig, 1953: revised Simplex Method

Underlying Idea: Find a vertex of the set of feasible LP solutions
(polyhedron) and move to a better neighbouring vertex, if possible.

Scheduling Introduction
Math Programming Solution Algorithms

The simplex method

min/max + x1 + 3x2 %
@) - x2<=0
(2) - x1 - x2 <=-1 \,‘\
(3) - xL+ x2 <=3 s
(4) + x1 <=3 & (5
(5) + x1 + 2x2 <= 9
@]
<
lo

Math Programming d

Selution Algorithms

The simplex method

min/max + x1 + 3x2
) - o
(2) - x1 - 1 N
(3) - =1 + 3 S
(4) + x1 3 9 /05

; ' l\
(5) + x1 + 9

)

Scheduling .
Math Programming Solution Algorithms

The simplex method

Hirsch Conjecture
If P is a polytope of dimension n with m facets then every vertex of P can
be reached from any other vertex of P on a path of length at most m-n

In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.
Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of
an n-dimensional polyhedron with m facets is at most m(log n+1)

Lower bound: Holt, Klee (1997): at least m-n (m, n large enough)

hedulin

Integer Programming (easy) i

introduction
Solution Algorithms

special ,simple" combinatorial optimization problems Finding a:

© minimum spanning tree
o shortest path

@ maximum matching

@ maximal flow through a network
@ cost-minimal flow

°

solvable in polynomial time by special purpose algorithms

Integer Programming (hard) e eremminc

Solution Algorithms

special ,hard" combinatorial optimization problems
o traveling salesman problem
@ location and routing
@ set-packing, partitioning, -covering
® max-cut
@ linear ordering
@ scheduling (with a few exceptions)
o node and edge colouring
°

NP-hard (in the sense of complexity theory)
The most solution iques employ linear pr

Scheduling ntroduction
Math Programming Solution Algorithms.

Integer Programming (hard)

o 1) Branch & Bound
@ 2) Cutting Planes

Branch & cut, Branch & Price (column generation), Branch & Cut &
Price

Introduction
Math Programming Solution Algorithms

Summary

@ We can solve today explicit LPs with
o up to 500,000 of variables and
@ up to 5,000,000 of constraints routinely
in relatively short running times.

@ We can solve today structured implicit LPs (employing column
generation and cutting plane techniques) in special cases with
hundreds of million (and more) variables and almost infinitely many
constraints in acceptable running times. (Examples: TSP, bus
circulation in Berlin)

[Martin Grétschel, Block Course at TU Berlin,
“Combinatorial Optimization at Work”, 2005
http://co-at-work.zib.de/berlin/]

Outline Modeling

DMP204
SCHEDULING,)
TIMETABLING AND ROUTING o Min cost flow
@ Shortest path
Lecture 4

Mixed 1 p . (2) o Max flow
ixed Integer Programming
o Assignment and Bipartite Matching

Marco Chiarandini @ Transportation

© Multicommmodies

Modeling Traveling Salesman Problem Traveling Salesman Problem

Set Covering Set Partitioning Set Packing

S agz; =1 Vi
=1
;€ {0,1}

% Figure 3.2 Solution of the initial LP relaxation.

Figure 3.1 Locations of the 42 cities.

Traveling Salesman Problem Traveling Salesman Problem Traveling Salesman Problem

Figure 3.3 LP solution after three subtour constraints. Figure 3.4 LP solution satisfying all subtour constraints. Figure 3.7 What is wrong with this vector?’
. .
Traveling Salesman Problem Traveling Salesman Problem

minimize ¢’z subject to
0< . <1 forall edges e,
S(a ¢ vis an end of ¢) = 2 for all cities v,

(2. : e has one end in S and one end not in S) > 2
for all nonempty proper subsets S of cities,

SiZ0(X (2 ¢ e has one end in S; and one end not in S;) > 10,
for any comb

Figure 3.9 An optimal tour through 42 cities.
Figure 3.8 A violated comb.

s s
524978 Branching Tree - Run 5 MIP for Scheduling
24,078 Cities et 24,078 Cities
solved by LK-heuristic - solved by LK-heuristic
and prooved optimal - and prooved optimal) o
by branch and cut == by branch and cut @ Formulation for @m|p; = 1|3 h;(C;) and relation with
o transportation problems
10 months of - 10 months of . .
computation on a o computation on a o Formulation of 1|prec| 3 w;C; and Rml|| 32 C; as weighted
cluster of 96 dual - i cluster of 96 dual bipartite matching and assignment problems.
processor Intel Xeon it processor Intel Xeon
2.8 GHz workstations f i g 2.8 GHz workstations @ Formulation of 1[prec| Y- w;C; and how to deal with disjunctive
i constraints
http://www.tsp. § ! http://wuw.tsp.

gatech. edu gatech. edu

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 5
Mixed Integer Programming
Models and Exercises

Model,

‘An Overview of Software for MIP

Outline zisow

1. Models

2. An Overview of Software for MIP

Modele
A Overview of Saftware for MIP

Outline zibop:

1. Models

2. An Overview of Software for MIP

3. ZIBOpt 3. ZIBOpt
Marco Chiarandini
2 s
e e of oftwar for MiP e view of Softuarefor MiP o view of Softwar for MIP
Modeling zior: Modeling zisop™ Traveling Salesman Problem Zeex
@ Min cost flow
@ Shortest path Set Covering Set Partitioning Set Packing
on n
o Max flow min min 3 cja; max Zl €Ty
=
:
o Assignment and Bipartite Matching vi Zluur] =1 Vi Z. ayz; <1 Vi
= = i=
| ;€ {0,1} ;€ {0,1
o Transportation 75 €401} ’ ye 01}
o Multicommmodies
Figure 3.1 Locations of the 42 cities.
Models Modee
B i ot et o Mot o Sfoware for 1P ot st o

Traveling Salesman Problem

LI 1
v 11
18,) 22
k4
22
fe 6
27 2
21 31
5 20/1 s %0
729

Figure 3.2 Solution of the initial LP relaxation.

Traveling Salesman Problem =&

Traveling Salesman Problem

Figure 3.3 LP solution after three subtour constraints.

Figure 3.4 LP solution satisfying all subtour constraints.

Models
Aov Overview of Saftware for MIP

Traveling Salesman Problem o

Figure 3.7 What is wrong with this vector?

todele
i Overview of Softwar for MIP

M
Traveling Salesman Problem o

Figure 3.8 A violated comb.

Modele
A Overview of Software for MIP

Traveling Salesman Problem &

Figure 3.9 An optimal tour through 42 cities.

Models
An Overview of Software for MIP

minimize ¢’z subject to

0 <, <1 forall edges e,

v is an end of ¢) = 2 for all cities v,

(e
(e

: e has one end in S and one end not in S) > 2
for all nonempty proper subsets S of cities,

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

'sw24978 Branching Tree - Run 5

e 24,978 Cities
P solved by LK-heuristic

and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

. 2. : ¢ has one end in S; and one end not in S;) > 10,
ina2(for any comb) http://waw.tsp. http://www.tsp.
gatech.edu gatech.edu
i of Sofowarefor i A Gveriew of Sotvare or MIP. A Gveriew of Sotware for P
MIP for Scheduling zisop Outline ik How to solve MIP programs Z&r

@ Formulation for Qm|p; = 1|3 h;(C;) and relation with
transportation problems

@ Formulation of 1|prec| > w;C; and Rm|| Y C; as weighted
bipartite matching and assignment problems.

o Formulation of 1|prec| 3 w;C; and how to deal with disjunctive
constraints

1. Models

2. An Overview of Software for MIP

3. ZIBOpt

@ Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

@ Use a modeling language to convert the theoretical model to a
computer usable representation and employ an out-of-the-box
general solver to find solutions.

o Use a framework that already has many general algorithms available
and only implement problem specific parts, e. g., separators or upper
bounding.

o Develop everything yourself, maybe making use of libraries that
provide high-performance implementations of specific algorithms.

Thorsten Koch
“Rapid Mathematical Programming”
Technische Universitat, Berlin, Dissertation, 2004

Models
An Overview of Software for MIP

How to solve MIP programs

@ Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

Advantages: easy if familiar with the workbench

Disadvantages: restricted, not state-of-the-art

Models
An Overview of Software for MIP

How to solve MIP programs

o Use a modeling language to convert the theoretical model to a
computer usable representation and employ an out-of-the-box
general solver to find solutions.

Advantages: flexible on modeling side, easy to use, immediate results,
easy to test different models, possible to switch between different state-
of-the-art solvers

Disadvantages: algoritmical restrictions in the solution process, no upper
bounding possible

Models
An Overview of Software for MIP
Zibon

How to solve MIP programs

o Use a framework that already has many general algorithms available
and only implement problem specific parts, e.g., separators or upper
bounding.

Advantages: allow to implement sophisticated solvers, high performance
bricks are available, flexible

Disadvantages: view imposed by designers, vendor specific hence no
transferability,

Models
An Overview of Software for MIP

How to solve MIP programs

o Develop everything yourself, maybe making use of libraries that
provide high-performance implementations of specific algorithms.

specific i and max flexibility

Disadvantages: for extremely large problems, bounding procedures are
more crucial than branching

Models
An Overview of Software for MIP

Modeling Languages

Name URL Solver_sate
s Advanced Integrated Multdimensional Modeling Software winwaimmscom open commercial
avpL A Modeling Language for Mathematical Programming wmamplcom open commercial
Gaws General Algebraic Modeling System rt— open commercial
uxeo Uingo wntindocom fixed commercial
wn open commencial
MixorT Mixed Integer Non-inear Optimizer HanpincetonaduMNPT Open

wost Mosel womduboptinizaioncom fxed commencial
wri Mathematcal Programming Language wommasimssofuarecom open commercial
ouxi Omai — pen commercial
ot Optimization Programming Language wamdogom fxed commercial
GNUMP GNU Mathematical fxed free
e open _free

Thorsten Koch
“Rapid Mathematical Programming”
Technische Universitit, Berlin, Dissertation, 2004

Models
An Overview of Software for MIP

LP-Solvers
CPLEX http://wuw.ilog.com/products/cplex
XPRESS-MP http://www.dashoptimization.com
SOPLEX http://wuw.zib.de/Optimization/Software/Soplex
COINCLP http://uww.coin-or.org
GLPK http://wuw.gnu.org/software/glpk
LP_SOLVE http://lpsolve.sourceforge.net/

“Software Survey: Linear Programming” by Robert Fourer
http://wwy. Lionhrtpub. con/orms/orms-6-06/frsurvey . html

of Software for MIP

Outline

1. Models

2. An Overview of Software for MIP

3. ZIBOpt

Models
A Overview of Software for MIP

ZIBOpt Zimon

@ Zimpl is a little algebraic Modeling language to translate the
mathematical model of a problem into a linear or (mixed-) integer
mathematical program expressed in .Ip or .mps file format which can
be read and (hopefully) solved by a LP or MIP solver.

Scip is an IP-Solver. It solves Integer Programs and Constraint
Programs: the problem is successively divided into smaller
subproblems (branching) that are solved recursively. Integer
Programming uses LP relaxations and cutting planes to provide
strong dual bounds, while Constraint Programming can handle
arbitrary (non-linear) constraints and uses propagation to tighten
domains of variables.

@ SoPlex is an LP-Solver. It implements the revised simplex algorithm.
It features primal and dual solving routines for linear programs and is
implemented as a C++ class library that can be used with other
programs (like SCIP). It can solve standalone linear programs given
in MPS or LP-Format.

T

Identity
Modeling Goal Transiate Model
1o Solver Input

Tanslate Data
to Solver Input

| Collet & |

Wite
Result Report

interpret ‘

Analyze Data Derived Data

Construct
Result Report

H. Schichl. “Models and the history of modeling”.
In Kallrath, ed., Modeling Languages in Mathematical Optimization, Kluwer,
2004.

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 6

Constraint Programming

Marco Chiarandini

Outline

1. Math Programming
Scheduling Models
Further issues

2. Constraint Programming
Introduction

Math Progra

QOutline

1. Math Programming

2. Constraint Programming

Math Programming

Time indexed variables

1r;| S w;C;
Discretize time in t =

-.,1, where [is upper bound

Scheduling Models

Math Programming Scheduling Models

Sequencing variables

Lprec| = w; C;

Real Variables

Disjunctive Programming
1jprec| ¥ w;C;
Disjunctive graph model made of conjunctive arcs A and disjunctive arcs
Select disjunctive arcs such that the grph does not contain a cycle

Scheduling Models

Math Programming

. o _ Variables indicate if j
e €{01) Gl mit=0,..., ! Variables indicate if j zk €4{0.1} jk=1....n preceeds I
starts at ¢ N
beR Variables denote com-
g pletion of job j
z’ =1V Every job starts at one z;=0 Vj=1....n
gt = = Job)
point in time precedence constraints
=1 — x> e .
weowpzpe Vi—ked conjunctive arcs
n -1 . Trj + Tjk = Vik=1,...,nj#k Precedence constraints
Z Z 2. <1 Vi =0, 1 Ct most onde job can
o < =0,..., o . _ ’ -
T smmaxfiop; 0} @ processed in time x> p; vj min processing time
Lo N T fant o>l Gkl=1. . nj Ak kAL AL
. lobs cannot start be- i
20 =0Vj=1,....n, t =0,...,max{r; — 1,0} Tore their relesse dates Precedence constraints @k —x; =pr or a;—akx >p; V(i,j) €I Precedence constraints
no 1 . T - . . n
. - min w;pkr; + w;p; Objective —
win 323 w14 i) Objective POy by min > gy Objective
perid =
. .. b Progamming Scheduline viodel . b Programming Schedulng e . [
Linearizations M PERIIIE o P e Constraint types Motk Progamming Sl Outline ConinPregramiming

How to linearize these non linear functions?
o Disjunctive constraints
o min|a —b|
o min{max(a,b)}

o minmax,_1,__(cTz + d;) piecewise-linear functions

Constraint type Normalized representation
Set partitioning

Set packing

Set covering
Cardinality constraint
Bin packing

Invariant knapsack
Knapsack

Integer knapsack
Variable lower bound
Variable upper bound
Mixed binary constraint
General constraint

X pixi + X rizi <t (or
Ypx+Yav+¥Xn

« binary, y general integer, z a continous variable.
a and b integer numbers; p, g, 7, s real numbers

o Specific domain propagation, preprocessing and cut generation exist
for some of these constraints.
[Achterberg, T. Constraint Integer Programming Department of
Mathematics, Phd Thesis, Technical University of Berlin, Germany, 2007]

1. Math Programming

2. Constraint Programming

Conetraiet Programmening \neroduction

Constraint Programming

Constraint Programming is about a fomrulation of the problem
as a constraint satisfaction problem and about solving it by
means of general or domain specific methods.

Constraint Satisfaction Problengrtessmmio

Introduction

o Input:
@ a set of variables X1, Xa,..., X,
o each variable has a non-empty domain D; of possible values
@ a set of constraints. Each constraint C; involves some subset of the
variables and specifies the allowed combination of values for that
subset.
[A constraint C' on variables X, and X,, C(X;, X,), defines the
subset of the Cartesian product of variable domains D; x D; of the
consistent assignments of values to variables. A constraint C' on
variables X;, X; is satisfied by a pair of values v;, v; if
(vi,v) € C(Xi1, X;)]
o Task:

o find an assignment of values to all the variables
{(Xi=v. X, =vy,..}
e such that it is consistent, that is, it does not violate any constraint
If assignments are not all equally good, but some are preferable this is
reflected in an objective function.

Math Programming

Constraint Programming '"treduction

Solution Process
Standard search problem:
e initial state: the empty assignment {} in which all variables are
unassigned

@ successor function: a value can be assigned to any unassigned
variable, provided that it does not conflict with previous assignments

@ goal test: the current assignment is complete

o path cost: a constant cost for every step

Two fundamental issues:

@ exploration of search tree (of depth n)
@ constraint propagation (filtering)

o at every node of the search tree, remove domain values that do not
belong to a solution
o Repeat until nothing can be removed anymore

~+ In CP, we mostly mean complete search but incomplete search is also
included

Introduction

Constraint Prog

Constraint Propagation ming
Definition
Domain consistency A constraint C' on the variables 1.,z is called

domain consistent if for each variable x; and each value d; € D(x;)
i k), there exist a value d; € D(x;) for all j # i such that
) € C.

o domain consistency = hyper-arc consistency or generalized-arc
consistency

Establishing domain consistency for binary constraints is inexpensive.

For higher arity constraints the naive approach requires time that is
exponential in the number of variables.

Exploiting underlying structure of a constraint can sometimes lead
to establish domain consistency much more efficiently.

ing Introduction
gramming.

Types of Variables and Values <

o Discrete variables with finite domain:
complete enumeration is O(d")

Discrete variables with infinite domains:

Impossible by complete enumeration.

Instead a constraint language (constraint logic programming and
constraint reasoning)

Eg, project planning.

Sj+p; < Sk
NB: if only linear constraints, then integer linear programming

variables with continuous domains

NB: if only linear constraints or convex functions then mathematical
programming

Introduction

Types of constraints

@ Unary constraints
e Binary constraints (constraint graph)

@ Higher order (constraint hypergraph)
Eg, A11diff (), among(), etc.
Every higher order constraint can be reconduced to binary
(you may need auxiliary constraints)

@ Preference constraints
cost on individual variable assignments

Constraint Programming |"troduction

General Purpose Algorithms

Search algorithms
organize and explore the search tree

J

@ Search tree with branching factor at the top level nd and at the next
level (n — 1)d. The tree has n! - d" leves even if only d" possible
complete assignments.

Insight: CSP is commutative in the order of application of any given
set of action (the order of the assignment does not influence)

@ Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each
node in the search tree
The tree has d" leaves.

Backtracking search

depth first search that chooses one variable at a time and backtracks
when a variable has no legal values left to assign.

R ming roducsion

Backtrack Search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var — SELECT-U VARIABLE(VARIABLES[csp],
for each value in ORDER-DOMAIN-VALUES (var, assignment, csp) do
if value is consistent with assignment according to CONSTRAINTS[csp) then
add {var = valuc} to assignment
result « RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

csp)

i g Introduction

Backtrack Search

@ No need to copy solutions all the times but rather extensions and
undo extensions

@ Since CSP is standard then the alg is also standard and can use
general purpose algorithms for initial state, successor function and
goal test.

o Backtracking is uninformed and complete, Other search algorithms
may use information in form of heuristics

General Purpose Backtracking &mmnsimimn, ebeicn

Implemnetation Refinements

1) Which variable should we assign next, and in what order should its
values be tried?

2) What are the implications of the current variable assignments for the
other unassigned variables?

3) When a path fails — that is, a state is reached in which a variable
has no legal values can the search avoid repeating this failure in
subsequent paths?

R g reducion

1) Which variable should we assign next, and in what order should its
values be tried?

Select-Initial-Unassigned-Variable
degree heuristic (reduces the branching factor) also used as tied
breaker

Select-Unassigned-Variable
Most constrained variable (DSATUR) = fail-first heuristic
= Minimum remaining values (MRV) heuristic (speeds up pruning)

Order-Domain-Values
least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

NB: If we search for all the solutions or a solution does not exists, then
the ordering does not matter

Introduction

Cons

2) What are the implications of the current variable assignments for the
other unassigned variables?
Propagating information through constraints

o Implicit in Select-Unassigned-Variable

o Forward checking (coupled with MRV)

@ Constraint propagation (filtering)

o arc consistency: force all (directed) arcs uv to be consistent: 3 a
value in D(v) : ¥ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
i (MAC, Maintaining Arc Consists

Applied repeatedly

o k-consistency: if for any set of k — 1 variables, and for any consistent
assignment to those variables, a consistent value can always be
assigned to any k-th variable.

ing the appropriate level of checking is mostly

an empirical science.

Constraint Programming 1"troduction

Example: Arc Consistency Algorithm AC-3
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, Xa. ..., X,
local variables: queue, a quee of arcs, initially all the arcs

while queue s not empty do
(X;, X;) < REMOVE-FIRST(qucuc)
if REMOVE-INCONSISTENT-VALUES (X, X) then
for each X, in NEIGHBORS[X;] do
add (X, X)) to quenc

function REMOVE-INCONSISTENT-VALUES(X,, X) returns true iff we remove a value
removed — false
for each z in DOMAINLX,] do
if no value y in DOMAINTX;] allows (z,y) to satisfy the constraint between X, and X,
then delete » from DOMAINLY,J; removed — true
return removed

mming Introdhsction
int Programming

3) When a path fails — that is, a state is reached in which a variable has
no legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search

o chronological backtracking, the most recent decision point is
revisited

backjumping, backtracks to the most recent variable in the conflict
set (set of previously assigned variables connected to X by
constraints).

every branch pruned by backjumping is also pruned by forward
checking

idea remains: backtrack to reasons of failure.

Introduction

Programming

An Empirical Comparison

Median number of consistency checks
T+M

Problem H Backtracking BT+MRV | Forward Checking FC+MRV
USA (> 1000K) | (> 1,000K) 2K 60
n-Queens (> 40,000K) 13,500K (> 40.000K) 817K
Zebra 3,859K 1K 35K 0.5K
Rendom 1 415K 3K 26K 2K
Random 2 942K 27K 7K 15K

Constraint Programming '"treduction

The structure of problems

@ Decomposition in subproblems:
o connected components in the constraint graph
o O(dn/c) vs O(d")

@ Constraint graphs that are tree are solvable in poly time by reverse
arc-consistency checks.

@ Reduce constraint graph to tree:
@ removing nodes (cutset conditioning: find the smallest cycle cutset.
It is NP-hard but good approximations exist)
o collapsing nodes (tree decomposition)
divide-and-conquer works well with small subproblems

N

Optimization Problems

Objective function F(X1, X, ..., X,)
o Solve a modified Constraint Satisfaction Problem by setting a
(lower) bound =* in the objective function
o Dichotomic search: U upper bound, L lower bound
T+ L
2

DMP204

SCHEDULING,
TIMETABLING AND ROUTING

Lecture 7

Constraint Programming (2)

Marco Chiarandini

Outline

1. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

2. Language and Systems

Refinaments
Symmetry B

Outline S

Refinements on CP
Canguage and Systems

1. Refinements on CP

2. Language and Systems

Refnements on cp Relinementa: Seurh

Reification

A Puzzle Example

SEND +
MORE =
MONEY

Two representations

@ The first yields initially a weaker constraint propagation. The tree
has 23 nodes and the unique solution is found after visiting 19 nodes

@ The second representation has a tree with 29 nodes and the unique
solution is found after visiting 23 nodes
However for the puzzle GERALD + DONALD = ROBERT the situation is
reverse. The first has 16651 nodes and 13795 visits while the second has
869 nodes and 791 visits

~ Finding the best model is an empirical science

Modeling

Refinements on CP.
Cangusge and Systems

Guidelines

Rules of thumbs for modelling (to take with a grain of salt):

o use representations that involve less variables and simpler constraints
for which constraint propagators are readily available

o use constraint propagation techniques that require less preprocessing
(ie, the introduction of auxiliary variables) since they reduce the
search space better.

Disjunctive constraints may lead to an inefficient representation
since they can generate a large search space.

o use global constraints (see below)

Randomization in Search Tree

@ Dynamical selection of solution components
in construction or choice points in backtracking.

@ Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
~+ randomized systematic search.

o Randomization can also be used in incomplete search

Refinaments on cp Refnemen

Incomplete Search

Bounded-backtrack search:

bbs(10)

ack search:

then

dbs(2, bbs(0))

http:
//4¢.uce. ie/ hsimonis/visualization/techniques/partial_search/main.htm

Refinements on CP.
Canguage and Syster

Incomplete Search

Credit-based search

o Key idea: important decisions
are at the top of the tree

it Seach

o Credit = backtracking steps

o Credit distribution: one half at
the best child the other divided
among the other children.
When credits run out follow
deterministic best-search - .

In addition: allow limited
backtracking steps (eg, 5) at
the bottom

o Control parameters: initial
credit, distribution of credit
among the children, amount of
local backtracking at bottom.

Refinements: Mod
Refinements: Sear

Refinements on CP
Language and Systems

Incomplete Search
Limited Discrepancy Search (LDS)

o Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

o Eg: count one discrepancy if
second best is chosen

count two discrepancies either
if third best is chosen or twice
the second best is chosen

Control parameter: the number
of discrepancies

Refinements: Modeling
Refinaments: Search
Refinements: Conetraints
s ‘Bresking

Refinements on cP

Incomplete Search E

Barrier Search

@ Extension of LDS

o Key idea: we may encounter
several, independent problems
in our heuristic choice. Each of o
these problems can be o
overcome locally with a limited
amount of backtracking.

Barrier

© Success
© At each barrier start LDS-based ® Failure

backtracking O Repair failure

Refinements on CP.

Local Search for CSP

o Uses a complete-state formulation: a value assigned to each variable
(randomly)

o Changes the value of one variable at a time

@ Min-conflicts heuristic is effective particularly when given a good
initial state.

o Run-time independent from problem size

o Possible use in online settings in personal assignment: repair the
schedule with a minimum number of changes

Refinements: Modeling

Refinements on CP
Canguage and Systems

Handling special constraints

Higher order constraints

Definition

Global constraints are complex constraints that are taken care of by
means of a special purpose algorithm.

Modelling by means of global constraints is more efficient than relying on
the general purpose constraint propagator.

Examples:
o alldiff
o for m variables and n values cannot be satisfied if m > n,
o consider first singleton variables
@ propagation based on bipartite matching considerations

Refinements on CP.

Langusge and Systems Refinements:

Reffcation

o cumulative for RCPSP [Aggoun and Beldiceanu, 1993]
o S; starting times of jobs
o P, duration of job

o R, resource consumption

o R limit not to be exceeded at any point in time

cumulative([S;], [Pj]. [R;], R) :=

(s I r)RY Ve Y

il siSt<sitp

r <R}

The special purpose algorithm employes the edge-finding technique
(enforce precedences)

Constraints]

Refinements on CP.
Uangusge and Systems

o atmost Resource Constraint

o check the sum of minimum values of single domains
delete maximum values if not consistent with minimum values of
others.

for large integer values not possible to represent the domain as a set
of integers but rather as bounds.
Then bounds propagation: Eg,

Flight271 € [0, 165] and F1ight272 € [0, 385]
Flight271 + Flight272 € [120,420]
Flight271 € [35,165] and F1ight272 € [255, 385]

Refinements on CP
Langusge and Systems

o sortedness for job shop [Older, Swinkels, and van Emden, 1995]

sortedness([X1,..., X.].[Vi....,Yn]) =
{(ldr,-. dn][ex,- - en])lers - en] s
the sorted permutation of [d;, dn)}

Refinements on CP.
Language and Systems

o among(x|v,l,u) at least [and at most v variables take values in the
set .

© bin — packing(z|w, u, k) pack items in k bins such that they do
not exceed capacity u

cardinality(z|
take the value v,

v,1,u) at least ; and at most u; of the variables

o cardinality — clause(z|k) }7_

o cardinality — conditional(w,y|k,l) if Y2j_, x; > k then
ity 2l

o change(a|k, rel) counts number of times a given change occur

Refimements o

n cP
Canguage and Systems

circuit(z) imposes Hamiltonian cycle on digraph.

clique(z|G, k) requires that a given graph contain a clique
o conditional(D,C) between set of constrains D = C

o cutset(z|G, k) requires that for the set of selected vertices V', the
set V'\ V’ induces a subgraph of G that contains no cycles.

cycle(xz|y) select edges such that they form exactly y cycles.
directed cycles in a graph

o diffn((z!, Azl),..., (2™, Az™)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap

Refinements: Mode!

Refinaments on CP et
Constraint Morphology ReFeon
_precedence
diffn [sequence] [cyde | [case

Refinements on CP
and Systems

Kinds of symmetries

o Variable symmetry:
permuting variables keeps solutions invariant (eg, N-queens)
{a; — vi} € 50l(P) & {2y — vi} € s0l(P)

@ Value symmetry:
permuting values keeps solutions invariant (eg, GCP)
{x; — vi} € sol(P) & {z; — w(v;)} € sol(P)

@ Variable/value symmetry:
permute both variables and values (eg, sudoku?)
{xi = v;} € s0l(P) & {ar) — 7(vi)} € sol(P)

Symmetry Breaking

Refinements on CP.

Symmetry

o inherent in the problem (sudoku, queens)

o artefact of the model (order of groups)

How can we avoid it?
o ... by model reformulation (eg, use set variables,

@ ... by adding constraints to the model
(ruling out symmetric solutions)

o ... during search

@ ... by dominance detection

Symmetry Breaking
cation

Refinements on CP
Canguage and Systems

Reified constraints
o Constraints are in a big conjunction

@ How about disjunctive constraints?
A+B=C Vv C=0

or soft constraints?

@ Solution: reify the constraints:

(A+B=C & b)) A
(C=0 & b) A
(o V b & true)

@ These kind of constraints are dealt with in efficient way by the
systems

@ Then if optimization problem (soft constraints) = min }_, b;

Language and Systems

Outline

1. Refinements on CP

2. Language and Systems

Refinements on CF
Language and Systems

Prolog Approach

o Prolog Il till Prolog IV [Colmerauer, 1090]

o CHIP V5 [Dincbas, 1988] http://wwi.cosytec.com (commercial)
o CLP [Van Hentenryck, 1089]

o Ciao Prolog (Free, GPL)

a GNU Prolog (Free, GPL)

o SICStus Prolog

@ ECL'PS®[Wallace, Novello, Schimpf, 1997] http: //eclipse-clp.org/
(Open Source)

o Mozart programming system based on Oz language (incorporates
concurrent constraint programming) http://wwu.mozart-oz.org/
[Smolka, 1995]

Language and Systems

Example

The puzzle SEND+MORE = MONEY in ECL'PS®

i= lib(ic).

sendmore (Digits) :-
Digits = [S,E,N,D,M,0,R,Y],

% Assign a finite domain with each letter - S, E, N, D, M, 0, R, ¥ -
% in the list Digits
Digits :: [0..9],

% Constraints
allaifferent(Digits),
s #\=0,
M #\=0,
1000%S + 1004E + 104 + D
+ 1000%M + 10040 + 10+R + E
#= 10000%M + 100050 + 1004 + 104E + Y,

% Search
labeling(Digits).

Language and Systems.

Other Approaches

Modelling languages similar in concept to ZIMPL:

o OPL [Van Hentenryck, 1999] ILOG CP Optimizer
www.cpoptimizer.ilog.com (ILOG, commercial)

o MiniZinc | (open source, works for various systems, ECLIPS®,
Geocode)

Refinements on CP
Language and Systems

MiniZinc

3
% Eample frov the winizine paper

% {square) Jab shop scheduling in Minizine
.

 vodel

ze) of nt: i o
S 1,3z @I ID: ¥ total duration
ze] of var 0. Totat

ar 0. 16t ind; 3 Total e tive

precicate no_swerlaptuar inc:s1, Sntidh. ver intisz. incd2) <
el 82 524 02 <o sl

Farall

1 size) ¢
01 sizen) (131 + 6031 <= sl A A

o
Sli.size) + 413 size] < end /A
Forall (1 i 17 size where § <) €
o _overlap(sij.). 1141 slk.il, alk.il)
)
»
solue mirinize end;
autpus
[+ jobshop_mane)
{50 Ishow(size)] + 17, 1 =+ [showtsized] 4= 1“1 = [*)
[shon(sia, 1) ++ 7 3 = size then 37 1 = size then - 1\n" slse "\ * endif else * * endst | 1,3 in 1.sizel;

Language and Systems.

Other Approaches

Libraries:
Constraints are modelled as objects and are manipulated by means of
special methods provided by the given class

o CHOCO (free) http://choco sourceforge.net/
o Kaolog (commercial) http:/ /www.koalog.com /php/index.php
o ECLIPSe (free) www. eclipse-clp.org

o ILOG CP Optimizer www. cpoptimizer . ilog.com (ILOG,
commercial)

@ Gecode (free) wuw.gecode.org C++, Programming interfaces Java
and MiniZinc

o G12 Project
http://www.nicta.com.au/research/projects/constraint_
programming_platform

and Systems

CP Languages

Greater expressive power than mathematical programming
o constraints involving disjunction can be represented directly

@ constraints can be encapsulated (as predicates) and used in the
definition of further constrains

However, CP models can often be translated into MIP model by
o eliminating disjunctions in favor of auxiliary Boolean variables

o unfolding predicates into their definitions

Language and Systems

CP Languages

@ Fundamental difference to LP
o language has structure (global constraints)

o different solvers support different constraints
o In its infancy

o Key questions:
@ what level of abstraction?
o solving approach independent: LP, CP, ...?

o how to map to different systems?

o Modelling is very difficult for CP
a requires lots of knowledge and tinkering

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 8

Constraint Programming (3)

Marco Chiarandini

Outline

Handling special constraints

Higher order constraints

Definition

Global constraints are complex constraints that are taken care of by
means of a special purpose algorithm.

Modelling by means of global constraints is more efficient than relying on
the general purpose constraint propagator.

Examples:
e alldiff
o for m variables and n values cannot be satisfied if m > n,
@ consider first singleton variables
o propagation based on bipartite matching considerations

o disjunctive(s|p) (si +pi <s;)V (sj +pj < s3)

o cumulative(s|p,r, R) for RCPSP [Aggoun and Beldiceanu, 1993]

o s; starting times of jobs
o p; duration of job
@ 7; resource consumption

e R limit not to be exceeded at any point in time

cumulative(s | p,r, R) ==

sl il) B Ve >

i| si<t<sctp:

ri < R}

edge-finding, not-first not-last rules

@ sortedness for job shop [Older, Swinkels, and van Emden, 1995]
sortedness([X1,..., Xal,[Y1,....Yn]) =

{(d1,. . dul. [er, .
the sorted permutation of [dy,..

seal)llens. . oen] is

Sdn]}

o atmost(z|v, k)

o At most k variables of the = VARIABLES collection are assigned to
value v.
(1,<4,2,4,5>,2)
The atmost constraint holds since at most 1 value of the collection
<4,2,4,5> is equal to value 2

o among(x|v,l,u) at least I and at most u variables take values in the
set v.

o nvalues(z |I,u) requires that the variables z take at least { and at
most u different values.

@ bin-packing(z|w, u, k) pack items in k bins such that they do not
exceed capacity u

o cardinality(z
take the value v;

v,1,u) at least I; and at most u; of the variables

o cardinality-clause(z|k) 30 a5 > k

o cardinality-conditional(w,ylk,1) if 37_, #; > k then
Syl

o change(x|k, rel) counts number of times a given change occur

o circuit(z) imposes Hamiltonian cycle on digraph

clique(z|G, k) requires that a given graph contain a clique

conditional(D,C) between set of constrains D = C

cutset(z|G, k) requires that for the set of selected vertices V', the
set V'\ V’ induces a subgraph of G that contains no cycles

o cycle(zly) select edges such that they form exactly y cycles.
directed cycles in a graph.

diffn((z!,Azl),..., (2™, Az™)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap

o element(y, z | a) requires z to take the yth value in the tuple a.
Useful with variable indices (variable subscripts), eg, a,

(3,21<6,9,2,9>)
The element constraint holds since its third argument VALUE=2 is
equal to the 3th (INDEX=3) item of the collection <6,9,2,9>

Constraint Morphology

precedence

fumulativd [sequence] [cyce | [case

Blement
; A

[o | [

‘ Different H Order H Resource

Modelling in Gecode/J

o Implement model as a script
o declare variables
@ post constraints (create propagators)
o define branching
o Solve script
o basic search strategy (DFS)

o interactive, graphical search tool (Gist)

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 9
Heuristics

Marco Chiarandini

Soiers Touls
Outline
1. Construction Heuristics
General Principles
Metaheuristics
* searc

Iterated Greedy
ASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Efficiency vs Effectiveness.
Application Examples
Metaheuristics
Tabu Search
Iterated Local Search
3. Software Tools
The Code Delivered
Practical Exercise

Local Scarch
SSoware Taols

Introduction

Heuristic methods make use of two search paradigms:
@ construction rules (extends partial solutions)

o local search (modifies complete solutions)

These components are problem specific and implement informed search,

They can be improved by use of ics which are general-purp:
guidance criteria for underlying problem specific components.

<

Final heuristic algorithms are often hybridization of several components

Construction Heuristice

Caneiruction General Principles

Metaheuristics
i’

Outline

1. Construction Heuristics

2. Local Search

3. Software Tools

Construction Heuristice
Local Search

General Principles
B Wetsheuristics

Construction Heuristics

Heuristic: a common-sense rule (or set of rules) intended to increase the
probability of solving some problem

Construction heuristics
(aka, single pass heuristics, dispatching rules, in scheduling)
They are closely related to tree search techniques but correspond to a single
path from root to leaf
@ search space = partial candidate solutions

@ search step = extension with one or more solution components

Construction Heuristic (CH):

s

while s is not a complete solution do
choose a solution component ¢

L add the solution component to s

Greedy best-first search

Construction Heuristics
Local Scarch
Sofiware Tools

@ Sometimes greedy heuristics can be proved to be optimal
(Minimum Spanning Tree, Single Source Shortest Path,
U w;Ch 1| Lmaz)

@ Other times an approximation ratio can be prooved

Construction Heuristics
arch

S firevia

Designing heuristics

@ Same idea of (variable, value) selection in CP without backtracking

Variable

* DIT_VARNONE: Fixst unassigaed

VAR MIN N Wioh sma

prige
-
WX With Targ

& vartble is defioed as the number of dependant
t1ned 52 the munber of dspendant

Vith smallust degres The degres of

. ith largost min-rogeat The nin-rogree of a variable 1s the difference betusen
he muallest and second-saallast valus stil) i the dowain
= DNT_VAR_REGRET AT NIN: bich smallose max-regret. The mss-rogret of 3 variable is the difference betesen
S e R e

« INT_VAR REGRET AT NAT: ¥ich largest. sax-regret The max-regret of a varissle is the differeace betueen

General Prin
Metaheuristics

Software Taols

Designing heuristics

@ Same idea of (variable, value) selection in CP without backtracking

Value

* DIT_VAL MIN: Seloct soalest value
« VAL D,
- VAL ux: s

et naxinal value

- Lower hal of domsin
pper half of domain

- DAL SPLIT M S
- DT VAL SPLIT M 5

o Static vs Dynamic (= quality time tradeoff)

ciples

S3foware Taols

Dispatching Rules in Scheduling

RULE __DATA ___OBJECTIVES
Rules Dependent ERD 1, Variance in Throughput Times
on Release Dates EDD d; Maximum Lateness
and Due Dates __ MS d; Maximum Lateness

(L Toad Balancing over Parallel Machines
Rules Dependent ~ SPT _ p; Sum of Completion Times, WII
on Processing WSPT pj, w; Weighted Sum of Completion Times, WIP
Times P . prec Makespan

NS pj, prec__Makespan

SRO - Ease of Implementation
Miscellaneous SST s Makespan and Throughput

LFJ M, Makespan and Throughput

SQN! Machine Idleness

Construction Heuristics
Cocal Scarch

General Principles
S3fowars Tosle s

Metaheurist

Truncated Search

They can be seen as form of Metaheuristics
Credit-based search

Bounded-backtrack search:

o —
A AN AN
A

A bbsiio)

Dopth-bounded, then bounded-backtrack search:

a0 .
4 Barrier Search

Limited Discrepancy Search (LDS)

General P
Metaheurist

A* best-first search

o The priority assigned to a node « is determined by the function
f(x) = g(x) + h(x)

g(x): cost of the path so far
hi heuristic estimate of the minimal cost to reach the goal from x.

o It is optimal if h(x) is an
o admissible heuristic: never overestimates the cost to reach the goal
o consistent: h(n) < c(n,a,n’) + h(n')

Construction Heuristics
Local Search
S3fware Tools

A* best-first search

Construction Heuristics
Local Search
Tl

A" best-first search

Possible choices for admissible heuristic functions
@ optimal solution to an easily solvable relaxed problem
o optimal solution to an easily solvable subproblem
o preferred heuristics functions with higher values (provided they do not
overestimate)
m and not clear which is the best

o if several heuristics available 1, ha,
then:

< hm(2)}

h(x) = max{hi (x

Construction Heuristics
ocal Search
SSfoware Tools

A* best-first search

Drawbacks
@ Time complexity: In the worst case, the number of nodes expanded is
exponential, but it is polynomial when the heuristic function h meets the
following condition:

[h(x) = h*(@)] < Ologh” (x))

h* is the optimal heuristic, the exact cost of getting from to the goal.

o Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A* (IDA"),
memory-bounded A* (MA*) and simplified memory bounded A* (SMA®)
and recursive best-first search (RBFS)

Construction Heuristics
Local Scarch
Sofiware Tools

Rollout Method

(aka, pilot method)
Derived from A*

[Bertsekas, Tsitsiklis, Cynara, JoH, 1997]

@ Each candidate solution is a collection of m components
8= (51,52, 5m)-

© Master process adds components sequentially to a partial solution
Sk = (s1,52,...5%)

At the k-th iteration the master process evaluates seemly feasible
components to add based on a look-ahead strategy based on heuristic
algorithms.

The evaluation function H(Si+1) is determined by sub-heuristics that
complete the solution starting from Sy

@ Sub-heuristics are combined in H(Sk+1) by

s weighted sum

o minimal value

Construction Heuristics
Cocal Scarch
Softwars Tools

Rollout Method

Speed-ups:
o halt whenever cost of current partial solution exceeds current upper bound

o evaluate only a fraction of possible components

Beam Search

[Lowerre, Complex System, 1976]
Derived from A" and branch and bound

@ maintains a set B of bw (beam width) partial candidate solutions.

@ at each iteration extend each solution from B in fw (filter width) possible
ways

@ rank each bw x fw candidate solutions and take the best bw partial
solutions

@ complete candidate solutions obtained by B are maintained in By

@ Stop when no partial solution in B is to be extended

Genersl Principles
Metaheuristics

Iterated Greedy

Key idea: use greedy construction
@ alternation of Construction and Deconstruction phases

@ an acceptance criterion decides whether the search continues from the new
or from the old solution

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

eep s or revert to s :=

Construction Heuristics
E Metaheuristics

GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) []

nstructive search with

Key Idea: Combine
perturbative search.

Motivation:

@ Candidate solutions obtained from construction heuristics can often be
substantially improved by perturbative search.

@ Perturbative search methods typically often require substantially fewer
steps to reach high-quality solutions
when initialized using greedy constructive search rather than
random picking.

@ By iterating cycles of constructive + perturbative search, further
performance improvements can be achieved.

Conatruction Heuristi
Cocal Scarch
SSoware Taols

General Principles
Metsheuristics

Greedy Randomized “Adaptive” Search Procedure (GRASP):
While termination criterion is not satisfied:
generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary perturbative search on s

Note:

@ Randomization in constructive search ensures that a large number of good
starting points for subsidiary perturbative search is obtained.

o Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
given partial candidate solution r may depend on
solution components present in 7.

© Variants of GRASP without perturbative search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with perturbative search.

Construction Heuristies ¢, | .
Local Search eneral Principles
Sofe Metaheuristics

Restricted candidate lists (RCLs)

@ Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

@ RCLs are constructed in each step using a heuristic function h.
s RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.

@ RCLs based on value restriction comprise all solution components I for
which h(1) < b s — i),
where Jiy,i, = minimal value of h and hyaz =
of h for any I. (a is a parameter of the algorithm.)

2

Construction Heuristice
wreh

Cocal

General Principles
B e

Example: GRASP for SAT [Resende and Feo, 1996]
o Given: CNF formula F' over variables a1,

@ Subsidiary constructive search:

o start from empty variable assignment

o in each step, add one atomic assignment (i.¢., assignment of
a truth value to a currently unassigned variable)

o heuristic function A(i, v) := number of clauses that
become satisfied as a consequence of assigning ;

@ RCLs based on cardinality restriction (contain fixed number k
of atomic assignments with largest heuristic values)
o Subsidiary perturbative search:

o iterative best improvement using 1-flip neighborhood

o terminates when model has been found or given number of
steps has been exceeded o

General Prin
Metaheurist

GRASP has been applied to many combinatorial problems, including:
o SAT, MAX-SAT
o various scheduling problems

Extensions and improvements of GRASP:

o reactive GRASP (e.g., dynamic adaptation of a
during search)

Beyond Local Optima
Construction Heuristics h Space Properties
Local Scarch i :
Sofware Tools

Outline

1. Construction Heuristics

2. Local Search

3. Software Tools

Local Scarch
Softwars Tools

Local Search Paradigm

o search space = complete candidate solutions
@ search step = modification of one or more solution components
o iteratively generate and evaluate candidate solutions
a decision problems: evaluation = test if solution
a optimization problems: evaluation = check objective function value
@ evaluating candidate solutions is typically computationally much cheaper
than finding (optimal) solutions

Iterative Improvement (11):

determine initial candidate solution s

while s has better neighbors do
choose a neighbor s’ of s such that f(s') < f(s)
si=s

Beyond Local Optim

Construction Heuristics 5
Local Scarch .
Seiware Tools

ehb
Efcioms Local Scarch

Local Search Algorithm (1) eurie

Given a (combinatorial) optimization problem IT and one of its instances 7:

o search space S(7)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array (sequence of all truth assignments.
to propositional variables)

Note: solution set S'(w) C S()
(e.g. for SAT: models of given formula)
o evaluation function f(r) : S(m) — R
(e.g, for SAT: number of false clauses)
o neighborhood function, /() : § + 25(7)

(e.g.. for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

rch Space Propertiss

yond Local Optima
od Representd

Local Search Algorithm (2)

@ set of memory states M (m)
(may consist of a single state, for LS algorithms that
do not use memory)

o initialization function init : () — P(S(x) x M())
(specifies probability distribution over initial search positions and memory
states)

o step function step : S(m) x M(x) — P(S(x) x M(w))
(maps each search position and memory state onto
p ility distri over i i
search positions and memory states)

o termination predicate terminate : S(m) x M(w) — P({T, L})
(determines the termination probability for each
search position and memory state)

Beyond Local Optima
Sarch Spa

Neigh
Dist

L
S3fowars Tosle

Local Search Algorithm

For given problem instance 7:

o search space (solution representation) S(

o neighborhood relation A'(7) C S(7) x S(m)

o evaluation function f(r): S — R

o set of memory states M ()

o initialization function init : s P(S(7) x M(x))

o step function step : S(r) x M () — P(S(r) x M(r))

@ termination predicate terminate : S(m) x M(x) — P({T,L})

Beyond Local Optima

L
SZfoware Touls

LS Algorithm Components

Search Space

Defined by the solution representation:

o permutations
o linear (scheduling)
o circular (TSP)

o arrays (assignment problems: GCP)

o sets or lists (partition problems: Knapsack)

Scarch Space Propertie
Neighborhaad Represcnts

Construction Heuristics
Loca Search

ocal Search
etaheuristics

LS Algorithm Components

Neighborhood function A/ (r) : S() = 257
Also defined as: N': S x § — {T,F} or N C S x §

o neighborhood (set) of candidate solution s: N(s) i= {s' € § | N'(s,s')}
o neighborhood size is [N (s)]
o neighborhood is symmetric if: ' € N(s) = s € N(s')
o neighborhood graph of (5, N,) is a directed vertex-weighted graph:
Gu(m) = (V, A) with V = 5(7) and (uv) € A & v € N(u)
(if symmetric neighborhood = undirected graph)

Note on notation: N when set, A" when collection of sets or function

Can
Local

uction Heurlstics
reh

A neighborhood function is also defined by means of an operator.

An operator A is a collection of operator functions & : S — S such that

S EN(s) = 35e (s

Definition

k-exchange neighborhood: candidate solutions s, s’ are neighbors iff s differs
from s in at most k solution components

Examples

o Lexchange (flip) neighborhood for SAT
(solution components = single variable assignments)

o 2-exchange neighborhood for TSP
(solution components = edges in given graph)

Construction Heuristics
Local Search
SSfoware Tools -

LS Algorithm Components

Note:
o Local search implements a walk through the neighborhood graph

@ Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

@ Memory state m can consist of multiple independent attributes, i.e.,
M(r) i= My X Mz X ... X Myn).

o Local search algorithms are Markov processes:
behavior in any search state {s,m} depends only
on current position s and (limited) memory m.

Local Scarch
Software Tools

LS Algorithm Components

Search step (or move):
pair of search positions s, s’ for which

s’ can be reached from s in one step, i.e., A(s,s’) and
step({s,m},{s",m'}) > 0 for some memory states m,m’ € M

@ Search trajectory: finite sequence of search positions < sq, s1
such that (s;_1,s;) is a search step for any i € {1,...,k}
and the probability of initializing the search at so
is greater zero, i.e., init({so,m}) > 0 for some memory state m € M.

@ Search strategy: specified by init and step function;
to some extent independent of problem instance and
other components of LS algorithm.

@ random
@ based on evaluation function
@ based on memory

Local Search
Softwars Tools

Effciont Local Search
Metaheurisics

Uninformed Random Picking
e N:=8xS
@ does not use memory and evaluation function

o init, step: uniform random choice from S,
ie. for all 5,5’ € S, init(s) := step({s}, {'}) == 1/|]

Uninformed Random Walk

does ot use memory and evaluation function

init: uniform random choice from S

o step: uniform random choice from current neighborhood,
e, forall 5,5’ € S, step({s}, {s'}) = § /NG if s € NGs)
0 otherwise

Note: These uninformed LS strategies are quite ineffective,
but play a role in combination with more directed search strategies.

Beyond Local Optima
s

LS Algorithm Components

Evaluation (or cost) functiol

o function f(m): S(m) — R that maps candidate solutions of
a given problem instance 7 onto real numbers,
such that global optima correspond to solutions of ;

o used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
o Evaluation function: part of LS algorithm.
@ Objective function: integral part of optimization problem.

@ Some LS methods use evaluation functions different from given objective
function (e.g., dynamic local search).

Iterative Improvement
@ does not use memory
@ init: uniform random choice from S

o step: uniform random choice from improving neighbors,
ice., step({s},{s'}) := 1/|(s)| if s’ € I(s), and 0 otherwise,
where I(s) i={s' € § | N(s,s') and f(s') < f(s)}

o terminates when no improving neighbor available
(to be revisited later)

o different variants through modifications of step function
(to be revisited later)

Note: Il is also known as iterative descent or hill-climbing.

Sofoware Tools

Example: Iterative Improvement for SAT

o search space S: set of all truth assignments to variables
in given formula F'
(solution set S': set of all models of F)

neighborhood function \': 1-flip neighborhood

(as in Uninformed Random Walk for SAT)

0}

tialization: uniform random choice from S, i.e., init(0, {a'}) := 1/[S]|
for all assignments o’

o memory: not used, i.e., M :

evaluation function: f(a) := number of clauses in F'

that are unsatisfied under assignment a

(Note: f(a) = 0 iff a is a model of F.)

step function: uniform random choice from improving neighbors, i.
step(a,a’ J#1(a) if s' € I(a)

and 0 otherwise, where I(a) := {a’ | N(a,a') A f(a') < f(a)}
termination: when no improving neighbor is available

ie., terminate(a, T) := 1 if I(a) = 0, and 0 otherwise.

10
S Smace Pramariies
Neighborhood Reprasentd

Definition

o Local minimum: search position without improving neighbors w.r.t. given
evaluation function f and neighborhood AV,
i.e., position s € § such that f(s) < f(s') for all s’ € N(s).

o Strict local minimum: search position s € S such that
f(s) < £() for all s’ € N(s).

o Local maxima and strict local maxima: defined analogously.

Construction Heuristice
ocal Search

There might be more than one neighbor that have better cost.

Pivoting rule decides which to choose:

o Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbor,
e, randomly select from I'(s) == {s' € N(s) | f(s') = [*}
where f*:=min{f(s') | s' € N(s)}.

Note: Requires evaluation of all neighbors in each step.

o First Improvement: Evaluate neighbors in fixed order,
choose first improving step encounteres

Note: Can be much more efficient than Best Improvement; order of
evaluation can have significant impact on performance.

Conat

ction Heuristics

Effciont Loc.
Metaheurimics

Example: Iterative Improvement for TSP (2-opt)

procedure TSP-2opt-first(s)
input: an initial candidate tour s € S(€)
output: a local optimum s € S(r)

Improvement=FALSE;
fori=1ton—2do
ifi=1thenn' =n—1elsen’ =n
for j=i+2ton’ do
Ay =d(ei ¢j) +d(cirr, ej1) = dleis civn) = dlejicivn)
if A; <0 then
UpdateTour (s, 1,3);
Improvement=TRUE;

end
end
until Improvement:
end TSP-2opt-first

FALSE;

» Are we in a local optimum when it terminates?

Gonsruction Heurisics
el Search

b

A note on terminology

Heuristic Methods = Metaheuristics = Local Search Methods = Stochastic

Local Search Methods = Hybrid Metaheuristics
Method # Algorithm

Stochastic Local Search (SLS) algorithms allude to:
@ Local Search: informed search based on local or incomplete knowledge as
opposed to systematic search
o hastic: use fomized choices in and modifying candidate
solutions. They are introduced whenever it is unknown which deterministic
rules are profitable for all the instances of interest.

Beyond Local Opti

Construction Heuristics Seareh SP:
areh n

Local s

Sofware Tools

Escaping from Local Optima

o Enlarge the neighborhood

o Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

@ Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g.,
using minimally worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.

Beend Loca Optima

Constructon Heuritier Rart S8
el Scarch Neighbor
SERr o Blfciom Local Search

reheurie

Diversification vs Intensification

o Goal-directed and

balanced carefully.

of LS strategy need to be
@ Intensification: aims to greedily increase solution quality or probability,
e.g., by exploiting the evaluation function.

@ Diversification: aim to prevent search stagnation by preventing search
process from getting trapped in confined regions.

Examples:
o lterative Improvement (I1): intensification strategy.
& Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced and di forms

the basis for advanced LS methods.

Beyond Local Optima
Search Space properties

Local Search
Seiware Tools

Search
Metaheuristics

Learning goals of this section

@ Review basic theoretical concepts
o Learn about techniques and goals of experimental search space analysis.

@ Develop intuition on which features of local search are adequate to
contrast a specific situation

Definitions

@ Search space S
@ Neighborhood function A/ : S C 25

o Evaluation function f(7): 5 — R

@ Problem instance 7

Definition:

The search landscape L is the vertex-labeled neighborhood graph given by the

Lo
S3fowars Tosle

Fundamental Search Space Properties

The behavior and performance of an LS algorithm on a given problem instance
crucially depends on properties of the respective search space.

Simple properties of search space S
o search space size |S|
@ reachability: solution j is reachable from solution i if neighborhood graph
has a path from i to j.

o strongly connected neighborhood graph

o weakly optimally connected neighborhood graph
o search space diameter diam(Gx’)

(= maximal distance between any two candidate solutions)

Note: Diameter of G- = worst-case lower bound for number of search

Beyond Locsl Optima
Sarch Gperties
Nm.m..,m“a Represents

L
SSfoware Touls

Solution Representations and Neighborhoods

Three different types of solution representations:
o Permutation
o linear permutation: Single Machine Total Weighted Tardiness Problem
@ circular permutation: Traveling Salesman Problem

o Assignment: Graph Coloring Problem, SAT, CSP
@ Set, Partition: Knapsack, Max Independent Set

A neighborhood function A7 : S — S x S is also defined through an operator.
An operator A is a collection of operator functions § : S — S such that

SEN(s) > WeAlis) =5

triplet £ = (S(m), N(m), f(m)). steps required for reaching (optimal) solutions.
Maximal shortest path between any two vertices in the neighborhood
graph.
s 5 5
SR ! Bl
Permutations Neighborhood Operators for Linear Permutations Neighborhood Operators for Circular Permutations

TI(n) indicates the set all permutations of the numbers {1,2,...,n}

(1,2...,n) is the identity permutation ¢.

Swap operator
As = {051 <i<n}

Reversal (2-edge-exchange)

Fs(my. .. mimis (T1. . Mg . Tn) Ap={fj1<i<j<n}
Ifw € ll(n) and 1 <4 <n then: SH(m) = (M1 oAy T)
® m; is the element at position i Interchange operator Block moves (3-edge-exchange)
@ posx(i) is the position of element i Ax ={fgl1<i<j<n}
i _ (51 <
O (F) = (M1 WA Ty i1 MMM 41) Ap={s8F1<i<j<k<n}
Alternatively, a permutation is a bijective function (i) = m; set of all transpositions) F(R) = (1. ATy TR T AT)
the permutation product 7 - 7' is the composition (- 7'); = ' (w(i)) Insert operator Short block move (Or-edge-exchange)
Ar={01<i<n1<j<nj#i Asp={dpll<i<j<
For each 7 there exists a permutation such that 7% -7 =1 =P sisnlsisng#i sn= {0l si<i=n}
$9(m) = (M1 WA Tigs o TG MT g1 Tn) < 08(m) = (M1 . T ATy A My 42 e o TG AT 43 - . Tn)
(M1 TG - T Wi - W) 8>
Ayclt
Beyond Local Optima epond L Beyond Local Optima
Search See reh Se L"rvs(vu:nan Heuristics. [o

Local Scarch
Software Tools

Neighborhood Operators for Assignments

An assignment can be represented as a mapping
0 {X1 ... Xa} > {v:vED,|D| =k}

o={Xi=vi,X;=v,...}
One-exchange operator

Aip={igll <i<n1<l<k})

{o:0'(X)) = v and o'(X,) = 0(X,) Vj # 1}
Two-exchange operator

Aop = {81 <i<j<n}

050+ 0 (X)) = 0(X,). 0'(X;) = 0(X,) and o' (X;) = 0(X0) W1 # .5}

ighbor

Effciont Local Search
Metaheurisics

Neighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s: {X} — {C, T
(it can also be represented by a bit string)

One-addition operator _
Mg = {8plv €T}

Sip(s)={s:C'=CUv and T =T\ v}
One-deletion operator
Aip = {8iplv € C}
Te(s)={s:C'=C\vand T =CuUv}
Swap operator _
Aip = {8iglve CiueT}

op(s)={s: Cuu\vand T =CUv\u}

gl Distancer
Efficiont Local Search
Metaheuristics

Distances

Set of paths in G with s,5" € S:
={(s1,-..,

(s, s) su)lsi=s,sn=sVi:1<i<h—1(si,s001) €E

If ¢ = (s1,...,5n) € B(s,5') let |¢| = h be the length of the path; then the
distance between any two solutions s, s’ is the length of shortest path between
sand s’ in Gy

du(s,s) = min [®
nte.s) = agin,, 121

dian(Gy) = max{dx (s, ') | s,s' € S}
Note: with permutations it is easy to see that:

dy(m,7) = dy(m " 7' 0)

Distances for Linear Permutation Representations

 Swap neighborhood operator
computable in O(n?) by the precedence based distance metric:
ds(m, ') = #{(i.3)|1 < i <j < n,posa(m;) < posas(mi)}.
aian(Gy) = n(n — 1)/2

o Interchange neighborhood operator
Computable in O(n) + O(n) since
dx(m,7') = dx (" 7' 0) =n— (a7’
where ¢(7) is the number of disjoint cycles that decompose a permutation.
diam(Gry) =n—1

@ Insert neighborhood operator
Computable in O(n) + O(n log(
di(m,7') = di(x "7 ,1) =n — |lis(x " - 7')| where Lis(r) denotes the
length of the longest increasing subsequence.
dian(Gy;) =n -1

n) since

Local Searc
S3fowars Tosle

Distances for Circular Permutation Representations

o Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

© Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm

Local Search
Sofowars Tools

Distances for Assignment Representations
o Hamming Distance

o An assignment can be seen as a partition of n in k mutually exclusive
non-empty subsets

One-exchange neighborhood operator

The partition-distance d1 (P, P') between two partitions 7 and P’ is the
minimum number of elements that must be moved between subsets in 7
so that the resulting partition equals P’.

The partition-distance can be computed in polynomial time by solving an
assignment problem. Given the assignment matrix M where in each cell
(i,4) itis |Si N S| with S; € P and S} € P’ and defined A(P, ') the
assignment of maximal sum then it is diz(P, ') = n — A(P,P')

Construction Heuristice
Local Search

Neighbor

Example: Search space size and diameter for the TSP

o Search space size = (n — 1)!/2
o Insert neighborhood

size = (n— 3)n.

diameter = n

o 2-exchange neighborhood
size= (1) =n-(n—1)/2
diameter in [n/2,n — 2]

o 3-exchange neighbovhcod
size= (1) =n-(n—1)-(
diameter in [n/3,n — 1]

(n—2)/6

on Heuristica

Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
Gy = n-dimensional hypercube; diameter of Gy~ =

truction Heurlstica

Let \V; and A be two different neighborhood functions for the same instance
(S, f,) of a combinatorial optimization problem.

If for all solutions s € S we have Ni(s) C Na(s') then we say that N>
dominates N}

Example
In TSP, L-insert is domnated by 3-exchange.
(L-insert to hange and there are
1-insert)

that are not

Beyond Local Optima
Shace Properties
S g

Local Scarch

Sofware Tools

Efficiency vs Effectiveness

The performance of local search is determined by:
1. quality of local optima (effectiveness)

2. time to reach local optima (efficiency):

A. time to move from one solution to the next

B. number of solutions to reach local optima

el Scarch

SR,

Effcient Local Search
Metaheuristics

Note:
@ Local minima depend on g and neighborhood function A
o Larger neighborhoods A induce

o neighborhood graphs with smaller diameter;
o fewer local minima.

Ideal case: exact neighborhood, i.e., neighborhood function
for which any local optimum is also guaranteed to be
a global optimum.
o Typically, exact neighborhoods are too large to be searched effectively
(exponential in size of problem instance).
o But: exist, e.g. searchable neighborhood in
Simplex Algorithm for linear programming.

Beyond Local Optima
Construction Heuritics yearil Shace Fropertes
Local Scarch . 1

Seiware Tools

e Lml Search

Trade-off (to be assessed experimentally)
o Using larger neighborhoods
can improve performance of I (and other LS methods).
@ But: time required for determining improving search steps
increases with neighborhood size.

Speedups Techniques for Efficient Neighborhood Search
1) Incremental updates

2) Neighborhood pruning

Beyond Local Optima

Speedups in Neighborhood Examination

1) Incremental updates (aka delta evaluations)

@ Key idea: calculate effects of differences between
current search position s and neighbors s" on
evaluation function value.

° Evz\uzuon function values often consist of
of solution
hence, f(s) can be efficiently calculated from f(s') by differences between
s and s in terms of solution components.

o Typically crucial for the efficient implementation of
II'algorithms (and other LS techniques).

L
S3fowars Tosle

Ef
Mheraheurin

Example: Incremental updates for TSP

o solution components = edges of given graph G
o standard 2-exchange neighborhood, i.e., neighboring
round trips p, p’ differ in two edges
w(p) — edges in p but not in p’
+ edges in p’ but not in p

o w(p) -

Note: Constant time (4 arithmetic operations), compared to
linear time (n arithmetic operations for graph with n vertices)
for computing w(p’) from scratch

Beyond Local Optima
Neighborhood Represents]

2) Neighborhood Pruning
o Idea: Reduce size of neighborhoods by excluding neighbors that are likely
(or guaranteed) not to yield improvements in f.

o Note: Crucial for large neighborhoods, but can be also very useful for
small neighborhoods (e.g., linear in instance size).

Example: Heuristic candidate lists for the TSP

@ Intuition: High-quality solutions likely include short edges.

o Candidate list of vertex v: list of v's nearest neighbors (limited number),
sorted according to increasing edge weights.

@ Search steps (e.g., 2-exchange moves) always involve edges to elements of
candidate lists.

o Significant impact on performance of LS algorithms
for the TSP.

Construction Heuristics
Loca Search

Overview

Delta eval and neigl inations in:

@ Permutations
s TSP
o SMTWTP
o Assignments
o SAT

@ Sets
o Max Independent Set

Construction Heurlstics
Local Search

i Local Search
Metaheurisics

Local Search for TSP

o k-exchange heuristics
2-0pt
25-0pt
Or-opt
3-opt
@ complex neighborhoods
o Lin-Kernighan
o Helsgaun's Lin-Kernighan
o Dynasearch
o ejection chains approach

exploit speed-up
1 neighborhood pruning: fixed radius nearest neighborhood search

2 neighborhood lists: restrict exchanges to most interesting candidates
3 don't look bits: focus perturbative search to “interesting” part

4 sophisticated data structures

o Represene]

uction Heuristics
Lcc.l o Search

Eﬂmem Localsearch

TSP data structures
Tour representation:
o determine pos of v in 7
o determine succ and prec
o check whether uy is visited between u; and u;
o execute a k-exchange (reversal)
Possible choices:
o |V| < 1.000 array for = and 7"
o |V] < 1.000.000 two level tree
o [V| > 1.000.000 splay tree
Moreover static data structure:
@ priority lists
o k-d trees

Beyond Local Optima

Local Scarch e
Seftware Tacl Efficient Local Search
Metaheuristics

SMTWTP

o Interchange: size (}) and O(]i — j|) evaluation each
o first-improvement: 7,

Pr; Spry for |mprevements w, Ty +wi Ty must decrease because jobs
in 7k can only Increase their tardiness.
> Py posaibie use of ausiary data structure to speed up the com-

putation
o first-improvement: ;.
<pr, for improvements, w;T; + wi T} must decrease at least as
the best interchange found so far because jobs in ;... 7y
can only increase their tardiness

ossible use of auxiliary data structure to speed up the com-
putation

o Swap: size n — 1 and O(1) evaluation each

pry > pry

o Insert: size (n —1)% and O(Ji — j|) evaluation each
But possible to speed up with systematic examination by means of swaps:
an interchange is equivalent to |i — j| swaps hence overall examination
takes O(n?)

) Search
Sefare Effcient Local Search
Meraheurisics

LS for GCP

o search space S: set of all k-colorings of G
o solution set §'; set of all proper k-coloring of F

o neighborhood function A': 1-exchange neighborhood
(as in Uninformed Random Walk)

© memory: not used, i.e., M := {0}
o initialization: uniform random choice from S, i.e., init{0, ¢’} := 1/[S|
for all colorings "
o step function:
o evaluation function: g(p) == number of edges in G
whose ending vertices are assigned the same color under assignment
(Note: g(ip) = 0 iff ¢ is a proper coloring of G.)
o move mechanism: uniform random choice from improving neighbors, i.e.,

step{p, ¢’} := 1/[I(p)| if s’ € I(p),
and 0 otherwise, where I(p) := {' | N'(¢.¢') A g(¢') < g()}

o termination: when no improving neighbor is available
i.e., terminate{y, T} := 1if I() = 0, and 0 otherwise.

Beyond Local Optima
s

Tabu Search

Key idea: Use aspects of search history (memory) to escape from local minima

© Associate tabu attributes with candidate solutions or
solution components.

@ Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS
determine initial candidate solution s
While termination criterion is not satisfied:
determine set of non-tabu neighbors of s
choose a best improving candidate solution s
update tabu attributes based on s"
5=

Local Search
Sofoware Tools

Note:
@ Non-tabu search positions in N(s) are called
admissible neighbors of s.
@ After a search step, the current search position
or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

@ Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution)

@ Crucial for efficient implementation:

o keep time complexity of search steps minimal
by using special data structures, incremental updating
and caching mechanism for evaluation function values;
o efficient determination of tabu status:
store for each variable = the number of the search step
when its value was last changed it.; « is tabu if
it — ity < tt, where it = current search step number.

nd Local Opi
S srecsFroeeris
d Represents

yond Local Optima
— mmm, o
ch Sguce |

Efficiont Local Search
Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:
@ tt too low => search stagnates due to inability to escape
from local minima;
@ tt too high = search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Beyond Lo
)

hmd coperties

Iterated Local Search

Key Idea: Use two types of LS steps:
o subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

o perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:

Evform perturbation on s
perform subsidiary local search on s
based on acceptance cntenon,
eep s or revert to

Construction Heuristice
Local Search
Software Tools

Outline

1. Construction Heuristics

2. Local Search

3. Software Tools

ruction Heuristica
cal Search
Software Tools

Software Tools

© Modeling languages
interpreted languages with a precise syntax and semantics

@ Software libraries
collections of subprograms used to develop software

@ Software frameworks
set of abstract classes and their interactions
o frozen spots (remain unchanged in any instantiation of the framework)

o hot spots (parts where programmers add their own code)

Consruction Heurisics
Local Se

The Code Del
Practical En
ole

No well established software tool for Local Search:

o the apparent simplicity of Local Search induces to build applications from
scratch

o crucial roles played by delta/incremental updates which is problem
dependent

@ the development of Local Search is in part a craft,
beside engineering and science.

@ lack of a unified view of Local Search.

Eomptsp et e codeDaerd Constrcson Heurisic - Eomp e e code
Sohowars Tools of Exercse SChtwars Tosls Soiowars Tosls er -
Software tools for Local Search and Metaheuristics n of Concepts in Local Search Algorithms
Tool Reference Language Type ‘ User Applcation |
Solvers . .
Simplo Token-ring Herated § Sowing Input (utiLh, utl.c)
Na: nbomew 3
solver solver el Local Search 2 strategy R (e
k3 long int number_jobs; /+ number of jobs in instance */
Runners Rickers H s T T e bl F 0 P et s e et ey
£ Lon roc_time [MAX_JOBS];
EasyLocal++ C+ Java Ls r Tabu Sirple Molt-modsl 3 Metaheuistic P e i
G el E [Woker |- §E Tong int due_date[MAX_JOBS];
i instance_type;
ParadisEO ¢ C++ EA LS -Hrepers } -tyPe
| sue || Neign T com || Pprotibion | Local search instance_type instance;
| Manager || Explorer || Comy || Manager | £ features
|| Mensoor || Ewlorr || Comeonent || Meneger | 3 void read_problen_size (char name[100])
= § void read_instances (char input_file_nane[100])
H
Comet . — Language iz } ‘ Output } ‘ & } ‘ o } £ Basicdata
table prepared by L. Di Gaspero .
implemented in EasyLocal++
%

State/Solution (util.h)

typedet struct {
long int job_at_pos[(MAX_JOBS]; /+ Gives the job at a certain pos

Long int pos_of_job[MAK_JOBS]; /« Gives the position of a specific. Joh 1%
long int completion_tine_job(MAX_JOBS); /+ Gives C_j of job j =/

long int start_vime_job[MAX_JOBS]; /x Gives start time of job j *
Long int tardiness_jobMAXJOBS]; /v Gives T._j of job j +/
long int value; /+ Objective function value *]

} ‘sol_representation;

sol_representation sequence;

Output (util.c)

void print_sequence (long int k)
Void print_completion_times ()

State Manager (util.c)

void construct_sequence_randon ()
void construct_sequence_canonical ()
long int evaluate ()

The Code Delivered
Practicsl Exercise

e S rhe codeDalvered
etical Exe

Random Generator (random.h, random.c)

void set_seed (double arg)

int ranbint (int 1, int j)
void shuffle (int *X, int size)

Timer (timer.c)

double getCurrentTine ()

o Implement two basic local search procedures that return a local optimum:

void 1s_swap_first() {J;
void 1s_interchange_first() {J;

° the other d for p
mentioned at the lecture from one of the two previous neughborhoods
o Provide computational analysis of the LS implemented. Consider:
o size of the neighborhood
@ diameter of neighborhood
 complete nelghborhood examination
o local optima at

@ Devise speed ups to reduce the computational complexity of the LS
implemented

@ Improve your heuristic in order to find solutions of better quality. (Hint:
use a construction heuristic and/or a metaheuristic)

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 9

Heuristics

Marco Chiarandini

Outline

1. Ants
Adaptive Iterated Construction Search

Outline

1. Ants

Ants Adaptive Iterated Conser]

Adaptive lterated Construction”Search

Key Idea: Alternate construction and perturbative local search phases as
in GRASP, exploiting experience gained during the search process.

Realisation:

o Associate weights with possible decisions made during constructive
search.

o Initialize all weights to some small value 7, at beginning of search
process.

@ After every cycle (= constructive + perturbative local search phase),
update weights based on solution quality and solution components
of current candidate solution

Ants Adaptive Iterated Construl

Adaptive Iterated Construction Search (AICS):
initialise weights
While termination criterion is not satisfied:

generate candidate solution s using
subsidiary randomized constructive search

perform subsidiary local search on s
adapt weights based on s

Ants

Subsidiary constructive search:

@ The solution component to be added in each step of constructive
search is based on weights and
heuristic function h.

o h can be standard heuristic function as, e.g., used by
greedy construction heuristics, GRASP or tree search.

e It is often useful to design solution component selection in
constructive search such that any solution component may be
chosen (at least with some small probability) irrespective of
its weight and heuristic value.

rated Constr

Ants Adaptive Iterated Constrd

Subsidiary perturbative local search:

o As in GRASP, perturbative local search phase is typically important
for achieving good performance

@ Can be based on Iterative Improvement or more advanced LS
method (the latter often results in better performance).

@ Tradeoff between computation time used in construction phase vs
local search phase (typically optimized empirically, depends on
problem domain).

Ants Adaptive Iterated Constral

Weight updating mechanism

o Typical mechanism: increase weights of all solution components
contained in candidate solution obtained from local search.

o Can also use aspects of search history; e.g., current incumbent
candidate solution can be used as basis for
weight update for additional intensification

Ants Adaptive Iterated Constr]

Example: A simple AICS algorithm for the TSP (1)
(Based on Ant System for the TSP [Dorigo et al., 1991])
o Search space and solution set as usual (all Hamiltonian cycles in
given graph G).
@ Associate weight 7;; with each edge (i,7) in G.
@ Use heuristic values 7;; := 1/w((i, j)).
o Initialize all weights to a small value 7, (parameter).
o Constructive search starts with randomly chosen vertex

and iteratively extends partial round trip ¢ by selecting vertex
not contained in ¢ with probability

[7i] - [ns)?

At Adaptive Iterated Constrf

Example: A simple AICS algorithm for the TSP (2)

e Subsidiary local search = iterative improvement based on standard
2-exchange neighborhood (until local minimum
is reached).

@ Weight update according to
7= (1= p) 7+ A

where A(i, j,s") :=1/f(s'), if edge (i,) is contained in
the cycle represented by s/, and 0 otherwise.

@ Criterion for weight increase is based on intuition that edges
contained in short round trips should be preferably used in
subsequent constructions.

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 10
Single Machine Models, Dynamic
Programming

Marco Chiarandini

Outline

1. Dispatching Rules

2. Single Machine Models

Dispatching Rule

QOutline

1. Dispatching Rules

2. Single Machine Models

Dispatching Rules

Dispatching rules ks Wil

Distinguish static and dynamic rules.

o Service in random order (SIRO)

o Earliest release date first (ERD=FIFO)
o tends to min variations in waiting time

o Earliest due date (EDD)
o Minimal slack first (MS)

o j* = argmin, {max(d; — p; —t,0)}
o tends to min due date objectives (T,L)

o (Weighted) shortest processing time first (WSPT)
o j* = argmax;{w;/pj}

e tends to min)" w;C; and max work in progress and

o Loongest processing time first (LPT)
@ balance work load over parallel machines

@ Shortest setup time first (SST)
o tends to min Cnax and max throughput

o Least flexible job first (LFJ)
o eligibility constraints

o Critical path (CP)
o first job in the CP

o tends to min Craz
@ Largest number of successors (LNS)

@ Shortest queue at the next operation (SQNO)
o tends to min idleness of machines

Dispatching Rules

Dispatching Rules in Scheduling® .

RULE OBJECTIVES

Rules Dependent ERD 1,
on Release Dates EDD d;
and Due Dates _ MS d;

Variance in Throughput Times
Maximum Lateness
Maximum Lateness

PT i
Rules Dependent SPT p;

Load Balancing over Parallel Machines
Sum of Completion Times,

on Processing WSPT pj, w; Weighted Sum of Completion Times, WIP
Times <3 P prec Makespan

LNS pj, prec Makespan

SRO - Ease of Implementation
Miscellaneous SST sk Makespan and Throughput

LFJ M; Makespan and Throughput

SQNO - Machine ldleness

DATA ENVIRONVENT
1 SIRO —_
2 ‘ ERD ” T, | Ve, — rpim)
3 | EDD d; 1l Lo
oM d 1L,
5 ' SPT P Pm \Zz‘, Fmlpy=p; 1 2C
6 WSPT w;, p; Pmi| S w,C;
7 ’ LPT 7 P || Cou
8 SPT-LPT P Fm | block, py = p; | Canax
9 ’ cp puprec | Pm|prec| Cuu
10 | LNS Pjrprec Pm | prec | Cpu
1 | ossT Sp 1 856 | Conex
12 | LF M, | Pm M| Coe
13 | LaprT Py | 021l Come
1 | sQ - Pm | £.C;
Is | sQNO — Imlly

ing Rules
Machine Models

Dispat

Composite dispatching rules =

Why composite rules?
o Example: 1] S uw;T):

o WSPT, optimal if due dates are zero

o EDD, optimal if due dates are loose

o MS, tends to minimize T'

» The efficacy of the rules depends on instance factors

Dirpatcing Rulex
< Whodels
Instance characterization
@ Job attributes: {weight, processing time, due date, release date}

@ Machine attributes: {speed, num. of jobs waiting, num. of jobs
eligible}

o Possible instance factors:
o I wT;

d
Cmazx

9, = dmoz Zdmin (4 date range)

Crmaz

6 =1-

(due date tightness)

o 1] 8% S wyTy
(601, 62 with estimated Crnaz = Y p; +15)
=

s (set up time severity)

Dinpasching Rules
= Mackine Modeh

o 1][Y- w;T;, dynamic apparent tardiness cost (ATC)

Sy <7lnax(zlj —pi [.0))
P, Kp

e
i

5

o 1]s;x| > w;T;, dynamic apparent tardiness cost with setups (ATCS)

Ly = CXP(max(d; —p; —t.
Py

Kip

after job [has finished.

Disparching s

Summary

@ Scheduling classification
@ Solution methods

@ Practice with general solution methods
@ Mathematical Programming
o Constraint Programming

o Heuristic methods

Outlook on Scheduling

Objectives:
Look closer into scheduling models and learn:

o special algorithms

o application of general methods

Cases:

o Single Machine
© Parallel Machine

@ Permutation Flow Shop
@ Job Shop

o Resource Constrained Project Scheduling

Outline

1. Dispatching Rules

2. Single Machine Models

Outlook Sngis Miodele
111 > w;C; : weighted shortest processing time first is optimal
11|32, U; = Moore's algorithm
1| prec| Lz Lawler's algorithm, backward dynamic programming in

O(n?) [Lawler, 1973]
11| S hy(Cy) : dynamic programming in O(2")
1| >>w;T; : local search and dynasearch
1] 75, (prec) | Ly : branch and bound

 in the special case, Gilmore and Gomory algorithm
optimal in O(n?)

1|)k | Cmaa

column generation approaches

LI Y wTy -

Multicriteria

Dispatching R
inkle Machine Models

Summary

Single Machine Models:

© Cipas is sequence independent

e if r; =0 and h; is monotone non decreasing in C; then optimal
schedule is nondelay and has no preemption

Dispatching Rules
Single Machine Models

1] X w;C;
[Total weighted completion time]

Theorem: The weighted shortest processing time first (WSPT) rule is
optimal
Extensions to 1| prec| Y- w;C,

o in the general case strongly NP-hard
o chain precedences:
process first chain with highest p-factor up to, and included, job

with highest p-factor.

o polytime algorithm also for tree and sp-graph precedences

Dispatching Rules
Single Machine 1

Extensions to 1|, prmp| 32 w;C

o in the general case strongly NP-hard
@ preemptive version of the WSPT if equal weights

o however, 1|1, | 3 w,C; is strongly NP-hard

Dispatching Rules
Single Machine Models

12,0

[Number of tardy jobs]

o [Moore, 1968] algorithm in O(nlogn)

o Add jobs in increasing order of due dates

o If inclusion of job j* results in this job being completed late
discard the scheduled job k* with the longest processing time

o 1|| 32, w;Uj is a knapsack problem hence NP-hard

Dispatching Ruler
Single Machine Models

Dynamic programming

Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions
must be optimal
o Break down the problem into stages at which the decisions take
place
o Find a recurrence relation that takes us backward (forward) from
one stage to the previous (next)

(In scheduling, backward procedure feasible only if the makespan is
schedule, eg, single machine problems without setups, multiple machines
problems with identical processing times.)

Dispatching Rules
Single Machine Models

1| prec| himae

® has = max{hi(C1), hao(Ca), ..., hn(Cn)}, by regular

o special case: 1| prec| hyna, [maximum lateness]

o solved by backward dynamic programming in O(n?) [Lawler, 1978]
J set of jobs already scheduled:
J* set of jobs still to schedule;

J' C J¢ set of schedulable jobs

Step 1: Set J =0, J¢={1,...,n} and J' the set of all jobs with
no successor

Step 2: Select j* such that j* = argminje {; (Xgese i)}
add j* to .J; remove j* from J¢; update .J’

Step 3: If J¢ is empty then stop, otherwise go to Step 2.

© For 1| | Lyas Earliest Due Date first
® 1|7j|Lymaz is instead strongly NP-hard

(O el Wadhine bedels (O odi Madiine edels (C: ki ine edele
1| X hi(Cy) Sreleachine L[] X hi(C5) Sl achine L[| X hi(C) Sl techine
Aot of work d L Syt Local search
o ot of work done on w; T o))
o generalization of 3" w;7; hence strongly NP-hard [single-machine total weighted tardiness] o Interchange: size (}}) and O(|i — j|) evaluation each
o first-improvement: m;, 7,
o (forward) dynamic programming algorithm O(2")) o . Pr, <Pm, for improvements, w;T; + w T must decrease because
o 1|| 32 7; is hard in ordinary sense, hence admits a pseudo jobs in ;... i can only increase their tardiness.
. _ polynomial algorithm (dynamic programming in O(n* 3" p;)) Pr; 2 Pry pOssible use of auxiliary data structure to speed up the
J set of job already scheduled; computation
o 1|| S w;T; strongly NP-hard (reduction from 3-partition) o best-improvement: 7;, m
V(J) = jes hi(Ch) i Pr; < pmy for improvements, w;T; + wi Ty must decrease at least
o exact solution via branch and bound feasible up to 40 jobs as the best interchange found so far because jobs in
. [Potts and Wassenhove, Oper. Res., 1085] ... can only increase their tardiness.
Step 1: Set J =0, V(j) = hj(p;), j=1,...,n L . . . Pr, = px, possible use of auxiliary data structure to speed up the
e exact solution via time-indexed integer programming formulation ’ computation
, : .] used to lower bound in branch and bound solves instances of 100 P
Step 2: V(J) = minjes (V(J = {}) + h; (Zpes pr)) jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007] o Swap: size n — 1 and O(1) evaluation each
o "))
_ . - o dynasearch: results reported for 100 jobs within a 0.005% gap from o Insert: size (n — 1) and O(|i — j|) evaluation each
Step 3: If J = {1,2,...,n} then V({1,2,...,n}) is optimum, optimumm in less than 3 seconds [Grosso et al., Oper. Res. Lett But possible to speed up with systematic examination by means of
otherwise go to Step 2. 2004] swaps: an interchange is equivalent to |i — j| swaps hence overall
examination takes O(n?)
o Sinie ackine Wiodela Shvie achin Miodes
o state (k,7)
Dynasearch — o) that s mi - o The best choice is computed by recursion in O(n?) and the optimal
N N @ 7 is the partial sequence at state (k,) that has min w! !
o two interchanges 5,5 and Gy, are independent & p q (k) > series of interchanges for F/(,) is found by backtrack.
iFamax{j, i} < min{l,m} or min{l, b} > max{l,m}; o . is obtained from state (i,) o Local search with dynasearch neighborhood starts from an initial
o the dynasearch neighborhood is obtained by a series of independent - sequence, generated by ATC, and at each iteration applies the best
interchanges appending job (k) after (i) i=k-1 dynasearch move, until no improvement is possible (that is,
! appending job (k) and interchanging (i + 1) and (k) 0<i<k—1 F(xt) = F(ai!™Y), for iteration t).
o it has size 27! — 1; .
o F(m)=0; F(m) =wrq) (Pr(1) = de() s o Speedups: o
o but a best move can be found in O(n?) searched by dynamic . o pruning with considerations on px () and pe(i1)
programming; F(mi-1) + wagry (Crgry — i)™ o maintainig a string of late, no late jobs
.)| in I{F(m) t W (k) (Crgi) + Pri) ai,m)+ + o he largest index s.t. 7"V (k) = 7t~ (k) for k = 1,..., h, then
o it yields in average better results than the interchange neighborhood F(m) = min ¢ 1si<k=1 _ AR F(l™D) = P(x{'") for k= 1,..., h; and at iter { no need to
alone + k2 nty) (Crt) + Prisy ~ Prien =)+ consider i < hr
(1) (Crgry = dn(itn))
2 o =
iachiog ks gimcing ke
175 | Linaz Sinie hachine Widele Sinie ek Vioden

Dynasearch, refinements:

@ [Grosso et al. 2004] add insertion moves to interchanges.

o [Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n?)

[Maximum lateness with release dates]

o Strongly NP-hard (reduction from 3-partition)
o might have optimal schedule which is not non-delay

Liaz)

o Branch and bound algorithm (valid also for 1 |r;, prec
o Branching:
schedule from the beginning (level k, n!/(k — 1)! nodes)
elimination criterion: do not consider job ji if:

75 > min {max (t,r) + pt} J jobs to schedule, t current time
3

o Lower bounding; relaxation to preemptive case for which EDD is
optimal

Branch and Bound

S root of the branching tree

LIST := {S};

U:=value of some heuristic solution;

1

2

3 current _best := heuristic solution;
4 while LIST # 0
5

6

7

Choose a branching node & from LIST;

Remove from LIST;

Generate children child(i), i
lower bounds LB;;

ny, and calculate corresponding

8 for i:=1 to ny
9 if LB; <U then
10 if child(i) consists of a single solution then
11 U:=LB;;
12 current_ best:=solution corresponding to child(i)

13 else add child(i) to LIST

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 11

Single Machine Models, Branch and Bound

Marco Chiarandini

Single Machine Models

Outline

1. Single Machine Models
Branch and Bound
1|5k | Cinax

Single Machine Models

QOutline

1. Single Machine Models

. Branch and Bound) Branch and Bound . . Branch and Bound
Linas Single Machine Models Single Machine Modele Branch and Bound Single Machine Models
[Jens Clausen (1999). Branch and Bound Algorithms
Branch and Bound
[Maximum lateness with release dates] 5 f Principles and Examples.]
S root of the branching tree
o Strongly NP-hard (reduction from 3-partition) 1 ST = (s} o Eager Strategy:
2 U:=value of some heuristic solution;
o might have optimal schedule which is not non-delay 3 current_best := heuristic solution; ; f‘e“ha node
4 while LIST # 0 3 for e eh subprobl bounds and th
o Branch and bound algorithm (valid also for 1|7, prec | Lynas) 5 Choose a branching node k from LIST; or each subproblem compute bounds and compare wit
o Branching: 6 Remove k from LIST; incumbent solution X .
schedule from the beginning (level &, n!/(k — 1)! nodes) 7 Generate children child(i), i = 1,....n, and calculate corresponding lower 4. discard or store nodes together with their bounds
elimination criterion: do not consider job e if: .. bolurds LB; (Bounds are calculated as soon as nodes are available)
for i:=1 to nj.
r; > min{max (t,r1) + pi} J jobs to schedule, ¢ current time 9 if LB; < U then o Lazy Strategy:
e 10 if ;[.udgg} consists of a single solution then 1. select a node
o Lower bounding: relaxation to preemptive case for which EDD is e . . 2. compute bound
! 12 current_best:=solution corresponding to child(i)
optimal 13 else add child(i) to LIST 3. branch)
- 4. store the new nodes together with the bound of the processed
node
(often used when selection criterion for next node is max depth)
Single Machine Models. Branch and Bound Single Machine Models ~ Branch and Bound Single Machine Models Branch and Bound
Strategy for selecting next subproblem
Bounding o best first
Components mipg(s) - { :::::,(p f((:)) } - mi;)j(s) (combined with eager strategy but also with lazy)
- Initial feasible solution (heuristic) — might be cruciall o< 2e5 g\ €
L. Bounding funci P: candidate solutions; 5 C P feasible solutions o breadth first
ounding function & (memory problems)
2. Strategy for selecting o relaxation: mingep f(s)
3. Branching o solve (to optimality) in P but with g @ depth first
 Fathmoing (dominance test) works on recursive updates (hence good for memory)
o Lagrangian relaxation combines the two but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds
@ should be polytime and strong (trade off) combined with branching on the node with the largest difference in
bound between the children)
(it seems to perform best)
. o 0
Single Machine Models Branch and Bound Single Machine Models Branch znd Bound . Single Machine Models 872nch and Bound
L | XwT;
Branching . o Branching:
Branch and bound vs backtracking o work backward in time
o dichotomic = a state space tree is used to solve a problem. o elimination criterion:
o polytomic if p; < pr and d; < di and w; > wy. then there is an optimal
branch and bound does not limit us to any particular way of schedule with j before k
traversing the tree (backtracking is depth-first)
Overall guidelines o Lower Bounding:
o finding good initial solutions is important # branch and bound is used only for optimization problems. relaxation to preemptive case
transportation problem
o if initial solution is close to optimum then the selection strategy " O
makes little difference i
o e Branch and bound vs A* mind 7 37 e
o Parallel B&B: distributed control or a combination are better than . - P . J=1 t=1
centralized control = In A" the admissible heuristic mimics bounding o
- . . st Tje = Py, Vi=1,...,n
o pﬁrallellzatlon might be used also to compute bounds if few nodes In A" there is no branching, It is a search algorithm ; it =P
alive
o parallelization with static work load distribution is appealing with # A" is best first SNep<t V=1 Cou
large search trees i=1
>0 Wi=1,...m t=1,
u 12 1
Single Machine Models Branch and Bound Single Machine Models ! Single Machine Models R ©
1 | Sjk | Cmaz

[Pan and Shi, 2007]'s lower bounding through time indexed
Stronger but computationally more expensive

n T-1

ming E CjtYjt

i=11=1
st
T—p;
cje < hy(t+p;)
=1

P
Z,/J,zl, Vi=1,...,n
t=1

> > west

=1 s=t-p;+1
Yje 20

Vt=1,...,Crax

setup times]

with sequenc

o general case is NP-hard (traveling salesman reduction)

@ special case:
parameters for job j:
o aj initial state
@ b; final state
such that:

sjk o |ax — bl

[Gilmore and Gomory, 1964] give an O(n?) algorithm

o assume by < by < ... < by, (k> j and b > by)

@ one-to-one correspondence with solution of
TSP with n + 1 cities
city 0 has ag, by
start at by finish at ap

o tour representation ¢ : {0,1,...,n} ~— {0,1,...,n}
(permutation map, single linked array)

@ Hence,
min ¢(¢) = ZO,WJ w
=1
HS)£S VSV)

o find ¢* by ignoring (2)
make ¢* a tour by interchanges chosen solving a min spanning tree
and applied in a certain order

Single Machine Modela 770

o Interchange 67%

5 (@) ={o' | (1) = o(k). (k) = 0(i). #'(1) =0(), VI#j.k}

o Cost
cp(7F) = ¢(67%(9)) — c(¢)
= [l [bj» b N [ag () aso] |l

o Theorem: Let ¢* be a permutation that ranks the a that is k > j
implies ay () > ay(;j) then

c(¢") = min
c(¢*) ah

o Lemma: If ¢ is a permutation consisting of cycles C1,...,C, and
§7% is an interchange with j € C, and k € Cy, 7 # s, then 67%(¢)
contains the same cycles except that C.. and C, have been replaced
by a single cycle containing all their nodes.

Single Machine Models

o Theorem: Let 671kt gizk
corresponding to the arcs of a spanning tree of Gy

be taken in any order. Then ¢/,

§77F» be the interchanges

& = M 0§k oo §ine (g7
is a tour.

o The p— 1 interchanges can be found by greedy algorithm
(similarity to Kruskal for min spanning tree)

o Lemma: There is a minimum spanning tree in G4 that contains
only arcs §7:7+1,

o Generally, c(¢') # c(8751) + c(§7252) + ... + c(89rkr).

The arcs may

Single Machine Models (7 27l Bound

ik | Cmas

o
i <
node j in ¢ is of 4 1P 1 Fbi < as
Type I, otherwise
) [Type !, if lower node of type |
interchange jk is of !
Type I, if lower node of type II
o Order:

interchanges in Type | in decreasing order
interchanges in Type Il in increasing order

o Apply to ¢* interchanges of Type | and Type Il in that order.

@ Theorem: The tour found is a minimal cost tour.

Branch and Bound 3ranch and . Branch and Bound
Single Machine Models 570 1 5 Summary Single Machine Modee 70 7 Complexity resume Singl Machine Modee 71 (71 B
Resuming the final algorithm [Gilmore and Gomory, 1964]: L[| X w;C; : weighted shortest processing time first is optimal
Step 1: Arrange b; in order of size and renumber jobs so that . Ui M ‘s algorith
b <bjs1,j=1....n I122;Uj + Moore's algorithm Single machine, single criterion problems 1| |7:
Step 2: Arrange a; in order of size. 1| prec| Ly, : Lawler's algorithm, backward dynamic programming in Crnax P
Step 3: Define ¢ by ¢(j) = k where k is the j + 1-smallest of the O(n?) [Lawler, 1973] Tnas P
L P
a;. maz
Step 4: Compute the interchange costs cg;+1, j =0,...,n— 1 L[] 32 h;(C5) : dynamic programming in O(2")]g:"g,’ ;Z
%)
cananr = | [bg, byea] N [age), 2] | 1] Y w,T; : local search and dynasearch %2@0] 7’;
Step 5: While G has not one single component, Add to G the arc Ly, (prec) | s+ branch and bound Sw;U; weakly A’P-hard
of minimum cost ¢(§/7*1) such that j and j + 1 are in ! >r weakly A"P-hard
N ;T trongly N'P-hard
two different components. 11551 | Chae * in the special case, Gilmore and Gomory algorithm %:J(c]‘) o P
Step 6: Divide the arcs selected in Step 5 in Type | and II. optimal in O(n?) A Bl J
Sort Type | in decreasing and Type Il increasing order of
index. 1] S w,T; : column generation approaches
Apply the relative interchanges in the order.
- Multiobjective: Multicriteria Optimization 2
H Single Machine Models {700 17 e Singhe Machine Moddle Brench snd Bound
Extensions 1TE [Coras 1 Cmas
Multicriteria scheduling
Resolution process and decision maker intervention:
Non regular objectives ® a priori r‘nethods (c!eﬁniu'on of weights, importance)
oal programmin
o l|dj=d| Y E+Y1T; -g.pg ing
o weighted sum
@ In an optimal schedule, ° .

o early jobs are scheduled according to LPT

o late jobs are scheduled according to SPT o interactive methods

o a posteriori methods (Pareto optima)
o lexicographic with goals

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 12
Single Machine Models, Column Generation

Marco Chiarandini
Slides from David Pisinger's lectures at DIKU

Outline

1. Lagrangian Relaxation

2. Dantzig-Wolfe Decomposition
Dantzig-Wolfe Decomposition
Delayed Column Generation

3. Single Machine Models

Outline

1. Lagrangian Relaxation

2. Dantzig-Wolfe Decomposition

3. Single Machine Models

Relaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

. max,ep f(s)
maxg(s) > { maxecs g(s) > rygf(-@)
@ P: candidate solutions;

@ S C P feasible solutions;

@ g(x) > f(x)

Which constraints should be relaxed?

o Quality of bound (tightness of relaxation)

o Remaining problem can be solved efficiently

o Proper multipliers can be found efficiently

o Constraints difficult to formulate mathematically

@ Constraints which are too expensive to write up

Different relaxations
Tighter
@ LP-relaxation

Best surrogate
relaxation

o Deleting constraint
o Lagrange relaxation

Best Lagrangian
relaxation

o Surrogate relaxation
o Semidefinite relaxation

LP relaxation
Relaxations are often used in combination

Tightness of relaxation

max cx
st. Az <b
Dz <d
z el
LP-relaxation:
max {cx : x € conv(Az < b,Dr <d,x € Z;)}
~ Lagrangian Relaxation:
max zzp(\) = cx — A(Dz — d)
st. Az <b
z el
LP-relaxation:

max {cx : Dr <d,z € conv(Az < b,z € Z;)}

Relaxation strategies

Which constraints should be relaxed
@ "the complicating ones"

@ remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)

remaining problem is totally unimodular
(e.g. network problems)

remaining problem is NP-hard but good techniques exist
(e.g. knapsack)

constraints which cannot be expressed in MIP terms
(eg. cutting)

constraints which are too extensive to express
(e.g. subtour elimination in TSP)

Subgradient optimization Lagrange multipliers

max z = cx
st Ar <b
Dr<d
z €LY
Lagrange Relaxation, multipliers A > 0
max zpr(A) = cx — AN(Dz — d)
s.t. Av < b
€LY
Lagrange Dual Problem

zrp = minzpp(X
LD =it Lr(A)

@ We do not need best multipliers in B&B algorithm
o Subgradient optimization fast method
o Works well due to convexity

o Roots in nonlinear programming, Held and Karp (1971)

Subgradient optimization, motivation

" enApn)
k) en Dy —ay

R L)

\ P
N

)

cu=MDu=d) 5

T X Xnot Xp

Netwon-like method to minimize a
function in one variable

Lagrange function zz()) is
piecewise linear and convex

Subgradient
Generalization of gradients to non-differentiable functions.

Definition

An m-vector v is subgradient of f(A) at A — X if

F) = f) +9(A = X)

The inequality says that the hyperplane
y=FN+r(A =%
is tangent to 5 = f()) at A — A and supports f()) from below

f(h)

Proposition Given a choice of nonnegative multipliers A. If 2/ is an
optimal solution to z,z(\) then

y=d- Dz
is a subgradient of z;z(\) at A = A

Proof We wish to prove that from the subgradient definition:

mex (cx = A(Dz —d)) =2 (A= A) + max (cx =MDz — d))

where 2’ is an opt. solution to the right-most subproblem.
Inserting y we get:
max (cz =MDz —d)) > (d- Da')(A = A) + (ca’ — A(Dz' — d))

= '~ \Da' —d)

Intuition
Lagrange relaxation

max zpp(A) = ez — AN(Dz — d)
st Az <b
z el
Gradient in o’ is
y=d- Dz

Subgradient Iteration
Recursion
AL = max {AF —

where 6 > 0 is step-size

ko}

If v > 0 and @ is sufficiently small zzg()\) will decrease.
 Small § slow convergence

o Large 6 unstable

Held and Karp

Initially

compute the new multipliers by recursion
N Rt if [yl <e
T max(WY - 6y,0) if [y >e

where v is subgradient.

The step size 6 is defined by

P
where 1 is an appropriate constant.

E.g. p1 = | and halved if upper bound not decreased in 20
iterations

0=y

Lagrange relaxation and LP
For an LP-problem where we Lagrange relax all constraints

o Dual variables are best choice of Lagrange multipliers

o Lagrange relaxation and LP "relaxation" give same bound
Gives a clue to solve LP-problems without Simplex

o Iterative algorithms

o Polynomial algorithms

Outline

1. Lagrangian Relaxation

2. Dantzig-Wolfe Decomposition

3. Single Machine Models

Dantzig-Wolfe Decomposition

Motivation

o split it up into smaller pieces a large or difficult problem

Applications
o Cutting Stock problems
@ Multicommodity Flow problems
o Facility Location problems
o Capacitated Multi-item Lot-sizing problem
o Air-crew and Manpower Scheduling
@ Vehicle Routing Problems
@ Scheduling (current research)
Two currently most promising directions for MIP:
@ Branch-and-price

@ Branch-and-cut

Dantzig-Wolfe Decomposition
The problem is split into a master problem and a subproblem
+ Tighter bounds
+ Better control of subproblem

— Model may become (very) large

Delayed column generation

Write up the decomposed model gradually as needed
@ Generate a few solutions to the subproblems
@ Solve the master problem to LP-optimality

@ Use the dual information to find most promising solutions to the
subproblem

o Extend the master problem with the new subproblem solutions.

Motivation: Cutting stock problem

o Infinite number of raw stocks, having length L.
 Cutm piece types i, cach having width w; and demand
b

 Satisfy demands using least possible raw stocks.

Example:
—
|]

® Raw length .= 22

Some possible cuts

ew; =5b=7

3,b=3

Formulation 1 Formulation 2 Decomposition

1 model has

minimize uy +uy+ 13+ s+ us The matrix A contains all different cutting patterns . block structure Vo
max clx 22 oK

subject to 5x1 + 3x12 < 22u; All (undominated) patterns: e A

Stay+ 3t < 2202 vo12s st ’xl + tot AN = b

5x31 43130 < 2213 A:<U7;;’2> o+

Sxar+3xa2 < 224 h + D

Sxs) + 35y < 22us Problem

-+ xs x> 7 minimize A+ o + A+ hy+ As e

X2+ x4 xn+x+x5 >3

01 subject 0 4%, + 0h + 1A3+ 244 + 345 > 7
uj EE fz ¥ Oy + Tho + 5h3 + 4k + 205 > 3 Lagrangian relaxation
xij €Zy
A€y Objective becomes

LP-relaxation gives solution value =2 with

LP-relaxation gives solution value z = 2.125 with el bt e
w=ur=1x;=26xp=3x,= (Al A%+ L AR)
M =1.375,4=075 Decomposed into

maxclx! —MAlx! + 22 — A+ L+ Kk —2AKxK 4 b
oo } Dyl o+ <dy
Block structure + e <d

- R Due to integer property a lower bound is [2.125] = . <
. Optimal solution valué is z* = 3. ., o i <de

s ez fezt X e zx

Round up LP-solution getting heuristic solution 2

Model is separable

Strength of linear master model

Dantzig-Wolfe decomposi

Solving LP-relaxation of master problem, is equivalent to

1f model has “block” structure Dantzig-Wolfe decomposition (Wolsey Prop 11.1)

max ol A2 o "
st /\:r’l + AW 4+ AN =0 Substituting X* in original model getting Master Problem A VI
D'+ <d 7 e conv(X! ke conv(XH)
e T o € conv(x!) € conv(X*)
<
Cx)
legn 2egm D < Proof: Consider LP-relaxation
ez} FPezp ... Kez?

maxc

maxc! (¥ hax™) + (Y o) 4.4+ K (Y M,
1Ty 1€y

(X M)+ AL Rard®™) A K (L M)
= =
€Tk

Describe each set X*, k =3

max clx' 4

st ANE M) HAT (Y R AR (Y A=

st A+ sto AN(Y M) +A2(Y ho)+ AR (Y) =b
xtext 1€T] €Ty €Tk Y=t e
where X* = {* € Z¥ : D'V < d &
¢ sdj Y o= Ay 20, (€T K
G
Assuming that X* has finite number of points {¥*/} 1 € T '7\ * o1}
i €10, 17,
e A=Yt d Tnformally speaking we have
xr= Lenhy =1, o joint constraint is solved to LP-optimality
My e{0 1} €T block constraints are solved to IP-optimality
Strength of Lagrangian relaxation Strength of Lagrangian Relaxation (section 10.2) Delayed Column Generation

2" be LP-solution value of master problem

Integer Programming Problem
o 2! be solution value of lagrangian dual problem L
maximize cx

(Theorem 11.2) subjectto Ax <b

Dx<d . :
X €Ly, j=1l,...n Delayed column generation, linear master
Proof: Lagrangian relaxing joint constraintin o Master problem can (and will) contain many columns
max x4 AP 44 K
StoAwE AW bk AR =) Lagrange Relaxation, multipliers % > 0 o To find bound, solve LP-relaxation of master
Dix' + <d
+ D < d, maximize zx(A) = cx—A(Dx—d) . .
xS subject o Ax < b o Delayed column generation gradually writes up master
WK <dy xj €L
ezl fe *ezr U=
Using result next page for best multiplier A >0
max. cly! + 22 +o+ ik
o R S D R max{ cx: Dx < d,x € conv(Ax < b,x € Z,)
xeconv(X') ¥ cconv(X?) ... i €conv(X¥)
2
Deayed colunn generation, linear master Reduced Costs
em=5n=7 =3 Simplex in matrix form 0 B L ': [
w33 ~1 ¢z cc| |*B 0
o Raw length .= 22 T

Some possible cuts Simplex algorithm sets 2, = 0 and 25 = B~'b

In matrix form:

e e m— m——] [0 A] H m B invertible, hence rows linearly independent
e — “1oefle 0 The objective function is obtained by multiplying and subtracting
S E— o B={1,2,...,p} basic variables constraints by means of multipliers 7 (the dual variables)
 ES——— — — — ={12,...,
o ——— — o £={1,2,...,q} non-basis variables (will be set to lower bound = 0) Ll L] »
In matrix form o (B..) basis structure 2= e =Y may| 4y | — o may | + Y mbs
40123 g = :
- (07541) ® zp.TL, 0B, CL,
“problem Each basic variable has cost null in the objective function
min ex o B=[A1, Az Ayl L= [Api1s Apiae-s Api])
st Ax=b P
x>0 i = Bfer
where 0 B L z b
e [2 2 [a]-[]

R

e

eo= (L1111,
1 —1 xp =0
Brg+Lec=b = as+B 'Lag=B'% = |7 1y
s =B"'b n »
Delayed column generation (example) Small example (continued) Small example (continued)
ewm=50=7 [Find entering variable Add new cutting pattern to A getting
. =3 [Loy, 403
A = jen 4 (o 72
* Raw length L = 22 tey
Solve problem to LP-optimality, getting primal solution
ex—yAy =
Initially we choose only the trivial cutting pattems ‘We could also solve optimization problem
ao (40 . and dual variables
=(o9 min
St Su+3n
Solve LP-problem SLoSm+3u <22
x> 0,integer Note, we do not need to care about “leaving variable™
min cx . To find entering variable, solve
st Ax=b which is equivalent to knapsack problem A
x>0 Lo max o g
max ox+zx
ie. e SLSn+3n
(; ‘;)(;%(Z) stSx+3n <22 © 20, integer
ol . - x > 0,integer This problem has optimal solution x; = 4, x2 = 0,
withsoluton 1y = Fand = 5. “This problem has optimal solution x, Reduced cost of entering variable
The dual variables are y = cpdj” i.e. Reduced cost of entering variable
Lo !
anh)-(1)
Outline Scheduling
X Lprec| X w;C;
Questions Sequencing (linear ordering) variables
1. Lagrangian Relaxation
@ Will the process terminate?
Always improving objective value. Only a finite number of basis mi"Z wiprr; + Z w;p;
solutions. 2. Dantzig-Wolfe Decomposition = =

stoagdantaeg>l gkl=1...nj#kk#L
g Aae =1 Vik=1,...nj#k

No, since the objective functions is improved. We know the best 2, € {0,1} Gk =
solution among existing columns. If we generate an already existing ’
column, then we will not improve the objective

o Can we repeat the same pattern?

3. Single Machine Models 2, =0 Vji=1l...n

Scheduling

1prec|Caz
Completion time variables

mmg w;z;
i=1

stozp—zj2py forj—keA
forj=1,....n

J— 2k = py, for (i,j) el

2 > pj,

-z 2pe o

z€R, j=1,..., n

Scheduling

I hi(Cs)
Time indexed variables

n T—p;+1
miny >~ btz

=1 =1

T—p;+1
s.t. Z zjp=1, forallj=1,....n

=1
n t
> <1, foreacht=1,...,T
J=1s=t—p;+1
20 €{0,1}, foreachj=1,...mit=1...T—p;+1

+ This formulation gives better bounds than the two preceding

pseudo-polynomial number of variables

Dantzig-Wolfe decompo:

Reformulation:

0 T—pi+1

miny > Ayt +)T

=1 =1
T—p;+1

zje € X

I
where X = {x e {0.1}:> " 3 au <1 foreacht=1....

e=1

for each j

forall j=1,....n

J=1 s=t—p;+1

al,l=1,...,L extreme points of X.

ze{0,1}

r=yk nat

~L

Y h=1,
A e{0,1}

1

T

matrix of X is interval matrix
extreme points are integral

they are pseudo-schedules

Dantzig-Wolfe decomposition
Substituting X in original model getting master problem

n T-pi+1 L

miny St +p)(O Nal)

j=1 t=1 =1
T—p, 41 L

S S ek =1,

=1 1=1

L
a Sa=1,

=
A € {0,1} <= X, > 0 LP-relaxation

T ost. for all j

L
=Yt =1
=1

o solve LP-relaxation by column generation on pseudo-schedules '

n T—pj+1
o reduced cost of A is & = (e —m)af, —a

=1 =1

o The subproblem can be solved by finding shortest path in a network N
with
e 1,2,...,T + 1 nodes corresponding to time periods
o process arcs, for all j,t, t — t + p, and cost c; — 7,
o idle time arcs, for all t, ¢ — ¢ + 1 and cost 0

o a path in this network corrsponds to a pseudo-schedule in which a job
may be started more than once or not processed.

o the lower bound on the master problem produced by the LP-relaxation
of the restricted master problem can be tighten by inequalities

[Pessoa, Uchoa, Poggi de Arago, Rodrigues, 2008], propose another time
index formulation that dominates this one.
They can solve consistently instances up to 100 jobs.

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 13

Parallel Machine Models

Marco Chiarandini

Outline

1. Parallel Machine Models

Outline

1. Parallel Machine Models

Parallel Machine Modele

Parallel Machine Models

Pm || Cax

(without preemption)

P || Cyas LPT heuristic, approximation ratio: % — 7
Poc | prec| Couue CPM
P | prec| Coa, strongly NP-hard, LNS heuristic (non optimal)

P | p; = 1,M; | Cypow LFJ-LFM (optimal if M; are nested)

Parallel Machine Models

Pm | prmpl Cinaz

(with preemption)

Not NP-hard:

o Linear Programming (exercise)

o Construction based on LW B = max {p;,z’ ”—1}

i=1m

o Dispatching rule: longest remaining processing time (LRPT)
optimal in discrete time

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 14

Flow Shop Models

Marco Chiarandini

Parallel Machine Models
Flow Shop

Outline

1. Parallel Machine Models

2. Flow Shop
Introduction
Makespan calculation
Johnson's algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

Parallel Machine Models
Flow Shon

Outline

1. Parallel Machine Models

2. Flow Shop

Parallel Machine Models
Flow Shon

Identical machines

Min makespan, without preemption

41

Pm || G LPT heuristic, approximation ratio: 4 — 7L

Poo|prec| ot CPM

Pm|prec| Cpaw: strongly NP-hard, LNS heuristic (non optimal)

Pm|p;=1,M; | Cpas: least flexible job (LFJ) -
least flexible machine (LFM)

(optimal if M, are nested)

Parallel Machine Models
Flaw Shon

Identical machines

Min makespan, with preemption
P || Conar: Not NP-hard:

o Linear Programming (exercise)
o Construction based on LW B = max {,;1 Dy L}

o Dispatching rule: longest remaining processing time
(LRPT)
optimal in discrete time

Parallel Machine Modele
Flow Shon

Uniform machines

Qm | prmp| Crnax

@ Construction based on

LWB =max{ 2 2Ltr2
v v+ U2

v
S
P
o Dispatching rule: longest remaining processing time on the fastest
machine first (processor sharing)
optimal in discrete time

Unrelated machines
R|| X; C;j is NP-hard
Solved by local search methods.

@ Solution representation

o a collection of m sequences, one for each job

recall that 1]| X w;C; is solvable in O(nlogn)
o indirect representation

assignment of jobs to machines

the sequencing is left to the optimal SWPT rule

o Neighborhood: one exchange, swap

o Evaluation function. How costly is the computation?

Introduction

Outline

1. Parallel Machine Models

2. Flow Shop

tntroduction

Flow Shop
General Shop Scheduling:
o J={1,....N} set of jobs; M = {1,2,...,m} set of machines
o J;={04|i=1,...,n;} set of operations for each job

@ pij processing times of operations O;;

fi5 € M machine eligibilities for each operation

@ precedence constraints among the operations

one job processed per machine at a time,
one machine processing each job at a time

o C; completion time of job j
= Find feasible schedule that minimize some regular function of C;
Flow Shop Scheduling:

o py=11=1.2....,m

o precedence constraints: Oy; — Oy, i = 1,2,...,n for all jobs

Introduction

Kerpan Proble
Parallel Machine Models Johnean s algorit
Flow Shop.

Example

Jobs ji j2 Jjs ja Js

P 55363 Gantt chart
paj 4 4 2 44
psj 4043 401

36 3 25

schedule representation
T, T, W3, T4

71 O11, 012,013,014
m 1 021,022,023, 024

introduction
Miskespan Problems
arallel Machine Models Jobmaan s algorithm
op s

..
Flow Sh

Directed Graph Representation

Given a sequence:

operation-on-node network,
jobs on columns, and machines on rows

Mab
Parallel Machine Models Joi
Flow Shop

Directed Graph Representation

) -
T N
(m)~ -

N —(ru)~ (s

! RS

I

Ciny = .
73 : 031,032,033, O34 e ;m, o c . N
714 : Oar. Oxz, Oz, Ogs ; omputation cost?
. Cixi) = Pix
o we assume unlimited buffer 1xG) ;m, ®
o if same job sequence on each machine ® permutation flow shop Cingy = max{Ci_1(j): Cini—1)} + Pin(s)
1 1 1
Baralel Machine Model Barale Machine Model
Example Fm || Chaa F2||Cpax
—_———— Intuition: give something short to process to 1 such that 2 becomes
Jobs ji ja Js Theorem operative and give something long to process to 2 such that its buffer has
prj, 55 3 6 3 Co 3 There always exist an optimum sequence without change in the first two time to fill.
P2 142 4 4 e and last two machines. X
o 14 11 corresponds to longest path Constructs a sequence 7' : T'(1),...,T(n) to process in the same order
P3.ji - 3;) s Proof: By contradiction on both machines by concatenating two sequences:
P - : 5 : X

M ERNECE

My ‘ i j ‘

Corollary

F2| | Crax and F3| | Cyuar are permutation flow shop J

Note: F3

Conas is strongly NP-hard

a left sequence L : L(1),..., L(t), and a right sequence
R:R(t+1),...,R(n), thatis, T= Lo R

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]
Let J be the set of jobs to process
Let T =0
Step 1 Find (i, j*) such that ;. j- = min{p; |i € 1,2,j € J}
Step 2 If i* = 1 then L = Lo {i*}
else if i* =2 then R = Ro {i*}
Step 3 J:=J\ {j*}
Step4 If J# D gotoSteplelse T =LoR

Parallel Machine Models
Flow Shop.

Theorem
The sequence T J

T(n) is optimal.

Proof

@ Assume at one iteration of the algorithm that job & has the min
processing time on machine 1. Show that in this case job k has to
go first on machine 1 than any other job selected later.

o By contradiction, show that if in a schedule S a job j precedes on
machine 1 and has larger processing time on 1, then S is a worse
schedule than .

There are three cases to consider.

o lterate the prove for all jobs in L.

@ Prove symmetrically for all jobs in R.

Fm | prmu,p;j = pj | Cruax

[Proportionate permutation flow shop]

o Theorem: Cnaz = Y27, pj + (m — 1) max(py, ...
sequence independent

\pa) and is

o Generalization to include machines with different speed: p;; = p;/v;

Theorem:
if the first machine is the bottleneck then LPT is optimal.
if the last machine is the bottleneck then SPT is optimal.

Parallel Machine Models
Fiow Sho
" ormted Greeh

Construction Heuristics (1)
Fm|prmu|Cmas

Slope heuristic
o schedule in decreasing order of A; = — Y1 (m — (2i — 1))p;; J

Campbell, Dudek and Smith's heuristic (1970)
extension of Johnson's rule to when permutation is not dominant

o recursively create 2 machines 1 and m — 1
vi=omy W=
=

and use Johnson's rule
o repeat for all m — 1 possible pairings

o return the best for the overall m machine problem

Jo
Construction heuristics

Efficient LS and TS

Makeapan Problems

Parallel Machine Models
"

ohneon s algorichen
Flow Shoy Construction heurisics
& reedh

Construction Heuristics (2)
Fm|prmu|Cmaz

Nawasz, Enscore, Ham's heuristic (1983)
Step 1: order in decreasing 2", pi;
Step 2: schedule the first 2 jobs at best

Step 3: insert all others in best position

Implementation in O(n%m)

Introduction
Makerpan Problems
Parallel Machine Models Jobnaan s algorithm
op

Flow Sh

Iterated Greedy

Fm|prmu|Cmaz
Iterated Greedy [Ruiz, Stiitzle, 2007]
Destruction: remove d jobs at random
Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood
(first improvement, whole evaluation O(n?m))

Acceptance Criterion: random walk, best, SA-like

Introduction
Makerpan Problems

Parallel Machine Models Johnaan's algorishm

Flow Shop Construction heuristics

Efficient local search for Fm|prmu|Ca.

Tabu search (TS) with insert neighborhood.
TS uses best strategy. ® need to search efficiently!
Neighborhood pruning [Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]
'?’_’/: ©) A sequence t = (t,ts,..
A SN path in
)

D)

S

[\

M 5 \i/ (D) Cn=>" pan + D e+
L =1 J=h

~itm—1) defines a

9

,
-

Y P

Pt

(5
._(
—(:

[Framinan, Gupta, Leisten (2004)] d 177 different ar of (D —()
jobs in Step 1 and concluded that the NEH arrangement is the best one
for Craz- Performance on up to n = 500 x m = 20 : Cinar expression through critical path:
o NEH average gap 3.35% in less than 1 sec. . ,)
Conae(m) = max Pan+ Y P+t D Paim
o |G average gap 0.44% in about 360 sec. s (;. et 3)
= 2 2
Paralel Machine Models Parallel Machine Models Torithn
Fiow Shor i Fmioics Flow Shop Commtraction buueitios
Eifdans 13 and T8 ik (3 and T8
critical path: @ = (uy,ua, ..., Uy) : Crae(m) = C(m, u)

Block By, and Internal Block Bf"™

Corollary (Elimination Criterion)

If ' is obtained by m by an “internal block insertion” then
Cnaz (') Z Crnaa(7)-

Further speedup: Use of lower bounds in delta evaluations:
Let d7, ,, indicate insertion of x after uy (move of type ZRj,(m))

ftbblock AL = {ﬂnu),k“ = Prr(ug) k41 T F up—1
0800080 800 0cs Hence we can restrict the search to where the good moves can be: Prta) bt = Pr(u) bt T Prus 1) bt = Pr(e) kot F = Uk
e ot) o That is, add and remove from the adjacent blocks
plock ZLy(m) It can be shown that:
Theorem (Wemer, 1982) s Conas (07,4, (7)) > Conaa(7) + A(G,,)
Let w,7’ €11, if 7' has been obtained from m by an job insert so that BTN
Conaw(') < Cpuaw(70) then in 7' > Theorem (Nowicki and Smutnicki, 1996, EJOR)
a) at least one job j € By, precedes job m(ug—1), k =1,....m The neighborhood thus defined is connected. J
b) at least one job j € By, succeeds job m(uy), k = 1 i

Parallel Ma
Flow Shop.

Efficient LS and TS

Metaheuristic details:

Prohibition criterion:

an insertion &, ,, is tabu if it restores the relative order of m(x) and
m(x+1).

Tabu length: TL = 6+ [12-]
Perturbation

2y

. () #-thblock
& ok
gy 0F

h\

®(,.,)

7

@ perform all inserts among all the blocks that have A < 0
© activated after MaxIdleIter idle iterations

Tabu Search: the final algorithm:

Initialization : m = 7y, C'* = Cinaa(T), set iteration counter to zero.
Searching : Create UR), and U Ly (set of non tabu moves)
Selection : Find the best move according to lower bound A.

Apply move. Compute true Cpor (3(7)).

If improving compare with C* and in case update.

Else increase number of idle iterations.
Perturbation : Apply perturbation if MaxIdleIter done.

Stop criterion : Exit if MaxIter iterations are done.

sob Shop

Job Shop

Outline Outline RS
DMP204
SCHEDULING,
TIMETABLING AND ROUTING
1. Job Shop 1. Job Shop
Lecture 15 Modelling
Flow Shop and Job Shop Models Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic
Marco Chiarandini
: s
b shon s e s
Job Shop Skt
General Shop Scheduling: Task:
o J={l,...,N} set of jobs; M = {1,2,...,m} set of machines o Find a schedule S = (S;;), indicating the starting times of O,;,
e J; ={0;;|i=1,...,n;} set of operations for each job such that:

@ p;; processing times of operations O
@ pij © M machine eligibilities for each operation
@ precedence constraints among the operations

o one job processed per machine at a time,
one machine processing each job at a time
@ C; completion time of job j
= Find feasible schedule that minimize some regular function of C;
Job shop
o pij=1,0=1,...,n; and ui; # piy1; (one machine per operation)
0 015 = Oz — ... = Oy, ; precedences (without loss of generality)

@ without repetition and with unlimited buffers

it is feasible, that is,
o Sij+pij < Sisay forall Oy — Oy
@ Sij+pij < Suw of Suw +pus < Sy for all operations with ji; = fru..

and has minimum makespan: min{max;cs(Sn, ; + Pn,.;)}-

A schedule can also be represented by an m-tuple = = (', 72,...,7™)

where 7' defines the processing order on machine i
There is always an optimal schedule that is semi-active.

(semi-active schedule: for each machine, start each operation at the
earliest feasible time.)

Job Shop

o Often simplified notation: N = {1,...,n} denotes the set of
operations

o Disjunctive graph representation: G = (N, A, E)
o vertices N: operations with two dummy operations 0 and n + 1
denoting “start” and “finish”.

o directed arcs A, conjunctions
o undirected arcs E, disjunctions

o length of (i,) in A is p:

E; on the machine

Ez o the machine2 E; on the machine3

(D thopertion —»- Conjurcie s - Dismctve s

Job Shop

o A complete selection corresponds to choosing one direction for each
arc of E.

o A complete selection that makes D acyclic corresponds to a feasible
schedule and is called consistent.

@ Complete, consistent selection <> semi-active schedule (feasible
earliest start schedule).

@ Length of longest path 0—(n ++ 1) in D corresponds to the makespan

Job Shop

Longest path computation
In an acyclic digraph:

@ construct topological ordering (i < j for all i — j € A)

@ recursion:
79 =0
rn = max {rj+p forl =
Py (1 s}

Job Shop.

o A block is a maximal sequence of adjacent critical operations
processed on the same machine.

o In the Fig. below: By = {4,1,8} and B, = {9,3}

S on the machinel S, on the machine? S, on the machinc3

contain the eritical path

) d

o Any operation, u, has two immediate pr and
o its job predecessor ./ P(u) and successor JS(u)

o its machine predecessor M P(u) and successor M S(u)

hods
<k Methods
ottlenecl Heu

Job Shop
Exact methods
o Disjunctive programming
min - Crnae
st @ij +pij < Conas VO, eN

V(0,01) € A
V(0ij,Oix) € E
Vi=1,...,m j

T+ pij < @y
Tij + Pij < @ik V Tij + pij < Tiw
zi; <0

o Constraint Programming

o Branch and Bound [Carlier and Pinson, 1983]

Typically unable to schedule optimally more than 10 jobs on 10 machines.
Best result is around 250 operations.

Job Shop

Branch and Bound [Carlier and Pinson, 1983] [B2, p. 179]
Let © contain the first operation of each job;
Let 7;; = 0 for all O;; € Q

Machine Selection Compute for the current partial schedule

HQ) = {;‘Eig(m +pij}

and let i* denote the machine on which the minimum is

achieved
Branching Let ©' denote the set of all operations O;-; on machine i*
such that
iy < H(S2) (i.e. eliminate ri; > £(2))

For each operation in €', consider an (extended)partial
schedule with that operation as the next one on

machine i*.

For each such (extended) partial schedule, delete the
operations from €2, include its immediate follower in € and
return to Machine Selection

Job Shop.

Lower Bounding:
o longest path in partially selected disjunctive digraph
@ solve 1|r;;|Lyq. on each machine i like if all other machines could

process at the same time (see later shifting bottleneck heuristic) +
longest path.

Job Shop

Efficient local search for job shop

Shifting Bottler

Solution representation:
m-tuple 7 = (7', 72,...,7™) <= oriented digraph D, = (N, A, E,)

Neighborhoods
Change the orientation of certain disjunctive arcs of the current complete

selection

Issues:

1. Can it be decided easily if the new digraph D is acyclic?
2. Can the neighborhood selection S” improve the makespan?

3. Is the neighborhood connected?

Evact Methods
Local Search Methods
ek Heuri]

Job Shop

Swap Neighborhood [Novicki, Smutnicki]
Reverse one oriented disjunctive arc (i, j) on some critical path.

Theorem

All neighbors are consistent selections.

Note: If the neighborhood is empty then there are no disjunctive arcs,
nothing can be improved and the schedule is already optimal.

Theorem

The swap neighborhood is weakly optimal connected.

Job Shop

Insertion Neighborhood [Balas, Vazacopoulos, 1998]

For some nodes w, v in the critical path:
@ move u right after v (forward insert)
@ move v right before u (backward insert)
Theorem: If a critical path containing u and v also contains .JS(v) and
L(v,n) = L(JS(u),n)
then a forward insert of u after v yields an acyclic complete selection.
Theorem: If a critical path containing u and v also contains J.S(v) and
L(0.w) + pu = L(0, JP(v)) + psp(w)

then a backward insert of v before v yields an acyclic complete selection.

Job Shop

Job Shop

Theorem: (Elimination criterion) If Crur(S') < Crnaz(S) then at
least one operation of a machine block B on the critical path has to be
processed before the first or after the last operation of B.

@ Swap neighborhood can be restricted to first and last operations in
the block

o Insert neighborhood can be restricted to moves similar to those saw
for the flow shop. [Grabowski, Wodecki]

Job Shop.

Tabu Search requires a best improvement strategy hence the
neighborhood must be search very fast.

Neighbor evaluation:

o exact recomputation of the makespan O(n)

@ approximate evaluation (rather involved procedure but much faster
and effective in practice)

The implementation of Tabu Search follows the one saw for flow shop.

Job Shop

Shifting Bottleneck Heuristic

o A complete selection is made by the union of selections Sj. for each
clique Ej; that corresponds to machines.

Idea: use a priority rule for ordering the machines.
chose each time the bottleneck machine and schedule jobs on that
machine.

Measure bottleneck quality of a machine & by finding optimal
schedule to a certain single machine problem.

Critical machine, if at least one of its arcs is on the critical path.

Cocal . thods
Shifting Bottleneck Heuri]

Step 1

Step 2

Modelling

Methods
Search Methods
Shifting Bottleneck Heuri]

Job Shop

My C M set of machines already sequenced.
ke M\ M,
P(k, Mo) is problem 1|7 | Lya. obtained by:
@ the selections in My
o removing any disjunctive arc in p € M\ My
vk, My) is the optimum of P(k, My)

=arg max {v(k, M
bottleneck m drgkg‘“ﬁf\“‘iluh(k 1o)}

My=10

Identify bottleneck m among k € M \ M, and sequence it
optimally. Set My «— My U {m}

Reoptimize the sequence of each critical machine k € My
i = My — {k} and solve P(k, Mp).
otherwise Step 1.

Local Reoptimization Procedure

Job Shop

Construction of P(k, M)
1{7j | Linaa:
e 7 =L(0,j)
e dj = L(0,n) — L(j,n) + p;
L(i, j) length of longest path in G: Computable in O(n)
acyclic complete directed graph <= transitive closure of its unique

directed Hamiltonian path.

Hence, only predecessors and successor are to be checked
The graph is not constructed explicitly, but by maintaining a list of jobs
per machines and a list machines per jobs.

1|7 | Limax can be solved optimally very efficiently.
Results reported up to 1000 jobs.

Job Shop

1|75 | Lmaz From one of the past lectures
[Maximum lateness with release dates]

o Strongly NP-hard (reduction from 3-partition)
o might have optimal schedule which is not non-delay

o Branch and bound algorithm (valid also for 1|7}, prec | Linaz)
o Branching:

schedule from the beginning (level k, n!/(k

elimination criterion: do not consider job j

1)! nodes)

;> 1’11iln {max (t,7) + pi} J jobs to schedule, ¢ current time
<

o Lower bounding: relaxation to preemptive case for which EDD is
optimal

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 16
Job Shop
The Alternative Graph Model

Marco Chiarandini

Outline

1. Job Shop Generalizations

Resume

Job Shop

@ Definition
@ Starting times and m-tuple permutation representation
o Disjunctive graph representation [Roy and Sussman, 1964]

o Shifting Bottleneck Heuristic [Adams, Balas and Zawack, 1988]

Job Shop Generalizations

Outline

1. Job Shop Generalizations

3ob Shop General

Generalizations: Time Lags

——]
Generalized time constraints

They can be used to model:
o Release time:
So+ri <8 — doi =1;
o Deadlines:

Si4+pi—di <So — dig = p; — d;

Job Shop Generalizations

o Modelling

min - Crae

sty +diy < Chnaa VO, €N
Ty +diy < 2 ¥ (05.015) € A
ij +dij Sz Va4 dig <z V(045,08) € E
2 >0 v

@ In the disjunctive graph, d;; become the lengths of arcs

Job Shop Generalizations

o Exact relative timing (perishability constraints):
if operation j must start I;; after operation i:
Si+pi+li; <5 and Sj—(pi+1iy) < S;

(li; = 0 if no-wait constraint)

Job Shop Generalizations

@ Set up times:

Sitpitsy<S; o Sj+pitsu<

@ Machine unavailabilities

o Machine M; unavailable in a1, b, [az,ba], ... , [av,by]

Arises with limited buffers:
after processing, a job remains on the machine until the next machine is
freed

o Needed a generalization of the disjunctive graph model
= Alternative graph model G = (N, E, A) [Mascis, Pacciarelli, 2002]

1. two non-blocking operations to be processed on the same machine

Si4pi<S, o S;4p<Si

o Introduce v artificial operations with A = v with gy
and
pr=br —ax 2. Two blocking operations i, j to be processed
™=ax on the same machine (i) = u(j)
dy = by
Se) £Si or S, <8
o Minimum lateness objectives:
v 3. i is blocking, j is non-blocking (ideal) and 4, j o O
Loz = mi.ﬁc/ —d;} — dyy st = pn, — d; to be processed on the same machine L
= wi) = p(3)-
Sitpi<8; oSS
i s
10b Shop Generalisations Job Shop Generalizations
Example
@ 00.01,...,013 Example:
M(0y) = M(05) °pa=4
) op =2
@ pe=1

°

Length of arcs can be negative

Multiple occurrences possible: ((i,j), (u,v)) € A and
(i), (h, k) € A

The last operation of a job j is always non-blocking.

°

@ A complete selection S is consistent if it chooses alternatives from
each pair such that the resulting graph does not contain positive
cycles.

@ b must start at least 9 days after a has started
@ ¢ must start at least 8 days after b is finished

@ ¢ must finish within 16 days after a has started

Sa+9 < S
Sy+10 < S
S.—15 < S,

This leads to an absurd
In the alternative graph the cycle is positive

Job Shop Generalzations

°

The Makespan still corresponds to the longest path in the graph
with the arc selection G(S)

Problem: now the digraph may contain cycles. Longest path with
simple cyclic paths is NP-complete. However, here we have to care
only of non-positive cycles.

If there are no cycles of length strictly positive it can still be
computed efficiently in O(|N||E U Al) by Bellman-Ford (1958)
algorithm.

The algorithm iteratively considers all edges in a certain order and
updates an array of longest path lengths for each vertex. It stops if a
loop over all edges does not yield any update or after | V| iterations
over all edges (in which case we know there is a positive cycle).

Possible to maintain incremental updates when changing the
selection [Demetrescu, Frangioni, Marchetti-Spaccamela, Nanni, 2000]

ob Shop Generalizations

Heuristic Methods

o The search space is highly constrained -+ detecting positive cycles is
costly

@ Hence local search methods not very successful
o Rely on the construction paradigm

o Rollout algorithm [Meloni, Pacciarelli, Pranzo, 2004]

Job Shop Generalizations

Rollout

@ Master process: grows a partial selection S*:
decides the next element to fix based on an heuristic function
(selects the one with minimal value)

@ Slave process: evaluates heuristically the alternative choices.
Completes the selection by keeping fixed what passed by the master
process and fixing one alternative at a time

Job Shop Generalizations

@ Slave heuristics
o Avoid Maximum Current Completion time
find an arc (h, k) that if selected would increase most the length of
the longest path in G(S*) and select its alternative

max {100,0) + auo +1(0,m)}

o Select Most Critical Pair
find the pair that, in the worst case, would increase least the length
of the longest path in G(S*) and select the best alternative
max min{1(0,u) + ank + 1k, n), 1(0,7) + ai; +1(j.n)}
() (hRyyea
o Select Max Sum Pair
find the pair with greatest potential effect on the length of the
longest path in G(S*) and select the best alternative
max [1(0,u) + an + Lk, n) +1(0,4) + as; +1(j,n)|
(). (hk))ea
Trade off quality vs keeping feasibility
Results depend on the characteristics of the instance

Job Shop Generalizations

Implementation details of the slave heuristics

o Once an arc is added we need to update all L(0,u) and L(u,n).
Backward and forward visit O(|F| + | A])

o When adding arc a,;, we detect positive cycles if L(i, j) + a;; > 0.
This happens only if we updated L(0,4) or L(j,n) in the previous
point and hence it comes for free.

o Overall complexity O(|A|(|F

y

)

Speed up of Rollout:
o Stop if partial solution overtakes upper bound

o limit evaluation to say 20% of arcs in A

Outline R Mol Outline R Ve
DMP204
SCHEDULING,
TIMETABLING AND ROUTING
1. Exercises 1. Exercises
Lecture 17
Resource Constrained Project Scheduling
Reservations 2. RCPS Model 2. RCPS Model
Preliminaries
Heuristics for RCPSP
Marco Chiarandini
Resume: Job Shop Exercise 1 RS R s
Given:

o Disjunctive graph representation [Roy and Sussman, 1964]
o Shifting Bottleneck Heuristic [Adams, Balas and Zawack, 1988]
© Local Search
@ Generalizations:
o Time lags d;; to model:

o set up times

o synchronizations

o deadlines

o perishability (no-wait)

o Blocking (alternative graph) = Rollout

Robotic Cell
Of
Rnhul

(,©

Search for periodic pattern of moves (cycle)
one-unit cycle: the robot load (or unload) each machine exactly once
k-unit cycle: each activity is carried out exactly k times

e m machines My, My, ... M,,

@ ;i1 times of part transfer (unload+travel+load=activity) from M;
to Miyy

o d;; times of the empty robot from M; to M; (¢;is1 > diis1)

@ pij processing time of part j on machine i (identical vs different
parts)

Task:

@ Determine input time for each part t;

@ Minimize throughput ~~ minimize period

Alternative graph model with intermediate robot operations

Outline R et et R rede Rl nese RCPS Model R Thode Rl ncese
Resource Constrained Project Scheduling Model
Given:
@ activities (jobs) j =
@ renewable resources i = 1,...,m
1. Exercises @ amount of resources available R;
insert figures that you find in diku.pdf © processing times p;
@ amount of resource used r;;
2. RCPS Model @ precedence constraints j — k
Further generalizations
o Time dependent resource profile R;(t) given by (¢, Rt")
where 0=t} <t#? <...<t/" =T
o Multiple modes for an activity j
processing time and use of resource depends on its mode m: pj,,
Tjkm-
. . °
Modeling R Thode RS neose Modeling R e Rimis nepse Modeling RS b RR cese
Case 3
© Aset of jobs Ji,...,.Jy are to be processed by auditors A1,...
© Job Jy consists of ny tasks (L =1,....9).
Case 2 @ There are precedence constraints i1 — iz between tasks i1, iz of the same job.
Case 1 o Exams in a college may have different duration. @ Each job Jj has a release time r, a due date d; and a weight w;
@ A contractor has to complete n activities. o The exams have to be held in a gym with I¥ seats. @ Each task must be processed by exactly one auditor. If task i is processed by
o The duration of activity j is p } I auditor Ay, then its processing time is ;1.
] o The enrollment in course j is W; and @ Auditor Ay is available during disjoint time intervals [s¥, 1] (v = 1,...,m)

o each activity requires a crew of size IV;
@ The activities are not subject to precedence constraints.
@ The contractor has W workers at his disposal

@ his objective is to complete all n activities in minimum time.

@ all W; students have to take the exam at the same time.

o The goal is to develop a timetable that schedules all n exams in
minimum time.

@ Consider both the cases in which each student has to attend a single
exam as well as the situation in which a student can attend more
than one exam.

with 1 < s¥ for v=1,...,mj —

Furthermore, the total working time of Ay is bounded from below by H;. and
from above by H, with H,~ < H;f (k=
@ We have to find an assignment o(i) for each task i = 1,
auditor Ag(;) such that

=30 n toan

o each task is processed without preemption in a time window of the
assigned auditor

the total workload of Ay, is bounded by H, and Hf for k
the precedence constraints are satisfied,

all tasks of J; do not start before time 7, and

the total weighted tardiness 37, w7} is minimized.

Lom.

Preprocessing: Temporal Analysis

o Precedence network must be acyclic

© Heads r; and Tails ¢; < Longest paths < Topological ordering
(deadlines d; can be obtained as UB — q;)

Preprocessing: constraint propagation

Solutions

Task: Find a schedule indicating the starting time of each activity

o All solution methods restrict the search to feasible schedules, S, .S"

RCPS Model

Hence:

o Schedule not given by start times S;
o space too large O(1™)

1. conjunctions i — j Si+pi <8 @ Types of schedules
[precedence constrains] . ;.c;cal left shift (LLS): S — S with S} < S; and 5] = S for all o difficult to check feasibility
J.
2. parallelity constraints i || j Si+pi>Sjand S +p; > 5; o Global left shift (GLS): LLS passing through infeasible schedule @ Sequence (list, permutation) of activities 7 = (j1,. .., jn)
[time windows [r;, d;],[r. ;] and o Semi active schedule: no LLS possible
pu+pj > max{d;, d;} — min{r;,r;}] o Active schedule: no GLS possible o 7 determines the order of activities to be passed to a
o) . . o Non-delay schedule: no GLS and LLS possible even with preemption schedule generation scheme
3. disjunctions i - j Si+pi < SjorS;+p; <S;
[resource constraints: 7. + ri > Ry] o If regular objectives = exists an optimum which is active
N. Strengthenings: symmetric triples, etc
Schedule Generation Schemes s i mepse R e e R thode N mpsp

Given a sequence of activity, SGS determine the starting times of each
activity

Serial schedule generation scheme (SSGS)
n stages, Sy scheduled jobs, Iy eligible jobs

Step 1 Select next from E) and schedule at earliest.
Step 2 Update E and R (7).

If E, is empty then STOP,
else go to Step 1.

Parallel schedule generation scheme (PSGS)
(Time sweep)
stage A at time ¢y

S (finished activities), Ay (activities not yet finished),
B, (eligible activities)

Step 1 In each stage select maximal resource-feasible subset of
eligible activities in E) and schedule it at ¢,.

Step 2 Update Ey, Ay and Ry(7).
If E) is empty then STOP,

else move to tyy; =min{ min Cj, min ¢
L N
i€

and go to Step 1.

o If constant resource, it generates non-delay schedules

a Search snace of PSGS is smaller than SSGS

Possible uses:

o Forward

@ Backward

o Bidirectional

o Forward-backward impi (justification techniques)
[V. Valls, F. Ballestin and S. Quintanill, EJOR, 2005]

RCPS Model Heuristics for RCPSP

Dispatching Rules

Determines the sequence of activities to pass to
the schedule generation scheme

@ activity based
@ network based
o path based

@ resource based

Static vs Dynamic

RCPS Model Heuristics for RCPSP

Local Search

All typical neighborhood operators can be used:
@ Swap
o Interchange

o Insert

reduced to only those moves compatible with precedence constraints

RCPS Model

Genetic Algorithms

Recombination operator:

@ One point crossover
o Two point crossover

@ Uniform crossover

Implementations compatible with precedence constraints

Heuristics for RCPSP

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 18
Reservations and
Educational Timetabling

Marco Chiarandini

Outline

Reservations without slack
vations with dlack

Reservations without slack

=

. Reservations with slack

N

«

Timetabling with one Operator

IS

Timetabling with Operators

o

Educational Timetabling
Introduction
School Timetabling

rvations without slack

Timetabling

o Educational Timetabling
@ School/Class timetabling
o University timetabling

o Personnel/Employee timetabling
o Crew scheduling
o Crew rostering

o Transport Timetabling
o Sports Timetabling
o Communication Timetabling

imetabling v Operators
Educations] Timetabling

Reservations without slack

mctabling w. Operator

Polynomially solvable cases et S

Outline Interval Scheduling
1pj=1
Given: 7
1. Reservations without slack @ m parallel machines (resources) Solve an assignment problem at each time slot
2. Reservations with slack @ n activities o
2. w; =1, M; = M, Obj. minimize resources used
" o 7; starting times (integers), P . -
3. Timetabling with one Operator dj termir\it'\on (in(tege%s)) o Corresponds to coloring interval graphs with minimal number of
- ui or w;; weight, ' colors
4. Timetabling with Operators M; eligibility @ Optimal greedy algorithm (First Fit):
orderry <y <... <1,
. i i ith lack pj =d; —r . L
5. Educational Timetabling o without slack p; = d; — ; Step 1 assign resource 1 1 actiity 1
Task: Maximize weight of assigned activities Step 2 for j from 2 to n do
Assume k resources have been used.
Examples: Hotel room reservation, Car rental Assign activity j to the resource with minimum feasible
value from {1,... k+1}
<tabling w. Operators imetabling v Operators
ecational Tirmesabimg Eleations] Fimeeabing
3. w; =1, M; = M, Obj. maximize activities assigned
3 5 o Corresponds to coloring max # of vertices in interval graphs with k
1 colors
— 4 7 9 10 o Optimal k-coloring of interval graphs:
_— 6 —
orderry <ry <...<1,
J=0j=1
1 Step 1 if a resource is available at time r; then assign activity j
3 4 to that resource;
1 7 include j in .J; go to Step 3
_— 0 —— 3 1 9 Step 2 Els, select j* such that C- = maxC;
— — i€
2 if Cj =r; +p; > Cj- goto Step 3
else remove j* from J, assign j in J
Step 3 if j =n STOP else j = j + 1 go to Step 1
. 3 10
Reservations without slack Reservations without slack
rtions with lack Reservations with slack
T oo . i Tt i L
Outline Reservations with Slack Heuristics
Most constrained variable, least constraining value heuristic
Given: |M;| indicates how much constrained an activity is
L. Reservations without slack o m parallel machines (resources) v+ # activities that can be assigned to i in [t — 1,1]
) Select activity j with smallest I; = f (;7 \M,\)
2. Reservations with slack o n activities Select resource i with smallest g(vi 141, ..., vi14p,) (or discard j if no
place free for j)
3. Timetabling with one Operator o 7; starting times (integers),
d; termination (integers), Examples for f and g:
4. Timetabling with Operators
8 P w, M
F(Gn) =
. X i i/ Pi
5. Educational Timetabling o with slack p; < d; — 1
Task: Maximize weight of assigned activities Wittt Vigpy) = MAX(Vigt1s - Vidp,)
;i
_ N Vil
IWits1s e Vigap,) = ; o
1 1 1
sack
<tabling with one Op.
Outline Tt O Tzt Seen

1. Reservations without slack

2. Reservations with slack

3. Timetabling with one Operator
4. Timetabling with Operators

5. Educational Timetabling

There is only one type of operator that processes all the activities

Example:
o A contractor has to complete n activities.
@ The duration of activity j is p;
@ Each activity requires a crew of size ;.
o The activities are not subject to precedence constraints.
@ The contractor has T workers at his disposal

o His objective is to complete all n activities in minimum time

o RCPSP Model
o If p; all the same =» Bin Packing Problem (still NP-hard)

Example: Exam scheduling
@ Exams in a college with same duration.
@ The exams have to be held in a gym with W seats.
@ The enrollment in course j is W and
o all IW; students have to take the exam at the same time.

o The goal is to develop a timetable that schedules all 1 exams in
minimum time.

o Each student has to attend a single exam.

o Bin Packing model
@ In the more general (and realistic) case it is a RCPSP

Reservations without alack
Reservations with siack

Timetabling v
Educationd

Heuristics for Bin Packing

o Construction Heuristics
o Best Fit Decreasing (BFD)

o First Fit Decreasing (FFD)

Chnaa(FFD) < HCraz(OPT) + §

o Local Search: [Alvim and Aloise and Glover and Ribeiro, 1999]
Step 1: remove one bin and redistribute items by BFD
Step 2: if infeasible, re-make feasible by redistributing items
for pairs of bins, such that their total weights
becomes equal (number partitioning problem)

[Levine and Ducatelle, 2004]

The solution before local search (the bin capacity is 10):
The bins: 1333(621(52(43|72|54]

Open the two smallest bins
Remaining: ~ [333[621(72(54]
Frecitems: 5,4,3,2

Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current by 1 free:

First bin: 333352 newfree:4,3,3,3
Second bin: 62164 newfree:3,3,3,2, 1
Third bin: 72573 new free: 3,3,2,2, 1

Fourth bin: 5 4 stays the same
Reinsert the free items using FFD:
Fourth bin: 54541
Make new bin: 3322
Final solution: [352(64(73|541(3322]

Repeat the procedure: no further improvement possible

Reservations withoust alack
Rerarvations with siach

Timetabling w. Opera
Elnations] Fimerabh

QOutline

1. Reservations without slack

2. Reservations with slack

3. Timetabling with one Operator
4. Timetabling with Operators

5. Educational Timetabling

Reservations without slack
Rerarvations with slack

Timetabling with ane Op.
Timetabling . Operators
Educations] Timerabiing

Timetabling with Operators

@ There are several operators and activities can be done by an
operator only if he is available

@ Two activities that share an operator cannot be scheduled at the
same time

Examples:

@ aircraft repairs
@ scheduling of meetings (people =» operators; resources =» rooms)

@ exam scheduling (students may attend more than one exam =»
operators)

If pj = 1 = Graph-Vertex Coloring (still NP-hard)

Reservations without slack
Reservations vith slack
Tirmetabling with one Op.
Timetabling w. Operators
Educationsl Timetabling

Mapping to Graph-Vertex Coloring
@ activities =» vertices
o if 2 activities require the same operators =» edges
@ time slots =¥ colors

o feasibility problem (if # time slots is fixed)

o optimization problem

rvations without slack

DSATUR heuristic for Graph-Vertex Coloring
saturation degree: number of differently colored adjacent

vertices
set of empty color classes {C1,...,Cy}, where k = |V|
Sort vertices in decreasing order of their degrees

Step 1 A vertex of maximal degree is inserted into C;.

Step 2 The vertex with the maximal saturation degree is chosen
and inserted according to the greedy heuristic (first
feasible color). Ties are broken preferring vertices with the
maximal number of adjacent, still uncolored vertices; if
further ties remain, they are broken randomly.

K Introduction
imetabling wich one O, Sehoel Timetabling

. i perator Timetabling w E e Tir M
Qutline Educationsl Timerabling Educationsl Timerabling The Timet ab|mg Activity Educationsl Timekabling
1. Reservations without slack Educational timetabling process Assignment of events to a limited number of time periods and locations
subject to constraints
2. Reservations with slack Phase: Planning Scheduling Dispatching
) Horizon: | Long Term Timetable Day of Two categories of constraints:
3. Timetabling with one Operator Period Operation Hard constraints H = {Hy,...,H,}: must be strictly satisfied, no
violation is allowed
4. Timetabling with Operators Objective: | Service Level Feasibility Get it Done Soft constraints £ = {Sy, ..., S} their violation should be minimized
(determine quality)
5. Educational Timetabling Steps: Manpower, Repair
Equipment V‘{EE”YM_
Timetabling Each institution may have some unique combination of hard constraints
and take different views on what constitute the quality of a timetable.
Reservations without dlack ot slack Rescrvations withoutslack
. N Introduction e o with slack 4 oduction
oo bt . . Timesbling vidhone 00 S0 Fimtabling
School Timetabling Elicafonat Fimeriling
A recurrent sub-problem in Timetabling is Matching [aka, teacher-class model]
Input: A (weighted) bipartite graph G = (V, E) with bipartition {4, B}. The daily or weekly scheduling for all the classes of a high school,
Task: Find the largest size set of edges M € E such that each vertex in avoiding teachers meeting two classes in the same time.
V is incident to at most one edge of M. Input:
o aset of classes C = {C1,...,Chn}
o— Theorem A class is a set of students who follow exactly the same program.
o—>o Theorem [Hall, 1935]: G contains a matching of A if and only if Each class has a dedicated room.
:><0 N(U)| = U] forall U C A. o a set of teachers P = {P,,..., P,}
© © a requirement matrix R« where R;; is the number of lectures
o—o given by teacher R; to class Ci.
O—0

Efficient algorithms for constructing matchings are based on augmenting
paths in graphs. An implementation is available at:
http://wuw.cs.sunysb.edu/ algorith/implement/bipm/implement .shtml

o all lectures have the same duration (say one period)
@ aset of time slots 7 = {T},..., T} } (the available periods in a day).

Output: An assignment of lectures to time slots such that no teacher or
class is involved in more than one lecture at a time

2 3
Reservations without slack Reservations without slack Reservations withat slack
Timetabling with one Op
Extension
From daily to weekly schedule
IP formulation: Graph model (timeslots represent days)
P . @ a; max number of lectures for a class in a day
Binary variables: assignment of teacher P to class C; in T, Bipartite multigraph G = (C, P, R) .
@ b; max number of lectures for a teacher in a day
0.1} vie1) Eo1 @ nodes C and P: classes and teachers
zijr = {0, i=1,....m;j= nik=1,....p
i o Ry parallel edges 1P formulation
Constraints: Time slots are colors = Graph-Edge Coloring problem Variables: number of lectures to a class in a day
P) — i k
> ms g n Theorem: [Konig] There exists a solution to (1) iff zgk €N Vi=1...omij=1....nk
Constraints:
> ms k= S Ri<p Vi=1...n v
P = > @i =Ry Lmij=
k=1
i . Rii<p Yi=1,....,m
Zl Vi=1...mk=1. ; i sP ; Seg<b Vi=lo.mk=1...p
P =
Sagk<ar Vi=l..,mik=1..p
»n 2 ! »
& lack sack
Timetablins withon< 00 Sihoel Timetabling School Timetabling Timetabling wehone Or Sioel Timetabling
- Educationsl Timesabling
o The edge coloring problem in the multigraph is solvable in
Granh model polynomial time by solving a sequence of network flows problems p.
ph mod o) Possible approach: solve the weekly timetable first and then the
Edge coloring model still valid but with daily timetable Further complications:
@ no more than a; edges adjacent to C; have same colors and
@ and more than b; edges adjacent to 7 have same colors @ Simultaneous lectures (eg, gymnastic)
Further constraints that may arise: N . .
Theorem: [Kénig] There exists a solution to (2) iff: o Preassignments ° tSubJ:ct)\ssues (more teachers for a subject and more subject for a
eacher)
m @ Unavailabilities
Z Ri; (can be expressed as preassignments with dummy class or teachers) @ Room issues (use of special rooms)
ot They make the problem NP-complete.
Ry <ap Vi=
i=1
o Bipartite matchings can still help in developing heuristics, for
example, for solving ;. keeping any index fixed.

Reservations without alack
Reservations with slack

School Timetabling

So far feasibility problem.
Preferences (soft constraints) may be introduced
@ Desirability of assignment p; to class ¢; in t;

n m p

min Y >N digpwign

=1 =1 k=1

e Organizational costs: having a teacher available for possible
temporary teaching posts

o Specific day off for a teacher

Reservations without slack
Rasaruatlona with slack |y, gucion
Schaol Timetabling

Introducing soft constraints the problem becomes a multiobjective
problem.

Possible ways of dealing with multiple objectives:

o weighted sum

o lexicographic order

@ minimize maximal cost

o distance from optimal or nadir point

o Pareto-frontier

Reservations withoust alack
Rerarvations with siach

Introduction
" Schal Timetabling

Heuristic Methods

Construction heuristic
Based on principles:

@ most-constrained lecture on first (earliest) feasible timeslot

o most-constrained lecture on least constraining timeslot

Enhancements:

@ limited backtracking

o local search optimization step after each assignment

More later

Local Search Methods and Metaheuristics
High level strategy:

o Single stage (hard and soft constraints minimized simultaneously)

tions without slack
Recarvations vith dack

Timetabling with one Op.
Timatabling w. Operators
Educationsl Timetabling

o Two stages (feasibilty first and quality second)

Dealing with feasibility issue:

@ partial assignment: do not permit violations of H but allow some

lectures to remain unscheduled

o complete assignment: schedule all the lectures and seek to minimize

H violations

School Timetabling

More later

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 19
University Timetabling

Marco Chiarandini

University Timetabling

Outline

1. University Timetabling
Formalization and Modelling
An Example
Timetabling in Practice

Modelling
University Timetabling A Example

Outline

1. University Timetabling

Mo
University Timetabling A

Course Timetabling

The weekly scheduling of the lectures/events/courses of courses avoiding
students, teachers and room conflicts.
Input:

@ A set of courses C = {C1,...,C,} each consisting of a set of
lectures C; = {Li1,..., Ly, }. Alternatively,
A set of lectures £ = {Ly,..., L;}.

@ Aset of curricula S = {5, ..., 5, } that are groups of courses with
common students (curriculum based model). Alternatively,
A set of enrollments S = {S1,...,5,} that are groups of courses
that a student wants to attend (Post enrollment model).

@ a set of time slots 7 = {T,...,T,} (the available periods in the
scheduling horizon, one week).

o All lectures have the same duration (say one period)

Output:
An assignment of each lecture L; to some period in such a way that no
student is required to take more than one lecture at a time.

Model

Graph model Universy Timesabing

Graph G = (V, E):
@ V correspond to lectures L;
o E correspond to conflicts between lectures due to curricula or
enrollments

Time slots are colors = Graph-Vertex Coloring problem = NP-complete
(exact solvers max 100 vertices)

Typical further constraints:
o Unavailabilities
o Preassignments

The overall problem can still be modeled as Graph-Vertex Coloring. How?

University Timetabling

IP model
Including the assignment of indistinguishable rooms
m; rooms => maximum number of lectures in time slot ¢
Variables

@i € {0,1}

Number of lectures per course

Number of lectures per time slot

"
Swp<m VE=1,....p
=

Mo
University Timetabling A

Number of lectures per time slot (students’ perspective)

i @i <1 Vi
e

If some preferences are added:

max 31y 3Ly dir

Corresponds to a bounded coloring. [de Werra, 1985]

Modelling
University Timetabling A

Further complications:
@ Teachers that teach more than one course
(not really a complication: treated similarly to students’ enrollment)

o A set of rooms R = {Ri,
with eligibility constraints
(this can be modeled as Hypergraph Coloring [de Werra, 1985]:

R}

o introduce an (hyper)edge for events that can be scheduled in the
same room

o the edge cannot have more colors than the rooms available of that
type)

Moreover,

o Students' fairness

o Logistic constraints: not two adjacent lectures if at different campus
o Max number of lectures in a single day and changes of campuses.

@ Precedence constraints

o Periods of variable length

Mo
University Timetabling A

approach

3D IP model including room eligibility [Lach and Liibbecke, 2008]

R(c) C R: rooms eligible for course ¢

Geong = (Veonss Econs): conflict graph (vertices are pairs (c,t))
min Y~ d(c, e Yeel
ar
> wer =10) YeeC
ie7
reR(e)
Z et < 1 VteT,reR
ceR-1(r)
D wanrt Y Tanr <1 Y((enh)(ert2) € Beons
reR(ey) reR(cz)
Tetr € {1,0} V(c,t) € Veons,r € R

This 3D model is too large in size and computationally hard to solve

Modeling

University Timetabling.

2D IP model including room eligibility [Lach and Liibbecke, 2008]

Decomposition of the problem in two stages:
Stage 1 assign courses to timeslots
Stage 2 match courses with rooms within each timeslot
solved by bipartite matching

Model in stage 1

Variables: course ¢ assigned to time slot ¢

e € {0,1} ceCteT

Edge constraints
(forbids that c; is assigned to t; and ¢, to t, simultaneously)

Tepty +Teats <1 V((e1,t1), (e2,t2)) € Boony

deling.

University Timetabling Erammple

Hall's constraints
(guarantee that in stage 1 we find only solutions that are feasibile for

stage 2)
Gy = (C; URy, Ey) bipartite graph for each ¢
G =G,

> < VW)

cel

vUeCteT

If some preferences are added:

p_n
maxg g dixiy

i=1i=1

Modelling
University Timetabling

@ Hall's constraints are exponentially many

@ [Lach and Liibbecke] study the polytope of the bipartite matching and
find strengthening conditions
(polytope: convex hull of all incidence vectros defining subsets of C
perfectly matched)

® Algorithm for generating all facets not given but claimed efficient

@ Could solve the overall problem by branch and cut (separation
problem is easy).
However the the number of facet inducing Hall inequalities is in
practice rather small hence they can be generated all at once

University Timetabling.

So far feasibility.
Preferences (soft constraints) may be introduced [Lach and Liibbecke,
2008b]

@ Compactness or distribution

o Minimum working days

o Room stability

@ Student min max load per day

@ Travel distance

o Room eligibility

@ Double lectures

@ Professors’ preferences for time slots

Different ways to model them exist
Often the auxiliary variables have to be introduced

Modalin
University Timetabling A Example

Examination Timetabling

By substituting lecture with exam we have the same problem!
However:

Course Timetabling Exam Timetabling

limited number of time slots unlimited number of time slots,

seek to minimize

conflicts in single slots, seek to

conflicts may involve entire days
compact

and consecutive days,seek to
spread

one single course per room possibility to set more than one
exam in a room with capacity
constraints

lectures have fixed duration exams have different duration

Mod:
University Timetabling An £

2007 Competition

@ Constraint Programming is shown by [Cambazard et al. (PATAT 2008)]
to be not yet competitive

o Integer programming is promising [Lach and Liibbecke] and under
active development (see J.Marecek
http://www.cs.nott.ac.uk/” jxm/timetabling/)
however it was not possible to submit solvers that make use of IP
commericial programs

@ Two teams submitted to all three tracks:

o [Ibaraki, 2008] models everything in terms of CSP in its optimization
counterpart. The CSP solver is relatively very simple, binary variables
+ tabu search

o [Tomas Mueller, 2008] developed an open source Constraint Solver
Library based on local search to tackle University course timetabling
problems (http://wuw.unitime.org)

@ All methods ranked in the first positions are heuristic methods based
on local search

University Timetabling

Heuristic Methods

Hybrid Heuristic Methods

@ Some metaheuristic solve the general problem while others or exact
algorithms solve the special problem

Replace a component of a metaheuristic with one of another or of
an exact method (ILS+ SA, VLSN)

@ Treat algorithmic procedures (heuristics and exact) as black boxes
and serialize

@ Let metaheuristics cooperate (evolutionary + tabu search)

Use different metaheuristics to solve the same solution space or a
partitioned solution space

Basic

|
Metaheuristics | Assemblage
components

Guided Local Search A
Variable Neighborhood Search |
Beam Search \
Constraint Tabu Search \
Programming algorithm
configurations)
s
Construgtion | "terated Local Search

Heuristics Herated Greedy 3

Integer
Programming

Simulated Annealing

INeighborhoad| ™ Colony Opimization 2

Search Evolutionary Algorithm

Testable :
units Testable /

Solving sub-problems it

Graph Coloring, Bipartite Matching,

Hard constainis, Sot Constrainis

Testable
u

i
I

olving the
! Soking Stab)

global problem

Modling
University Tometabling an Example

Configuration Problem

Algorithms must be configured and tuned and the best selected.

This has to be done anew every time because constraints and their
density (problem instance) are specific of the institution

Appropriate techniques exist to aid in the experimental assessment of
algorithms. Example: F-race [Birattari et al. 2002]

(see: http://www.imada.sdu.dk/ marco/exp/ for a full list of
references)

A Example

Univers

Post Enrollment Timetabling

Definition

Find an assignment of lectures to time slots and rooms which is
Feasible

rooms are only used by one lecture at a time,

each lecture is assigned to a suitable room,

no student has to attend more than one lecture at once,
lectures are assigned only time slots where they are available;
precedences are satisfied;

and Good

no more than two lectures in a row for a student,
unpopular time slots avoided (last in a day),
students do not have one single lecture in a day.

Hard
Constraints

Soft

Constraints

imetabling An Example

Graph models

We define:

o precedence digraph D = (V, A): directed graph having a vertex for
each lecture in the vertex set V and an arc from u to v, u,v € V, if
the corresponding lecture u must be scheduled before v

@ Transitive closure of D: D' = (V, A’)

o conflict graph G = (V, E): edges connecting pairs of lectures if:

o the two lectures share students;

o the two lectures can only be scheduled in a room that is the same for
both;

o there is an arc between the lectures in the digraph D'.

Modelling
University Timetabling An Example

A look at the instances

[atsfes [orafie [pree. Jral o
QD) T

EXm)

University Timetabling

A look at the evaluation of a timetable can help
in understanding the solution strategy

High level solution strategy

a Single phase strategy (not well suited here due to soft constraints)
o =» Two phase strategy: Feasibility first, quality second

Searching a feasible solution:

University Timetabling An Ex

Solution Representation

A. Room assignment left to matching algorithm

Array of Lectures and Time-slots and/or
Collection of sets Lectures, one for each Time-slot

B. Room assignment included

Assignment Matrix

IEEDE
o Room eligibility complicate the use of IP and CP. Time-slots
- - -~ + Heurisics |7 T 7 7 Tis
Ts] 2007 zool _Soo| 1o i3eal sacel L7 FENT T Ry | -1 Ly -+ Ly --- L - -1
Complete assignment of lectures € Ry|Li Ly -+ Ly - Lig -1
These are large scale instances. Partial assignment of lectures l§ Ry | Ly Lg -+ Lig - —1 o —1
@ Room assignment: : : : :
A. Left to matching algorithm R, Ly - Ly Lig - 1
B. Carried out heuristically (matrix representation of solutions)
Modellin odsli Madslln
Univarsity Timatabling A Exarmple Universiy Timetabling A Example Universiy Timetabling An Example
B. Room assignment included
Local Search Algorithms Monday Tuesday Wednesday
Construction Heuristic
. o Neighborhood Operators: w1 [r2[r3[va[vs [v6] w7 oo [ro[ru[radrifmaras[rad rarfrefr T
most-constrained lecture on least constraining time slot it [187]230[a78] o0 [s80] 53 [soa]ars) [r18[s0s[sad] o7 [s20]ard| 52
o - s A. Room assignment left to matching algorithm] 7
Step 1. Initialize the set L of all unscheduled lectures with L = L € € 2 Rapoojis) 2 a3 oeelon ot refsoare| o pre 7 fros,_e0 praiese g
Step 2. Choose a lecture L; € L according to a heuristic rule. The problem becomes a bounded graph coloring R [03| 7 favo o7 [zazase| 09 | ¢ | Jasr] [asafasar]
Step 3. Let X be the set of all positions for L; in the assignment -» Apply well known algorithms for GCP with few adaptations ® el e Tl s e et
matrix with minimal violations of the hard constraints H 0 A Do I R z
Step 4. Let X C X be the subset of positions of X with minimal Ex: P o g s e o s P B e s ey e e P
violations of the soft constraints X. complete assignment representation: TabuCol with one P e oy e [283| | o [110[asa|a07] s [00| 70 [z06| [2ez|150| o1
Step 5. Choose an assignment for L; in X according to a heuristic exchange T o e o e
rule. Update information o))) P e o e e oo
P = partial assignment representation: PartialCol with i-swaps [riofsez] 2 | 50 [362] as |2a7]202) o8 [ses]ssa] 17 [a0cjz00

Step 6. Remove L; from L, and go to step 2 until L is not empty.

See [Blachliger and N. Zufferey, 2008] for a description

One Exchange Period Swap

o Ny: Swap °
@ Ng: Swap + Rematch

: Kempe Chain Interchange

@ Nj: Insert + Rematch

20 = 2
Example of stochastic local search for Hard Constraints, representation A. todelli Modellin
Univarsity Timatabliog. An Exsrrle . Unéversity Timatabling A Exarepl
Prcsicn In Practice Pracios
initialize data (fast updates, dont look bit, etc.)
while (hcv &k stillTime &% idle iterations < PARAMETER) A\gomhm Flowchart
shuffle the time slots . . .
for each lecture L causing a conflict A timetabling system consists of:
for each time slot T Infe .
if not dont look bit Suaed Aoy @ Information (database)
if lecture is available in T - Dne;:);;rl\ghswav
Preprocessing with Malching N .
£ Tostmn i T § i 6 Semn @ Solver (written in a fast language, i.e., C, C++)
try to imsert L in T any
compute delta improvementZ
if delta < 0 || with a PARAMETER probability if delta==0 5 @ Input and Output management (various interfaces to handle input
if there exists a feasible matching room-lectures £ [T mprovement and output)
implement change 3 e
update data 2
if (delta==0) idle_iterations++ else idle_iterations=0; s PrEw——" 5 @ Interactivity: Declaration of constraints (professors’ preferences may
break 3 - Jlkperorenent be inserted directly through a web interface and stored in the
38 swap ; N -
S SI ACRIRCE) D (e g % | with maiching information system of the University)
try to swap time slots s 3
compute delta 2
if delta < 0 || with a PARAMETER probability if delta==0 ¢ S
implement change 3 o Archive. See examples http://www.easystaff.it
update data http://uvy. eventmap-uk. con
if (delta==0) idle_iterations++ else idle_iterations=0;
break
2 2

Modelling
University Timetabling An Exampl
Practice

The timetabling process

Collect data from the information system

N

Execute a few runs of the Solver starting from different solutions
selecting the timetable of minimal cost. The whole computation
time should not be longer than say one night. This becomes a
“draft” timetable.

w

The draft is shown to the professors who can require adjustments.
The adjustments are obtained by defining new constraints to pass to
the Solver.

IS

Post-optimization of the “draft” timetable using the new constraints

o

The timetable can be further modified manually by using the Solver
to validate the new timetables

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 20
Timetabling in Transportation

Marco Chiarandini

Outline

1. Transportation Timetabling
Tanker Scheduling
Coping with hard IPs
Air Transport

Tanker Scheduling
Transportation Timet, Coping with hard 1Ps

Outline

1. Transportation Timetabling

Transportation Timet

Qutline

Problems
@ Tanker Scheduling
@ Aircraft Routing and Scheduling
o Public Transports
MIP Models using complicated variables: Let a variable represent a road
trip, a schedule section, or a whole schedule for a crew.
@ Set packing
@ Set partitioning
Solution techniques
@ Branch and bound
o Lagrangian relaxation (solution without Simplex)

o Branch and price (column generation)

Tanker Scheduling.
Transportation Timet, ¢ iy hard 1P

Tanker Scheduling

Input:
@ p ports

limits on the physical characteristics of the ships

@ n cargoes:

type, quantity, load port, delivery port, time window constraints on
the load and delivery times

o ships (tanker): s company-owned plus others chartered
Each ship has a capacity, draught, speed, fuel consumption, starting
location and times

These determine the costs of a shipment: ¢/ (company-owned) ¢}
(chartered)
Output: A schedule for each ship, that is, an itinerary listing the ports
visited and the time of entry in each port within the rolling horizon
such that the total cost of transportation is minimized

Transportation Timet.

Network Flow

Network repr ion of the tanker problem:

@ a node for each shipment
@ an arc from i to j if possible to accomplish j after completing i

o a directed path corresponds to a feasible schedule for the tank

Model as minimum value problem solvable by maximum flow algorithm in
the following network:

@ split each node i into i’ and i’

@ introduce shipment arcs (i’,i") of flow lower bound 1

o introduce source and sink

@ set all flow upper bounds to 1

Finds minimum number of ships required to cover the cargos. Does not
include costs.

Tanker Scheduling
Transportation Timet. Copine wih hord 1P

IP model

Two phase approach
determine for each ship i the set .S; of all possible itineraries

select the itineraries for the ships by solving an IP problem

Phase 1 can be solved by some ad-hoc enumeration or heuristic
algorithm that checks the feasibility of the itinerary and its cost.

For each itinerary [of ship i compute the profit with respect to charter
| L
m=) e —d
=

where u’u =1 if cargo j is shipped by ship i in itinerary [and 0 otherwise.

Phase 2:
A set packing model with additional constraints

Variables

ze{0,1} Vi L8 lES;

Each cargo is assigned to at most one ship:

ST <

i=11eS;

Vj=

Each tanker can be assigned at most one itinerary

Sai<1 vi=

les;

Objective: maximize profit

ey S

i=11eS;

Transportation Timet

Branch and bound (Variable fixing)
Solve LP relaxation (this provides an upper bound) and branch by:
@ selecting a fractional variable with value closest to 0.5
(keep tree balanced)
set a branch z! = 0 and
the other ! = 1 (this rules out the other itineraries of ship i and of
other ships covering the same cargo)

@ selecting one ship and branching on its itineraries
select the ship that may lead to largest profit or largest cargo or with
largest number of fractional variables.

Scheduling
with hard 1Ps

Transportation Timet. Copi

Primal heuristics

o Improve the formulation: the goal of improving the lower bounds or
solutions whose real variables are closer to be integer

@ Use heuristics within the IP framework. Goal: finding good feasible
solutions
@ construction heuristics
o improvement heuristics

The following heuristics can be applied at each node of a
branch-and-cut/bound tree

Tanker Schedulin

Transportation Timet. Coping with hard 1Ps

Truncated MIP

Run branch-and-cut/bound for a fixed amount of time and return the
best solution when time exceeds.

Diving
Carry out a depth-first search in branch-and-cut/bound tree.

At each node, fix variables that take integer values in the LP relaxation
and branch on the others

@ LP-driven dives: fix the variable that is closest to integer

o IP-driven or guided dives: given an incumbent solution, choose the
variable to be fixed next and assign it the value it has in the
incumbent

These are typically already implemented in MIP systems
LP or incumbent solutions are the guide.

Tanker Scheduling
Coping with hard 1Ps

Transportation Timet

LP-and-fix or Cut-and-Fix
Fix everything that is integer and solve the resulting M TPEP~FIX

Either the new problem is infeasible or it provides and LP-and-fix
heuristic solution

(best solutions if formulation is tight and has few fractional variables)

Transportation Timet

Relax-and-fix

Partition the variables into R disjoint sets and solve sequentially & MIPs,
MIP" with 1 <r <R.

(For example partitions correspond to variables of a tank, machine,
product family, location, most often time periods)

o In the first M/1P! impose integrality in the first partition and relax
all the others

o Fix the variables in the first partition at the values found in MIP"

@ In the subsequent MIP", for 2 < r < R additionally fix the values
of the variables of the r — 1-th partition at the optimal value from
MIP"™! and add integrality restriction for the variables in the r-th
partition.

@ Either MIP" is infeasible for some 7 and the heuristic has failed or
else the solution found at = R is a relax-and-fix heuristic solution

(allow overlap between the partitions may be a good idea)
(Note: only M 1P is a valid lower bound to the M1P)

Transportation Timet.

Exchange

i version of the rel d-fix heuristic

At each step r with 1 <7 < R the MIP solved is obtained by fixing at
their value in the best solution all the variables in the set r — 1 partitions
and imposing integrality to the variables in the r partition

Transportation Timet.

Relaxation Induced Neighborhood Search

Explore neighborhood between LP solution § and best known feasible
solution 5

Fix a variable that has same value in 3 and 5 and solve the IP problem

Either the solution found is infeasible or it is not found within a time limit
so the heuristic has failed or the solution found is an heuristic solution

Tanker Scheduling
Transportation Timet. Coping with hard 1Ps

Local Branching
o The procedure is in the spirit of heuristic local search paradigm.

@ The neighborhoods are obtained through the introduction in the
MIP model of (invalid) linear inequalities called local branching cuts.

o Takes advantage of black box efficient MIP solvers.

In branch and bound most often unclear how to fix variables
- Idea: soft fixing

Given a feasible solution Z let O := {i € B : &; = 1}.
Define the k-opt neighborhood N/ (Z, k) as the set of feasible solutions
satisfying the additional local branching constraint:

S-w)+ Y @<k

i€0 i€B\O

A counts
number of flips

Partition at the branching node:

A(w,7) < k (left branching) or > ki + 1 (right branching)

Tanker Scheduling
Transportation Timet. Coping with hard IPs

Az k1

N

AN
VANG SIS
VAL

improved solution *

(&

I\
/\
VAN

improved solution

A) =

o improved solution

Tanker Scheduling
Transportation Timet. Coping with hard 1ps

@ The idea is that the neighborhood N (z, k) corr ding to the left
branch must be “sufficiently small” to be optimized within short
computing time, but still “large enough” to likely contain better
solutions than .

o According to computational experience, good values for k are in
[10,20]
This procedure coupled with an efficient MIP solver (subgradient

optimization of Lagrangian multipliers) was shown able to solve very
large problems with more than 8000 variables

Transportation Timet

OR in Air Transport Industry

@ Aircraft and Crew Schedule Planning
Schedule Design (specifies legs and times)
Fleet Assignment
Aircraft Maintenance Routing
Crew Scheduling

o crew pairing problem

o crew assignment problem (bidlines)

o Airline Revenue Management
o number of seats available at fare level
o overbooking
o fare class mix (nested booking limits)

@ Aviation Infrastructure
o airports
o runaways scheduling (queue models, simulation; dispatching,
optimization)
o gate assignments

e air traffic management

iom Tirmet.

Daily Aircraft Routing and Schediling

[Desaulniers, Desrosiers, Dumas, Solomon and Soumis, 1997]
Input:
o L set of flight legs with airport of origin and arrival, departure time
windows [e;, 1], i € L, duration, cost/revenue

o Heterogeneous aircraft fleet 7', with m, aircrafts of type t € T’

Output: For each aircraft, a sequence of operational flight legs and
departure times such that operational constraints are satisfied:

o number of planes for each type

@ restrictions on certain aircraft types at certain times and certain
airports

o required connections between flight legs (thrus)
o limits on daily traffic at certain airports
o balance of airplane types at each airport

and the total profits are maximized.

Tanker Scheduling
Coping with hard 1Ps
A Transport

Transportation Timet

L, denotes the set of flights that can be flown by aircraft of type ¢

S, the set of feasible schedules for an aircraft of type ¢ (inclusive of
the empty set)

al; = {0,1} indicates if leg i is covered by I € S;

i profit of covering leg i with aircraft of type i

L 1
= § Ttily;

i€Ly

forl € S,

P set of airports, P, set of airports that can accommodate type ¢

of, and d}, equal to 1 if schedule , | € S, starts and ends, resp., at
airport p

A set partitioning model with additional constraints
Variables

zie{0,1} VieT;leS and afeN WteT

Maximum number of aircraft of each type:

> ab=m

i€s,

YteT
Each flight leg is covered exactly once:

S a1

tET €S,

VieL

Flow conservation at the beginning and end of day for each aircraft type

D (ol —dip)at =0

I€S:

VteT;peP

Maximize total anticipate profit

max 3 3 et

Transportation Timet.

Solution Strategy: branch-and-price

@ At the high level branch-and-bound similar to the Tanker Scheduling
case

o Upper bounds obtained solving linear relaxations by column
generation

o Decomposition into
o Restricted Master problem, defined over a restricted number of
schedules
o Subproblem, used to test the optimality or to find a new feasible
schedule to add to the master problem (column generation)

o Each restricted master problem solved by LP.
It finds current optimal solution and dual variables

 Subproblem (or pricing problem) corresponds to finding longest path
with time windows in a network defined by using dual variables of
the current optimal solution of the master problem. Solve by

‘NopETYRES

ARcTYPES

it ics, dynamic programming
Maximize 3, 3 X} ®)
Kk Gpeat
subject to:
Xhj=1 VieN, ©
Kk jipest
Xi- 3 Xy=0 VkeK Vsest
iinENsh HEsN
a0y

% Xiws + Xbwan =1 k€K, an

Xj— Xh=
whea | eghent

Vk € K, Vj € VAlo(k), d(K)), a2
T Xbaw + Xbwaw =1 VK€K, (13)
p=t

Xy=0 VkeK, V()€ A, (14)

@ =Ti=b VkeKVieV, asy

XYT +dy - TH =0 VKK VG j)ea, a6
Xjinteger VK€K, VG, j)eA’ (7)

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 21
Timetabling in Transportation

Marco Chiarandini

Outline

1. Transportation Timetabling
Train Timetabling

Transportation Timet. Trsin Timetabling

Outline

1. Transportation Timetabling

Transportation Timet

Planning problems in public transport

Phase: Planning Scheduling Dispatching

Horizon: Long Term Timetable Period Day of Operation

Objective: | Service Level Cost Reduction Get it Done

Steps: Network Design | Vehicle Scheduling | Crew Assignment
Line Planning | Duty Scheduling | Delay Management
Timetabling Duty Rostering Failure Management
Fare Planning Depot Management

] I

Dynamic Management . .
Master Schedule —*"2" 22", Conflict resolution

[Borndérfer, Grotschel, Pfetsch, 2005, ZIB-Report 05-22]

Less.
congestion
.
More
egalitarianism

[Borndérfer, Liebchen, Pfetsch, course 2006, TU Berlin]

Transportation Timet

[Borndarfer, Liebchen, Pfetsch, course 2006, TU Berlin]

Train Timetabling

Transportation Timet

o O o B 0 U2 s

[

[Borndérfer, Liebchen, Pfetsch, course 2006, TU Berlin]

Transportation Timet. Train Timstabling

Train Timetabling

Input:
@ Corridors made up of two independent one-way tracks
o L links between L + 1 stations.

o T set of trains and T}, T; C T', subset of trains that pass through
link j

Qutput: We want to find a periodic (eg, one day) timetable for the
trains on one track (the other can be mirrored) that specifies:

@ y;; = time train i enters link j
o z; = time train i exists link j

such that specific constraints are satisfied and costs minimized.

Teansportation Timet. Train Timetabling

Constraints:
@ Minimal time to traverse one link
@ Minimum stopping times at stations to allow boarding

@ Minimum headways between consecutive trains on each link for
safety reasons

@ Trains can overtake only at train stations

@ There are some " predetermined’ upper and lower bounds on arrival
and departure times for certain trains at certain stations

Costs due to:
o deviations from some “preferred” arrival and departure times for
certain trains at certain stations

o deviations of the travel time of train i on link j

o deviations of the dwelling time of train i at station j

Transportation Timet. Train Timetabling

Solution Approach

o All constraints and costs can be modeled in a MIP with the variables:
Yij 215 and @iy = {0, 1} indicating if train i precedes train h

o Two dummy trains 7’ and T"" with fixed times are included to
compact and make periodic

o Large model solved heuristically by decomposition.

o Key Idea: insert one train at a time and solve a simplified MIP.

o In the simplified MIP the order in each link of trains already
scheduled is maintained fixed while times are recomputed. The only

order not fixed is the one of the new train inserted k (z;1,; simplifies
to x;; which is 1 if k is inserted in j after train 7)

Transportation Timst. Train Timetabling
Overall Algorithm
Step 1 (Initialization)
Introduce in Tj two “dummy trains” as first and last trains
Step 2 (Select an Unscheduled Train) Select the next train k
through the train selection priority rule
Step 3 (Set up and preprocess the MIP) Include train k in set T
Set up MIP(K) for the selected train k
Preprocess MIP(K) to reduce number of 0-1 variables and
constraints
Step 4 (Solve the MIP) Solve MIP(k). If algorithm does not yield
feasible solution STOP.
Otherwise, add train k to the list of already scheduled
trains and fix for each link the sequences of all trains in Tp.
Step 5 (Reschedule all trains scheduled earlier) Consider the
current partial schedule that includes train k.
For each train i € {T — k} delete it and reschedule it
Step 6 (Stopping criterion) If Ty consists of all train, then STOP
otherwise go to Step 2.

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 23

Workforce Scheduling

Marco Chiarandini

Warkforee Scheduling

Outline

1. Transportation Timetabling

2. Workforce Scheduling
Crew Scheduling and Rostering
Employee Timetabling
Shift Scheduling
Nurse Scheduling

Transportation Timat.
WorkToree Scheduting

QOutline

1. Transportation Timetabling

2. Workforce Scheduling

Periodic Event Scheduling Problém®*

Blackboard

Workforca Scheduling

Outline

1. Transportation Timetabling

2. Workforce Scheduling

Workforce Scheduling

Overview

Transportation Timet
Workforce Scheduling

A note on terminology

Shift: consecutive working hours

Roster: shift and rest day patterns over a fixed period of time (a week or
a month)

Two main approaches:
@ coordinate the design of the rosters and the assignment of the shifts
to the employees, and solve it as a single problem.
@ consider the scheduling of the actual employees only after the rosters
are designed, solve two problems in series.

Features to consider: rest periods, days off, preferences, availabilities,
skills.

ortation Crew Scheduling and
Employes Timetabling

Workforee Scheduling

Workforce Scheduling

Overview

Workforce Scheduling:
1. Crew Scheduling and Rostering
2. Employee Timetabling

1. Crew Scheduling and Rostering is workforce scheduling applied in
the transportation and logistics sector for enterprises such as airlines,
railways, mass transit companies and bus companies (pilots,
attendants, ground staff, guards, drivers, etc.)

The peculiarity is finding logistically feasible assignments.

Workforce Scheduling

Overview

Workfores Schedufing Ervployes Timeiabing

2. Employee ti bling (aka labor scheduling) is the operation of
assigning employees to tasks in a set of shifts during a fixed period
of time, typically a week.

Examples of employee timetabling problems include:
@ assignment of nurses to shifts in a hospital,
@ assignment of workers to cash registers in a large store

o assignment of phone operators to shifts and stations in a
service-oriented call-center

Differences with Crew scheduling:
@ no need to travel to perform tasks in locations

o start and finish time not predetermined

Crew Scheduling and Rosd
E

Crew Scheduling
Employee Timet:

Crew Scheduling Workfores Scheduing
Input:

o A set of flight legs (departure, arrival, duration)

@ A set of crews
Output: A subset of flights feasible for each crew

How do we solve it?
Set partitioning or set covering??
Often treated as set covering because:

o its linear programming relaxation is numerically more stable and thus
easier to solve

it is trivial to construct a feasible integer solution from a solution to
the linear programming relaxation

o it makes possible to restrict to only rosters of maximal length

Workforce Scheduling

Crew Scheduling and
Employes Timetabli

Shift Scheduling

Creating daily shifts:
@ roster made of m time intervals not necessarily identical
o during each period, b; personnel is required
o n different shift patterns (columns of matrix A)

min ¢’z

st Az >b

2 >0 and integer

(k,m)-cyclic Staffing Problem Weliadin enowrinine
Assign persons to an m-period cyclic schedule so that:
@ requirements b; are met

o each person works a shift of & consecutive periods and is free for the
other m — k periods. (periods 1 and m are consecutive)

and the cost of the assignment is minimized.

min cx
1001 1 11
11001 11
11100 11

st 111100 1 a>b G)
1111100
0111110
001 1 111

>0 and integer

rew Scheduling and Ros

Workforce Scheduling

Recall: Totally Unimodular Matrices

Definition: A matrix A is totally unimodular (TU) if every square
submatrix of A has determinant +1, -1 or 0

Proposition 1: The linear program max{cz : Az < b, € R7'} has an
integral optimal solution for all integer vectors b for which it has a finite
optimal value if and only if A is totally unimodular

Recognizing total
[Schrijver, 1986])

ity can be done in p ial time (see

Crew Scheduling and Ros
Employee Timetabling

Total Unimodular Matrices

Resume’

Basic examples:

Theorem

The V x E-incidence matrix of a graph G = (V, E) is totally unimodular if and
only if G is bipartite

Theorem
The V x A-incidence matrix of a directed graph D = (V, A) is totally
unimodular

Theorem

Let D = (V, A) be a directed graph and let T = (V, Aq) be a directed tree on
V. Let M be the Aq x A matrix defined by, for a = (v,w) € A and a’ € Ay

Mar +1 i the unique v — w-path in T' passes through o’ forwardly;
~1 if the unique v — w-path in T passes through a' backwardly;

0 if the unique v — w-path in T does not pass through a'

M s called network matrix and is totally unimodular.

Total Unimodular Matrices

Resume’

Al totally unimodular matrices arise by certain compositions from
network matrices and from certain 5 x 5 matrices [Seymour, 1980]. This
decomposition can be tested in polynomial time.

Definition

A (0, 1)-matrix B has the consecutive 1's property if for any column j,
bij = by = 1 with i < i’ implies b; =1 for i <1 < i'. Thatis, if there
is a permutation of the rows such that the 1's in each column appear
consecutively.

What about this matrix?

1001111
1100111
1110011
1111001
1111100
0111110
0011111
Definition A (0, 1)-matrix B has the circular 1's property for rows (resp

Whether a matrix has the consecutive 1's property can be determined in
polynomial time [D. R. Fulkerson and O. A. Gross; Incidence matrices
and interval graphs. 1965 Pacific J. Math. 15(3) 835-855.]

A matrix with consecutive 1's property is called an interval matrix and
they can be shown to be network matrices by taking a directed path for
the directed tree 7'

for columns) if the columns of B can be permuted so that the 1's in each
row are circular, that is, appear in a circularly consecutive fashion

The circular 1's property for columns does not imply circular 1's property
for rows.

Whether a matrix has the circular 1's property for rows (resp. columns)
can be determined in O(m?n) time [A. Tucker, Matrix characterizations
of circular-arc graphs. (1971) Pacific J. Math. 39(2) 535-545]

Workfores Scheduling

Integer programs where the constraint matrix A have the circular 1's
property for rows can be solved efficiently as follows:

Step 1 Solve the linear relaxation of (P) to obtain z1,..., . If
ah,...,x), are integer, then it is optimal for (P) and
STOP. Otherwise go to Step 2.

Form two linear programs LP1 and LP2 from the
relaxation of the original problem by adding respectively
the constraints

Step 2
T4t =2+l (LP1)

and
T+t = (2] +] (LP2)

From LP1 and LP2 an integral solution certainly arises (P)

Cyclic Staffing with Overtime
o Hourly requirements b;
@ Basic work shift 8 hours
o Overtime of up to additional 8 hours possible
saatze -

subject to

X2 0 and tnteger.

Workdores Scheduling

Days-Off Scheduling

o Guarantee two days-off each week, including every other weekend.

IP with matrix A:

Fixat veek

second week

Crew Scheduling and Ros
Employee Timetabling

Workforce Scheduling Employee

Cyclic Staffing with Part-Time Workers
o Columns of A describe the work-shifts
o Part-time employees can be hired for each time period i at cost |
per worker

min cx+ 'z’

st Ax+Ia' >b

2,2’ > 0 and integer

g and Ros
abling

Workforce Scheduling

Cyclic Staffing with Linear Penalties for Understaffing and Overstaffing
o demands are not rigid
o a cost ¢ for understaffing and a cost ¢/’ for overstaffing

min cx + a2’ + (b — Az — ')
st Ac+Id'>b

x,2' > 0 and integer

Employee Ti

sling and Rost
ctabing

Workforce Scheduling

Nurse Scheduling

@ Hospital: head nurses on duty seven days a week 24 hours a day

o Three 8 hours shifts per day (1: daytime, 2: evening, 3: night)

@ In a day each shift must be staffed by a different nurse

@ The schedule must be the same every week

@ Four nurses are available (A,B,C,D) and must work at least 5 days a
week.

@ No shift should be staffed by more than two different nurses during
the week

o No employee is asked to work different shifts on two consecutive days

@ An employee that works shifts 2 and 3 must do so at least two days
in a row.

Transportation Timet
Workforee Scheduling

o
Mainly a feasibility problem
A CP approach

Two solution representations

Sun Mon Tue Wed Thu Fri Sat
Shift1 A B A A A A A
Shift2 C C C B B B B
Shift3 D D D D C C D

Sun Mon Tue Wed Thu Fri Sat

Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3

uling and Rosd
Timetabiing

Workforca Scheduling

Variables w,, nurse assigned to shift s on day d and y;4 the shift
assigned for each day

wea € {A,B,C,D} yi €{0,1,2,3}

Three different nurses are scheduled each day
alldiff(w.a) Vd

Every nurse is assigned to at least 5 days of work
cardinality(w. | (A, B,C, D), (5,5,5,5),(6,6,6,6))

At most two nurses work any given shift

nvalves(w,. | 1,2) Vs

Crew Sched nd R
Employee Timetabiing

Crew Scheduling and Rod
Employee Timetabling

ot S
All shifts assigned for each day
alldiff(yq) Vd

Maximal sequence of consecutive variables that take the same values

2),(6,6), P)
Vi, P ={(5,0),(0,s) | s = 1,2,3}

stretch-cycle(y;. | (2,3). (2,

Channeling constraints between the two representations:

on any day, the nurse assigned to the shift to which nurse i is assigned

must be nurse i
Wy =1 Vi.d

Ywad =5 Vs,d

Workforee Scheduling

The complete CP model

Alldiﬂl{ (wa) } alld
(ya)
Cardinality: (w. | (A, B,C, D), (5,5.5.5). (6,6,6.6))

Nvalues: (ws. | 1,2), all s

Streteh-cycle: (g | (2,3), (2,2), (6,6),

} calld

wa€{ABCDY s=123 |
yae{0.1.2.3). i=AB.CD [¢

P), alli
Wy = i, all i

Lincar: {

Yunga = 5, all s

Domains: {

Crew Scheduling and R
Employes Timetabling

Workforce Scheduling Employee Timetabi

Constraint Propagation:

o alldiff. matching
@ nvalues: max flow
@ stretch: poly-time dynamic programming

o index expressions w,, 4 replaced by z and constraint:
element(y,z,2): z be equal to y-th variable in list zy,...

Search:

@ branching by splitting domanins with more than one element
o first fail branching
@ symmetry breaking:

o employees are indistinguishable

o shifts 2 and 3 are indistingushable
o days can be rotated

Eg: fix A, B,C to work 1,2,3 resp. on sunday

J Rost
fing.

heduling and Ros

Employee Timetabling

Workfores Scheduing

Local search methods and metaheuristics are used if the problem has large
scale. Procedures very similar to what we saw for employee timetabling.

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 24
Vehicle Routing

Marco Chiarandini

Outline

1. Vehicle Routing

2. Integer Programming

Vehicle Routing

QOutline

1. Vehicle Routing

2. Integer Programming

Vehicle Routing

Problem Definition

Vehicle Routing: distribution of goods between depots and customers.
Delivery, collection, transportation.
Examples: solid waste collection, street cleaning, school bus routing,

dial-a-ride systems, transportation of handicapped persons, routing of
salespeople and maintenance unit

Vehicle Routing Problems
Input: Vehicles, depots, road network, costs and customers requirements.
Output: Set of routes such that:

@ requirement of customers are fulfilled,

@ operational constraints are satisfied and

o a global transportation cost is minimized.

Vehicle Routing

Vehicle Routing

Refinement

Road Network
o represented by a (directed or undirected) complete graph

@ travel costs and travel times on the arcs obtained by shortest paths

Customers
@ vertices of the graph
collection or delivery demands
time windows for service

°
°

@ service time
@ subset of vehicles that can serve them
°

priority (if not obligatory visit)

Vehicle Routing

Vehicles
@ capacity
@ types of goods
@ subsets of arcs traversable
@ fix costs associated to the use of a vehicle
@ distance dependent costs
@ a-priori partition of customers
o home depot in multi-depot systems
@ drivers with union contracts

Operational Constraints
@ vehicle capacity
o delivery or collection
@ time windows
o working periods of the vehicle drivers

@ precedence constraints on the customers

Vehicle Routing

Objectives
@ minimization of global transportation cost (variable + fixed costs)
@ minimization of the number of vehicles
o balancing of the routes

o minimization of penalties for un-served customers

History:

Dantzig, Ramser “The truck dispatching problem”, Management Science,
1959

Clark, Wright, “Scheduling of vehicles from a central depot to a number
of delivery points”. Operation Research. 1964

Vehicle Routing

Vehicle Routing Problems

o Capacited (and Distance Constrained) VRP (CVRP and DCVRP)
o VRP with Time Windows (VRPTW)

o VRP with Backhauls (VRPB)

o VRP with Pickup and Delivery (VRPPD)
o Periodic VRP (PVRP)

o Multiple Depot VRP (MDVRP)

o Split Delivery VRP (SDVRP)

o VRP with Satellite Facilities (VRPSF)

o Site Dependent VRP

o Open VRP

o Stochastic VRP (SVRP)

o ..

Capacited Vehicle Routing (CVRPY¥:

Input: (common to all VRPs)
@ (di)graph (strongly connected, typically complete) G(V, A), where
V ={0,...,n} is a vertex set:
o 0 is the depot.
V' = V\{0} is the set of n customers
i,j):i,j € V}is a set of arcs

@ C a matrix of non-negative costs or distances c;; between customers
i and j (shortest path or Euclidean distance)
(cater 2y VigeV)

@ a non-negative vector of costumer demands d;

o aset of K (identicall) vehicles with capacity @, d; < Q

Vehicle Routing

Task:
Find collection of K circuits with minimum cost, defined as the sum of
the costs of the arcs of the circuits and such that:

o each circuit visits the depot vertex
a each customer vertex is visited by exactly one circuit; and

o the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.

Note: lower bound on K

o [d(V)/Q]

@ number of bins in the associated Bin Packing Problem

Vehicle Routing
A feasible solution is composed of:

o a partition Ry,..., Ry, of V;

@ a permutation 7' of R;|J0 specifying the order of the customers on

route i.

A route R; is feasible if 37

Ly di Q-
The cost of a given route (1) is given by: F(R,) = Y7 ¢, 01

The cost of the problem solution is: Fyyrp = Y., F(R;)

Relation with TSP

@ VRP with K =1, no limits, no (any) depot, customers with no
demand = TSP

VRP is a generalization of the Traveling Salesman Problem (TSP)
= is NP-Hard

VRP with a depot, K vehicles with no limits, customers with no
demand =» Multiple TSP = one origin and K salesman

Multiple TSP is transformable in a TSP by adding K identical
copies of the origin and making costs between copies infinite

Variants of CVRP:

o minimize number of vehicles
o different vehicles Qi k =1,..., K

o Distance-Constrained VRP: length #;; on arcs and total duration of a
route cannot exceed 7" associated with each vehicle
Generally c;; = t;;
(Service times s; can be added to the travel times of the arcs:
th =ty + /24 5;/2)

o Distance constrained CVRP

.+ Vehiele Routin
Vehicle Routing with Time Win -
Further Input:
o each vertex is also associated with a time interval [a;, b;].
@ each arc is associated with a travel time t;;

@ each vertex is associated with a service time s;

Task:
Find a collection of K simple circuits with minimum cost, such that:

@ each circuit visit the depot vertex
@ each customer vertex is visited by exactly one circuit; and

@ the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.

o for each customer 4, the service starts within the time windows
[ai,b] (it is allowed to wait until a; if early arrive)

Time windows induce an orientation of the routes.

Variants

@ Minimize number of routes

@ Minimize hierarchical objective function

o Makespan VRP with Time Windows (MPTW)
minimizing the completion time

o Delivery Man Problem with Time Windows (DMPTW)
minimizing the sum of customers waiting times

Solution Techniques for CVRP "=

o Integer Programming
@ Construction Heuristics
@ Local Search

@ Metaheuristics

@ Hybridization with Constraint Programming

Outline

1. Vehicle Routing

2. Integer Programming

Vehicle Routin
Integer Programming.

Basic Models oo Progrmming

o vehicle flow formulation
integer variables on the edges counting the number of time it is
traversed
two or three index variables

o commodity flow formulation
additional integer variables representing the flow of

commodities along the paths traveled bu the vehicles

o set partitioning formulation

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 25
Vehicle Routing
Mathematical Programming

Marco Chiarandini

Outline

1. Integer Programming

Integer Programming

Outline

1. Integer Programming

Integer Programming.

Basic Models

@ arc flow formulation

integer variables on the edges counting the number of time it is
traversed
one, two or three index variables

@ set partitioning formulation

@ multi-commodity network flow formulation for VRPTW
integer variables representing the flow of commodities along the
paths traveled by the vehicles and
integer variables representing times

Integer Programming

Two index arc flow formulation

min ;;C\,x\, (1)

st) xy=1
iev
Soxy=1

¥ € VA{0} (2)

vieV\ {0} (3)

s
> xo=K (4)
fev

> xo =K (5)
=

> Y x2S VS CVA\{0L,S #0 (6)
=i

xij € (0,1} Yi,j eV (7)

Integer Programming

One index arc flow formulation

min) cexe (8)
et

st Y xe=2 Yie V\{0) (9)
i)
Y xe=2 (10)
ecsl0)
> xe=2(8) VS C V\{0),S #0(11)
cess
xe €{0,1) Ve ¢ 5(0)(12)
xe €{0,1,2} Ve € 5(0)(13)

Integer Programming
Three index arc flow formulation

«
min Y Y ey Y x (19

ieviev k=1

K

st) yw=1 Vie V\{0} (15)
P

(16)

VieVk=1,...,K (17)

jev jev

Integer Programming.

What can we do with these integer programs?

@ plug them into a commercial solver and try to solve them
@ preprocess them
@ determine lower bounds
a solve the linear relaxation
@ combinatorial relaxations
relax some constraints and get an easy solvable problem
o Lagrangian relaxation
o polyhedral study to tighten the formulations
upper bounds via heuristics
branch and bound

Combinatorial Relaxations Intege Programming
Lower bounding via combinatorial relaxations
Relax: capacity cut constraints (CCC)
or generalized subtour elimination constraints (GSEC) Consider both
ACVRP and SCVRP
@ Relax CCC in 2-index formulation
obtain a transportation problem
Solution may contain isolated circuits and exceed vertex capacity

o Relax CCC in 1-index formulation
obtain a b-matching problem

min Y cexe

o
¢ o
S s Vk=1,...,K (18) o cutting plane e
E= e =b; vie V(o)
& v O me Sk o branch and cut s Lo revier
é%"*“ 2 unk YSEVALLRES k=11,....k (19) o column generation (via reformulation) e Ve 5(0)
v e (0.1) VieVk=T,... K (20) B brandT and price . xe €(0,1,2} ve € 5(0)
xix €{0,1) VijeVk=1,....K (21) o Dantzig Wolfe decomposition)
o upper bounds via heuristics Solution has same problems as above
. . .
nteger Programming Iteger Programming Branch and Cut nteger Programming
o relax in two index formulation
@ relax in two index flow formulation:
. min Z CeXe
cixi
min LT e & nin 5 e @
s
st xij =1 vie V(o) st xe =2 vie V\{0)
‘CZ\, ! e 2§” N ! st % xe =2 Yie VA {0} (23)
eést)
xij =1 vie V\(0) _
ng j > xe=2K (24)
Z X eed(0)
xi0 =
iev ZX > 2r(S) VS CVA\{0},S #0 WS C VA{0},S £ 0 (25)
3 xo =K eeas c
jev xe €{0,1} Ve ¢ 5(0) xe €{0,1} Ve ¢ 5(0) (26)
S :)] e €{0,1,2 vee 5(0) (27,
%%“' zsn vSCVARLS #0 K-tree: min cost set of .+ K edges spanning the graph with degree x et e € 8(0) (27)
i €10,1) Vijev 2K at the depot.

K-shortest spanning arborescence problem

o Lagrangian relaxation of the sub tour constraints iteratively added
after violation recognized by separation procedure.
Subgradient optimization for the multipliers.

Integer Programming.

Branch and Cut
o Let LP(c0) be linear relaxation of IP
® Zp(eo) < ZIP
@ Problems if many constraints

@ Solve LP(h) instead and add constraints later

o If LP(h) has integer solution then we are done, that is optimal
If not, then zip(n) < zrp(nt1) < ZLp(eo) < ZIP
@ Crucial step: separation algorithm given a solution to LP(h) it tell
us if some constraints are violated.
If the procedure does not return an integer solution we proceed by branch
and bound

Integer Programming

Problems with B&C:

i) no good algorithm for the separation phase
it may be not exact in which case bounds relations still hold and we
can go on with branching

i) number of iterations for cutting phase is too high
iii) program unsolvable because of size

iv) the tree explodes

The main problem is (iv).

Worth trying to strengthen the linear relaxation by inequalities that
although unnecessary in the integer formulation force the optimal
solution of LP and IP to get closer. ® Polyhedral studies

Integer Programming

Set Covering Formulation

R ={1,2,...,R} index set of routes

[
ar =9 4

if costumer i is served by T
otherwise

if route 1 is selected
otherwise

min Y ey (28)

reR
st Y aux > 1 VieV (29)
reR
> x<K (30)
TER
X €{0,1} wreR (31)
(32)

Integer Programming.

Solving the SCP integer program
Branch and bound

@ Generate routes such that:
@ they are good in terms of cost
o they reduce the potential for fractional solutions

@ constraint branching [Ryan, Foster, 1981]

3 constraints 11,712 :0 <
jetrra)

X <1

J(r1,72) all columns covering 11,72 simultaneously. Branch on:

/ \
Yy x<o0

JET(T1,72)

x> 1

JET(T1,72)

Integer Programming

Solving the SCP linear relaxation

Column Generation Algorithm

Step 1 Generate an initial set of columns R’

Step 2 Solve problem P’ and get optimal primal variables, x, and
optimal dual variables, (7,8)

Step 3 Solve problem CG, or identify routes r € R satisfying
¢ <0

Step 4 For every r € R with ¢, < 0 add the column r to R’ and
go to Step 2

Step 5 If no routes T have ¢, < 0, i.e., Emin > O then stop.

In most of the cases we are left with a fractional solution

Integer Programming

Convergence in CG

w
i o s e g)
UopesBound for P

£ pretey
H LowerBound o P -
g sctn) 2
[2
S 5
2 2
& s
s 2
H =
g 8
e k3
H 2
£ 8
5 8
o £
S s
k] E
2 £
5 F
@ 0305

frchs

pEsaS

e

o 30 10 150 20 20 300 3 40 45 W 550 €0 €0 00 7 K 50 W 0
Iterations
[Plot by Stefano Gualandi, Milan Un.]

Integer Programming.

Solving the SCP integer program:

o cutting plane

@ branch and price

Cutting Plane Algorithm
Step 1 Generate an initial set R’ of columns
Step 2 Solve, using column generation, the problem P’ (linear
programming relaxation of P)
Step 3 If the optimal solution to P’ is integer stop.
Else, generate cutting plane separating this fractional
solution.
Add these cutting planes to the linear program P’
Step 4 Solve the linear program p’. Goto Step 3.

Is the solution to this procedure overall optimal?

Integer Programming

Cuts

Intersection graph G = (V, E) where V are the routes and E is made by
the links between routes that intercept

Independence set in G is a collection of routes where each customer is
visited only once.

Clique constraints

S %<t

rek

¥ cliques K of G

Cliques searched heuristically

Odd holes
0dd hole: odd cycle with no chord

v < Mo

reH

V odd holes H

Generation via layered graphs

2ygemin{ex:Axzb xEZ}

relaxation

Integer Programming

(Solve the original integer

problem either over the

generetad columns (RIP)
or by Branch&Price

yes

~

Pricing problem

I8 I8
Zepgemin{ex:/xzb} = min 'y,

] | sty sl VigieE, ﬁ(.. A:I) [‘h

'*MI ‘:> wetod ey, |+ Y)

g

G e

[illustration by Stefano Gualandi, Milan Un.]
(the pricing problem is for a GCP)

Integer Programming.

Branch and price

@ it must be possible to incorporate information on the node in the
column generation procedure

o easy to incorporate x, = 1, just omit nodes in S, from generation;
but not clear how to impose x, = 0.

o different branching: on the edges: xi; = 1 then in column generation
set cij = —o0; if xij = 0 then ¢y = o0

Integer Programming

Implementation details
@ throw out from LP columns that have not been basic for a long time
o good procedures to generate good columns

o generate columns that are disjoint, collectively exhaustive and of
minimal cost

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 26
Vehicle Routing
Mathematical Programming

Marco Chiarandini

Outline

1. Integer Programming

Integer Programming

Outline

1. Integer Programming

Integer Programming.

VRPTW

min Yy Y ek 1)

keEK (1,j)eA

sty Y xgk=1 vieV (2)
keK (ij)est (i)
Xge=) xge=1 vkeK (3)
(1j)€8+(0) (i,)€6-(0)
Z Xjik — Z Xijk =0 ieVkeK (4)
(i)es- (1) (L)es* (1)
Z dixije < C vk €K (5)
(Li)eA
Xijk(Wik + i) < wik vk e (i,i) €A (6)
ai < Wik < by VkeKieV (7)
Xk €10, 1) (8)

Integer Programming

Pre-processing

o Arc elimination
o a4ty > by 2 arc (4,§) cannot exist
o di+d; > C = arcs (4,1) and (j, i) cannot exist

@ Time windows reduction
o [ai,bi] & [max{ao + tor, ai}, minfbu 11 — tini1,bil] why?

Integer Programming.

@ Time windows reduction:

o Iterate over the following rules until no one applies anymore:

1) Minimal arrival time from predecessors:
& = max {m,min {:.1‘ minfa + :1,)}}.
(1,0
2) Minimal arrival time to successors:
a; = max {a,,min {b;, min{a; — n,)}}‘
b
3) Maximal departure time from predecessors:
by = min {b‘, max {uhxtnar;((b. + m)}},

4) Maximal departure time to successors:

b= min (b o om0} .

Integer Programming.

Lower Bounds

o Combinatorial relaxation
reduce to network flow problem

o Lagrangian relaxation
not very good because easy to not satisfy the capacity and time
windows constraints

Integer Programming.

Dantzig Wolfe Decomposition

The VRPTW has the structure:

min c*xk
> Ak <p
kek
D¥x* < d* Wk € K
xFez Wk € K

Integer Programming.

Dantzig Wolfe Decomposition

lllustrated with matrix blocks

Original problem Master problem

Linking consraints — .
Converty consraits
Bock
—/Em'"‘ o

[illustration by Simon Spoorendonk, DIKU]

Integer Programming.

Integer Programming

Dantzig Wolfe Decomposition

Integer Programming

Master problem

Linking constraint in VRPTW is 5",y 5" 1 g (i) Xk = 1, Vil The
inti kyk < gk . itioni
description of the block D¥x* < d* is all the rest: Original problem Restricted master problem A Set Partitioning Problem
min > cyeipAp (15)
Z dixij <C) Linking consiraints — ot peP
(ij)€A aipAp =1 VieV (16)
Convesty conerarts PEP (ij)€5* ()
D xoj =) Ximn1 =1 (10) T
jev iev . A =1{0,1} ¥peP (17)
> xin—) xny =0 vheV (11) s H o ¥(Lj)gp
where P is the set of valid paths and «j, = ’
iev eV \ P e 1 otherwise
Wi+t = My (1 —xi5) < wj V(i) €A (12)
a; <wi < by vieV (13) o Subproblem
xij €{0,1} (14) Elementary Shortest Path Problem with Resource Constraints (ESPPRC)
o arcs modified with duals (possible negative costs), NP-hard
where we omitted the index k because, by the assumption of (C ©)
[illustration by Simon Spoorendonk, DIKU]
homogeneous fleet, all blocks are equal. Q/Xﬂ’c
o find shortest path without violating resource limits
10 1 i
Subproblem Integer Programming Subproblem Integer Programming Branch and Bound Integer Programming
Cuts in the original three index problem formulation (before DWD)
Solution Approach: Original problem Restricted master problem
min Y xg (18) -
(ij)eA o Solved by dynamic programming. Algorithms maintain labels at Linking constrants —_ o
st Z diy < C (19) vertices and remove dominated labels. Domination rules are crucial.
(i.i)€A . X . cus — cus
a relaxing and allowing cycles the problem can be sovled in oy e
Zxoi = Z Xin+1 =1 (20) pseudo-polynomial time. -
jev iev Negative cycles are however limited by the resource constraints “ g I
3
S xin—) xn=0 vheV (21) \
iev jev o optimal solution has only elementary routes if triangle inequality
- holds.
Wi+t — Mg (1—xi5) < w; V(i) € A (22 . o Subproblem
o il)) t ’], 22) Otherwise post-process by cycle elimination procedures y
ai <wi < by vieV (23) .
i €10,1) (24) For details see chp. 2 of [B11]

[illustration by Simon Spoorendonk, DIKU]

Integer Programming.

Branching

@ branch on | xiji
choose a candidate not close to 0 or 1
max cij min{xijk, 1 — Xiji)

@ branch on time windows
split time windows s.t. at least one route becomes infeasible
compute [1F, u}] (earliest latest) for the current fractional flow
L= max (I} VieV
fract. routes T
ut W} Wiev

= max
X fract. routes r - o
i Li > Uy = at least two routes have disjoint feasibility intervals

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 27
Vehicle Routing
Heuristics

Marco Chiarandini

Outline

1. Construction Heuristics
Construction Heuristics for CVRP
Construction Heuristics for VRPTW

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

Outline

1. Construction Heuristics

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

Sonereen M conne. Heur, forcvmp
Construction Heuristics for CVRPV#"

@ TSP based heuristics
o Savings heuristics (Clarke and Wright)
@ Insertion heuristics

o Cluster-first route-second
o Sweep algorithm
o Generalized assignment
o Location based heuristic
o Petal algorithm

@ Route-first cluster-second
Cluster-first route-second seems to perform better

(Note: Distinction Construction Heuristic / Iterative Improvement
is often blurred)

Construction Heuristics
b " Heuristics Constr. Heur, for CVRP

Construction heuristics for TSP
They can be used for route-first cluster-second or for growing multiple
tours subject to capacity constraint.
o Heuristics that Grow Fragments
@ Nearest neighborhood heuristics
@ Double-Ended Nearest Neighbor heuristic
o Multiple Fragment heuristic (aka, greedy heuristic)
@ Heuristics that Grow Tours
o Nearest Addition
o Farthest Addition
@ Random Addition
o Clarke-Wright savings heuristic

o Nearest Insertion
o Farthest Insertion
o Random Insertion

o Heuristics based on Trees
a Minimum spanning tree heuristic
o Christofides heuristics

(But recalll Concorde: http://www.tsp.gatech.edu/)

Construction Heuristics

[Bentley, 1992]

B ‘

The Nearest Neighbor heuristic.

Figure 1.
NN (Flood, 1956)

1. Randomly select a starting node

2. Add to the last node the closest node until no more node is available

3. Connect the last node with the first node
Running time O(N?)

Constr. Hur. for CVRP.

Construction Heurlstice
n ietics Conatr. Heur. for CVRP

[Bentley, 1992]

ol

L

Figwe . The Multiple Fragment heuristic

Add the cheapest edge provided it does not create a cycle

Construction Heuristice
o T Helristics Comstr. Heur, for CVRP
Metaheuristics

[Bentley, 1992]
-
CVE
¥

Figwe 8. The Nearest Addition heuristic.

NA

1. Select a node and its closest node and build a tour of two nodes

2. Insert in the tour the closest node v until no more node is available
Running time O(N3)

Construction Heuristica

[Bentley, 1992]

PO
W
3 '.‘ f
A .‘\.a-

The Farthest Addition heuristic.

Figure 11.

FA

1. Select a node and its farthest and build a tour of two nodes

2. Insert in the tour the farthest node v until no more node is available
FA is more effective than NA because the first few farthest points sketch
a broad outline of the tour that is refined after.

Running time O(N?3)

Contr. Heur. for CVRP.

Construction Heuristics
mirovement Hearistics Constr, Heur. for CVRP.

[Bentley, 1992]
-~
\ :»ﬂf%

The Random Addition heuristic.

Fgure 14,

Construction Heuristics
g IS Constr. Heur. for CVRP.

[Bentley, 1992]

figurs 18. The Minimum Spanning Tree heuristic.

1. Find a minimum spanning tree O(N?)
2. Append the nodes in the tour in a depth-first, inorder traversal

Running time O(N?) A = MST(I)/OPT(I) <2

Construction Heuristics
Metah

[Bentley, 1992]

[N
VAR ‘

AR

-

Figurg 19. Christofides’ heuristic.

1. Find the minimum spanning tree T. O(N?)

2. Find nodes in T with odd degree and find the cheapest perfect
matching M in the complete graph consisting of these nodes only.
Let G be the multigraph all nodes and edges in T and M. O(N?)

3. Find an Eulerian walk (each node appears at least once and each
edge exactly once) on G and an embedded tour. O(N)

Running time O(N?) A = CH(I)/OPT(I) < 3/2

Contr. Heur. for CVRP.

Constr. Heur. for CVRP

Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is
the depot for VRP or any chosen city for TSP)
Sequential:
2. consider in turn route (0,1,...,j,0) determine si; and s;
3. merge with (k,0) or (0,1)

Constr. Heur, for CVRP

Construction Heuristics Specific for VRP

Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is
the depot for VRP or any chosen city for TSP)
Parallel:
2. Calculate saving sij = coi + Coj — cij and order the saving in non-
increasing order
3. scan si;
merge routes if i) i and j are not in the same tour ii) neither i and j
are interior to an existing route iii) vehicle and time capacity are not
exceeded

(Fiala 1978)

Constr. Hur. for CVRP.

Constr. Heur. for CVRP

Matching Based Saving Heuristic

1. Start with an initial allocation of one vehicle to each customer (0 is
the depot for VRP or any chosen city for TSP)

2. Compute spq = t(Sp,) 4+ t(Sq) — t(S, USq) where t(-) is the TSP
solution

3. Solve a max weighted matching on the Sy with weights s, on
edges. A connection between a route p and q exists only if the
merging is feasible.

Constr. Heur. for CVRP.

Insertion Heuristic
ali,k,j) = cik + cki — Acj
B(i,k,j) = peok — (i, k,j)

1. construct emerging route (0,k,0)

2. compute for all k unrouted the feasible insertion cost
o (i, k, ji) = minfe(ip, k, ip41)}
)
if no feasible insertion go to 1 otherwise choose k* such that

B (i, ki) = max(B (i, k, jic}

Construction Heurlstice

Cluster-first route-second: Sweep algorithm [Wren & Holliday (1971)]
1. Choose i* and set 8(i*) = 0 for the rotating ray
2. Compute and rank the polar coordinates (8, p) of each point

3. Assign customers to vehicles until capacity not exceeded. If needed
start a new route. Repeat until all customers scheduled

g Constr. Heur. for CVRP.

Construction Heuristics

Constr, Heur. for CVRP.
ot Hiour. for VRETW

Construction Heuristics
Metaheuristics
5 for VRP

Cluster-first route-second: Generalized-assignment-based algorithm
[Fisher & Jaikumur (1981)]

1. Choose a ji at random for each route k.
2. For each point compute

dixe = min{Co,i + Cij + €50, Cojic + G+ Ci0) — (Coji + €5 0)

3. Solve GAP with dik, Q and g;

Constr. Heur. for CVRP.

Construction Hs
Merahouristics
P for VRP

S Constr. Heur for

Cluster-first route-second: Location based heuristic [Bramel & Simchi-Levi
(1995)]

1. Determine seeds by solving a capacited location problem (k-median)

2. Assign customers to closest seed

(better performance than insertion and saving heuristics)

¥ for vRPTW]

cvRe.

Construction Heuristics
Improvement Heuristice Constr, Heur.
Meraheuristics o e
& for VP

Cluster-first route-second: Petal Algorithm

1. Construct a subset of feasible routes

2. Solve a set partitioning problem

for cVRP
o for VRETW

Construction Heuristics
Meaheuristcs T Conetr Hew
&5 for VR

Route-first cluster-second [Beasley, 1983]

1. Construct a TSP tour over all customers

2. Choose an arbitrary orientation of the TSP;
partition the tour according to capacity constraint;
repeat for several orientations and select the best
Alternatively, solve a shortest path in an acyclic digraph with cots on
arcs: dij = coi + Coj + Lij where 1y; is the cost of traveling from i to
j in the TSP tour.

(not very competitive)

Constr. Heur, for CVRP.

e Hour. for

Exercise

Which heuristics can be used to minimize K
and which ones need to have K fixed a priori?

Constr. Hur. for CVRP.

Construction Heurlstice
Improvement Heuristics

Construction Heuristics for VRETW"

Constr.
Conatr

Extensions of those for CVRP [Solomon (1987)]
@ Savings heuristics (Clarke and Wright)
o Time-oriented nearest neighbors
@ Insertion heuristics

o Time-oriented sweep heuristic

or CVRP
for VRPT

Construction Heuristice
i

Heurstics Constr H.

Time-Oriented Nearest-Neighbor
o Add the unrouted node “closest” to the depot or the last node added
without violating feasibility
@ Metric for “closest”
dy; geographical distance
i = S1dyy + 82Ty + S3viy Ty time distance
Vij urgency to serve j

cur. for CVRP.
Canstr. Heur. for VRPTW]

Construction Heuristica
i o Hauristics

Insertion Heuristics
Step 1: Compute for each unrouted costumer u the best feasible
position in the route:

crfifu),wjlu) = min {ei(ip_1,wip)}
p=T,m
(1 is a composition of increased time and increase route
length due to the insertion of 1)
(use push forward rule to check feasibility efficiently)
Step 2: Compute for each unrouted customer u which can be
feasibly inserted:

ca(i(u),u’j(u’) = mg:t(?\dou —cr(ilu),w,j(w)}

(max the benefit of servicing a node on a partial route
rather than on a direct route)

Step 3: Insert the customer u* from Step 2

Constr. Heur. for CVRP
Conatr. Haur. for VRPTW]

2 = =
Consrucion ouriic Gonmruction i Consruction i
ST e R fel R . craheuristics Vestaagrcn
R et = | Outline R Local Search for CVRP and VRP'TW
o Let's assume waiting is allowed and s; indicates service times
o b; = max{e;, b; +s; + t;:) begin of service) o
1. Construction Heuristics @ Neighborhoods structures:
@ insertion of w: (io, 11,...,1p, Wipi1,. ey im) o Intra-route: 2-opt, 3-opt, Lin-Kernighan (not very well suited)
2H-opt, Or-opt
® PFi,,, =b" —bi,,, >0 push forward
2. Improvement Heuristics o Inter-routes: A-interchange, relocate, exchange, cross, 2-opt*,
o PR, —max(O,PF, —wi), p<r<m-—I ejection chains, GENI
Theorem 3. Metaheuristics @ Solution representation and data structures
The insertion is feasible if and only if: o They depend on the neighborhood.
. @ It can be advantageous to change them from one stage to another of
bu<l, and PRy, +bi, <L, ¥p<r<m 4. Constraint Programming for VRP the heuristic
Check vertices k, u < k < m sequentially.
o if bx + PFy > 1 then stop: the insertion is infeasible
o if PFy. = 0 then stop: the insertion is feasible
2 0 5
. s e . [rismnh . kit b
Intra-route Neighborhoods CFlar Ve Intra-route Neighborhoods Pl Intra-route Neighborhoods < lar Ve
o — o Fopt OroptloniieTel o
LA+ 1 — i+ 15+ 1) A6+ Nk k+1) — ... b= L i+ 10,5+ 1) — b = T+ DG i, i+ 1)
<0—. <0
.—‘.: @
) . 0(n?) possible exchanges sequences of one, two, three consecutive vertices relocated
0(n?) possible exchanges Pty e e 0(n?) possible exchanges — No paths reversed
One path is reversed n be rever

Improvament Heuristics

o VRe

Inter-route Neighborhoods
[Savelsbergh, ORSA (1992)]

%

Figwe. The exchange neighborhood.

Construction Heurlstice
Improvement Heuristics

Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

©)

FigueS. The relocate neighborhood.

vement Heuristics

Inter-route Neighborhoods

[

Savelsbergh, ORSA (1992)]

@

Figwe T, The cross neighborhood.

GENI: generalized insertion [Gendreau, Hertz, Laporte, Oper. Res. (1992)]

@ select the insertion restricted to the neighborhood of the vertex to
be added (not necessarily between consecutive vertices)

o perform the best 3- or 4-opt restricted to reconnecting arc links that
are close to one another.

Efficient Implementation

Intra-route

Time windows: Feasibility check

In TSP verifying k-optimality requires O(n*) time
In TSPTW feasibility has to be tested then O(n**") time

(Savelsbergh 1985) shows how to verify constraints in constant time
Search strategy + Global variables

4

O(n¥) for k-optimality in TSPTW

Search Strategy

o Lexicographic search, for 2-exchange
1,2,...,n— 2 (outer loop)
i+2,i+3,...,n (inner loop)

A

2040324

a2Kes->es)

Previous path is expanded by the edge {j —1,j}

Global variables (auxiliary data structure)
@ Maintain auxiliary data such that it is possible to:

@ handle single move in constant time

o update their values in constant time

Ex.: in case of time windows:

o total travel time of a path
o earliest departure time of a path

o latest arrival time of a path

Outline

1. Construction Heuristics

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

Many and fancy examples, but first thing to try:

@ Variable Neighborhood Search + Iterated greedy

Basic Variable Neighborhood Descent (BVND)
Procedure VND

input : N, k=12 Kmax, and an initial solution s
output: a local optimum s for Af, k=1,2,... kmax
k1

repeat

s’ « FindBestNeighbor(s,Ni)
if g(s’) < g(s) then
ses’
(k1)
else
Lkek+1
until k = Kpax ;

Variable Neighborhood Descent (VND)

Procedure VND
input : Ny, k=1,2,... Kmax, and an initial solution s
output: a local optimum s for Ny, k=1,2,..., kmax
k1
repeat
s’ « Iterativelmprovement(s, Vi)
if g(s') < g(s) then
s’
(ke1)
else
Lkek+1
until k = Kpax

o Final solution is locally optimal w.r.t. all neighborhoods
o First improvement may be applied instead of best improvement
@ Typically, order neighborhoods from smallest to largest

o If iterative improvement algorithms IT, k =1,... Kyax
are available as black-box procedures:
o order black-boxes
@ apply them in the given order
o possibly iterate starting from the first one
o order chosen by: solution quality and speed

General recommendation: use a combination of 2-opt* + or-opt [Potvin,
Rousseau, (1995)]

However,

@ Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

o It is important to make such algorithms as much efficient as possible.

@ Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often
a trade-off between examination cost and solution quality must be
decided.

@ The assessment is conducted through:
o analytical analysis (computational complexity)
e experimental analysis

Table 5.6. The effect of 3-0pt on the Clarke and Wright algorithm.

Scquential Parallel.
No +3opt +30p No Frop T 3opt
Problem 3-opt! FF BE K 3-opt® 1 Bl K°
EOS1-05e 625.56 62420 62420 5 58464 57836 57836 6
E076-10c 100525 99194 99194 10 90026 888.04 88804 10
E101-08e 98248 98093 98093 5 88683 K7870 87870 8
E101-10c 93999 93078 92864 10 §I3SI 82442 82442 10
E121-07c 120133 123290 123726 7 107107 104943 104853 7
Elsl-12c 129939 127034 127034 12 113343 112824 112824 12
E200-17c 170800 1667.65 166974 16 139574 138634 138684 17
DOS1-06c 67001 66359 66359 6 61840 61666 61666 6
DO76-1lc 98942 98874 988T4 12 97546 9T4I9 97479 12
D101-09c 105470 104660 104669 10 97394 96873 96873 9
D101-1lc 95253 94379 94379 11 §7575 86850 86850 11
Dl2l-1lc 164660 163839 1637.07 11 159672 158793 1587.93 11
DIS1-l4c 138387 137415 137415 15 128764 128463 128463 15
D200-18c 167129 165258 165258 20 153866 152324 152194 19

TSequenta saviogs
2Sequenial avings + 3-optand frstimprovement
?Sequenial savings + 3.0ptand best emprovecest.
#Soquertal savings: number of veicls in solton.
“Parall savngs.

“Parallel savings + 3.opt and fst mprovernent
Paralle savings + -optendbest improvement.
#Paralle savigs: sumberofveicles i souton

What is best?

Metahe

Iterated Greedy

Key idea: use the VRP cosntruction heuristics
o alternation of Construction and Deconstruction phases

@ an acceptance criterion decides whether the search continues from
the new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

Ti=s
greedily destruct part of s
greedily reconstruct the missing part of s
apply subsidiary iterative improvement procedure (eg, VNS)
based on acceptance criterion,

keep s or revert to s :=T

In the literature, the overall heuristic idea received different names:
@ Removal and reinsertion
@ Ruin and repair
o lterated greedy

o Fix and re-optimize

heuristics

Remove

Remove some related customers
(their re-insertion is likely to change something)

Relatedness measure 1
o geographical

% (d'(i,j)+d'(i,j+n)+d'(i+n,j)+d'(i+n,j+n)

Ty =
o temporal and load based
d'(w,v) =Ty, = Tyl + [Ta, = Tay [+ L =]

o cluster removal

o history based: neighborhood graph removal

Dispersion sub-problem:
choose q customers to remove with minimal ry;

Heuristic stochastic procedure:

o choose a pair randomly;

@ select an already removed i and find j that minimizes ry;

Insertion procedures:
o Greedy (cheapest insertion)

@ Max regret:
Af{ due to insert i into its best position in its '™ best route

1= arg max(Af? — Af])

o Constraint Programming (max 20 costumers)

Advantages of removal-reinsert procedure with many side constraints:
o the search space in local search may become disconnected
o it is easier to implement feasibility checks

@ no need of computing delta functions in the objective function

Further ideas

o Adaptive removal: start by removing 1 pair and increase after a
certain number of iterations

@ use of roulette wheel to decide which removal and reinsertion
heuristic to use

T

for each heuristic i

Pi S

@ SA as accepting criterion after each reconstruction

Outline e

1. Construction Heuristics

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

Migssheistics

Performance of exact methods < vre

Current limits of exact methods [Ropke, Pisinger (2007)]:

CVRP: up to 135 customers by branch and cut and price

VRPTW: 50 customers (but 1000 customers can be solved if the
instance has some structure)

CP can handle easily side constraints but hardly solve VRPs with more
than 30 customers.

et Hourisics

Large Neighborhood Search G

Other approach with CP: [Shaw, 1998]
@ Use an over all local search scheme
@ Moves change a large portion of the solution

o CP system is used in the exploration of such moves.

@ CP used to check the validity of moves and determine the values of
constrained variables

o As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.

5 for VRP

Solution representation:
@ Handled by local search:
Next pointers: A variable n; for every customer i representing the
next visit performed by the same vehicle

ni e NUSUE

where S =Sk and E = [J Ex are additional visits for each vehicle
k marking the start and the end of the route for vehicle k

o Handled by the CP system: time and capacity variables.

Insertion
by CP:
@ constraint propagation rules: time windows, load and bound

considerations

o search heuristic most constrained variable - least constrained valued
(for each v find cheapest insertion and choose v with largest such
cost)

o Complete search: ok for 15 visits (25 for VRPTW) but with heavy
tails

o Limited discrepancy search

i
[Shaw, 1998]

Reinsert(RoutingPlan plan, VisitSet visits, integer discrep)
if |visits| = 0 then
if Cost(plan) < Cost(bestplan) then
bestplan := plan
end if
else
Visit v
integer i :=
for p in rankedPositions(v) and i < discrep do
Store(plan) // Preserve plan on stack
TnsertVisit(plan, v, p)
Reinsert(plan, visits - v, discrep - i)
Restore(plan) // Restore plan from stack
=il
end for
end if
end Reinsert

ChooseFarthest Visit{visits)

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 28
Rich Vehicle Routing Problems

Marco Chiarandini

sniferm Model

Outline &

1. A Uniform Model

2. Other Variants of VRP

A Uniform Model
ther Variants of VRP

QOutline

1. A Uniform Model

2. Other Variants of VRP

Efficient Local Search

Blackboard [Irnich 2008].

Outline

1. A Uniform Model

2. Other Variants of VRP

A Uniform Mods]
Other Variants of VRP.

Rich VRP

Definition

Rich Models are non idealized models that represetn the appliucation at
hand in an adequate way by including all important optimization criteria
constraints and preferences [Hasle et al., 2006]

Solution
@ Exact methods are often impractical:
o instancs are too large

o decision support systems require short response times

@ Metaheuristics based on local search components are mostly used

Other Vs

VRP with Backhauls
Further Input from CVRP:
@ a partition of customers:
L={1,...,n} Lineahaul customers (deliveries)
B ={n+1,...,n+ m} Backhaul customers (collections)
@ precedence constraint:
in a route, customers from L must be served before customers from
B

Task: Find a collection of K simple circuits with minimum costs, such
that:
o each circuit visit the depot vertex
@ each customer vertex is visited by exactly one circuit; and
@ the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q
o in any circuit all the linehaul customers precede the backhaul
customers, if any.

VRP with Pickup and Delivery iwvimivee

Further Input from CVRP:
@ each customer i is associated with quantities d; and p; to be
delivered and picked up, resp.
o for each customer i, O; denotes the vertex that is the origin of the
delivery demand and Dy denotes the vertex that is the destination of
the pickup demand

Task:
Find a collection of K simple circuits with minimum costs, such that:

@ each circuit visit the depot vertex

o each customer vertex is visited by exactly one circuit; and

o the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

for each customer i, the customer O; when different from the depot,
must be served in the same circuit and before customer i

for each customer i, the customer D; when different from the depot,
must be served in the same circuit and after customer i

i

Multiple Depots VRP Sbarains e

Further Input from CVRP:
e multiple depots to which customers can be assigned
o a fleet of vehicles at each depot

Task:
Find a collection of K simple circuits for each depot with minimum costs,
such that:
@ each circuit visit the depot vertex
o each customer vertex is visited by exactly one circuit; and
@ the current load of the vehicle along the circuit must be
non-negative and may never exceed Q
@ vehicles start and return to the depots they belong
Vertex set V=1{1,2,...,n}and Vo ={n+1,..., n+m}
Route i defined by Ry = {L,1,...,1}

A Uniferm Mode]
Other Variants of VRP

Periodic VRP

Further Input from CVRP:
o planning period of M days

Task:
Find a collection of K simple circuits with minimum costs, such that:

@ each circuit visit the depot vertex
@ each customer vertex is visited by exactly one circuit; and

@ the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

o A vehicle may not return to the depot in the same day it departs.

@ Over the M-day period, each customer must be visited 1 times,
where 1 <1< M.

A Uniform Model
Variants of VRP

Three phase approach:
1. Generate feasible alternatives for each customer.
Example, M = 3 days {d1,d2, d3} then the possible combinations
are: 0 — 000; 1 — 001; 2 — 010; 3 — 011; 4 — 100; 5 — 101;
61107 = 111,

Customer Diary De- Number of Number of Possible
mand Visits Combina- Combina-

tions tions

1 30 1 3 124

2 20 2 3 346

3 20 2 3 3,46

4 30 2 3 12,4

5 10 3 1 7

~

Select one of the alternatives for each customer, so that the daily
constraints are satisfied. Thus, select the customers to be visited in
each day.

3. Solve the vehicle routing problem for each day.

A Uniform Mode]
Other Variants of VRP.

Split Delivery VRP

Constraint Relaxation: it is allowed to serve the same customer by
different vehicles. (necessary if d; > Q)

Task:
Find a collection of K simple circuits with minimum costs, such that:

@ each circuit visit the depot vertex
@ the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

Note: a SDVRP can be transformed into a VRP by splitting each
customer order into a number of smaller indivisible orders [Burrows 1988].

Model

fanta of VRP

Inventory VRP

Input:
o a facility, a set of customers and a planning horizon T
@ 1y product consumption rate of customer i (volume per day)
o C; maximum local inventory of the product for customer i

o a fleet of M homogeneous vehicles with capacity Q

Task:
Find a collection of K daily circuits to run over the planing horizon with
minimum costs and such that:

@ each circuit visit the depot vertex
@ no customer goes in stock-out during the planning horizon

@ the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

Other VRPs
VRP with Satellite Facilities (VRPSF)
Possible use of satellite facilities to replenish vehicles during a route. J

Open VRP (OVRP)

The vehicles do not need to return at the depot, hence routes are not
circuits but paths

Dial-a-ride VRP (DARP)
o It generalizes the VRPTW and VRP with Pick-up and Delivery by
incorporating time windows and maximum ride time constraints

o It has a human perspective

o Vehicle capacity is normally constraining in the DARP whereas it is
often redundant in PDVRP applications (collection and delivery of
letters and small parcels)

