
DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 1

Introduction to Scheduling: Terminology,
Classification

Marco Chiarandini

Course Introduction
Scheduling
Complexity HierarchyOutline

1. Course Introduction

2. Scheduling
Problem Classification

3. Complexity Hierarchy

2

Course Introduction
Scheduling
Complexity HierarchyOutline

1. Course Introduction

2. Scheduling
Problem Classification

3. Complexity Hierarchy

3

Course Introduction
Scheduling
Complexity HierarchyCourse Presentation

Communication media

Black Board (BB). What we use:

Mail

Announcements

Course Documents (for Photocopies)

Blog – Students’ Lecture Diary

Electronic hand in of the exam project

Web-site http://www.imada.sdu.dk/~marco/DM204/

Lecture plan and slides

Literature and Links

Exam documents

4

Course Introduction
Scheduling
Complexity Hierarchy

Schedule

Third quarter 2008 Fourth quarter 2008
Tuesday 10:15-12:00 Wednesday 12:15-14:00
Friday 8:15-10:00 Friday 10:15-12:00

∼ 27 lectures

5

Course Introduction
Scheduling
Complexity HierarchyEvaluation

Final Assessment (10 ECTS)
Oral exam: 30 minutes + 5 minutes defense project
meant to assess the base knowledge
Group project:
free choice of a case study among few proposed ones
Deliverables: program + report
meant to assess the ability to apply

Schedule: Project hand in deadline + oral exam in June

6

Course Introduction
Scheduling
Complexity HierarchyCourse Content

General Optimization Methods
Mathematical Programming,
Constraint Programming,
Heuristics
Problem Specific Algorithms (Dynamic Programming, Branch and
Bound)

Scheduling
Single and Parallel Machine Models
Flow Shops and Flexible Flow Shops
Job Shops
Resource-Constrained Project Scheduling

Timetabling
Interval Scheduling, Reservations
Educational Timetabling
Workforce and Employee Timetabling
Transportation Timetabling

Vehicle Routing
Capacited Vehicle Routing
Vehicle Routing with Time Windows

7

Course Introduction
Scheduling
Complexity HierarchyCourse Material

Literature
B1 Pinedo, M. Planning and Scheduling in Manufacturing and Services

Springer Verlag, 2005
B2 Pinedo, M. Scheduling: Theory, Algorithms, and Systems Springer

New York, 2008
B3 Toth, P. & Vigo, D. (ed.) The Vehicle Routing Problem SIAM

Monographs on Discrete Mathematics and Applications, 2002

Slides
Class exercises (participatory)

8

Course Introduction
Scheduling
Complexity HierarchyCourse Goals and Project Plan

How to Tackle Real-life Optimization Problems:
Formulate (mathematically) the problem
Model the problem and recognize possible similar problems
Search in the literature (or in the Internet) for:

complexity results (is the problem NP -hard?)
solution algorithms for original problem
solution algorithms for simplified problem

Design solution algorithms
Test experimentally with the goals of:

configuring
tuning parameters
comparing
studying the behavior (prediction of scaling and deviation from
optimum)

9

Course Introduction
Scheduling
Complexity HierarchyThe problem Solving Cycle

The real
problem

Mathematical

Mathematical

good Solution

Implementation

Experimental

Quick Solution:

Heuristics

Model

Analysis

Design of

Algorithms

Theory

Algorithm

Modelling

10

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationOutline

1. Course Introduction

2. Scheduling
Problem Classification

3. Complexity Hierarchy

11

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationScheduling

Manufacturing
Project planning
Single, parallel machine and job shop systems
Flexible assembly systems
Automated material handling (conveyor system)
Lot sizing
Supply chain planning

Services

⇒ different algorithms

12

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationProblem Definition

Constraints

Objectives

ResourcesActivities

Problem Definition
Given: a set of jobs J = {J1, . . . , Jn} that have to be processed
by a set of machinesM = {M1, . . . ,Mm}
Find: a schedule,
i.e., a mapping of jobs to machines and processing times
subject to feasibility and optimization constraints.

Notation:
n, j, k jobs
m, i, h machines

14

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationVisualization

Scheduling are represented by Gantt charts

machine-oriented

M2

J1

J1

J2

J2

J3

J3

J4

J4

J5

J5

M1

M3

0 5 10 15 20

time

J1 J2 J3 J4 J5

or job-oriented
...

15

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationData Associated to Jobs

Processing time pij

Release date rj
Due date dj (called deadline, if strict)
Weight wj

A job Jj may also consist of a number nj of operations
Oj1, Oj2, . . . , Ojnj

and data for each operation.
Associated to each operation a set of machines µjl ⊆M

Data that depend on the schedule (dynamic)
Starting times Sij

Completion time Cij , Cj

17

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationProblem Classification

A scheduling problem is described by a triplet α | β | γ.
α machine environment (one or two entries)
β job characteristics (none or multiple entry)
γ objective to be minimized (one entry)

[R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979):
Optimization and approximation in deterministic sequencing and scheduling: a
survey, Ann. Discrete Math. 4, 287-326.]

18

Course Introduction
Scheduling
Complexity Hierarchy

Problem Classification

α | β | γ Classification Scheme

Machine Environment α1α2α1α2α1α2 | β1 . . . β13 | γ
single machine/multi-machine (α1 = α2 = 1 or α2 = m)
parallel machines: identical (α1 = P), uniform pj/vi (α1 = Q),
unrelated pj/vij (α1 = R)
multi operations models: Flow Shop (α1 = F), Open Shop
(α1 = O), Job Shop (α1 = J), Mixed (or Group) Shop (α1 = X)

Single Machine Flexible Flow Shop
(α = FFc)

Open, Job, Mixed Shop

19

Course Introduction
Scheduling
Complexity Hierarchy

Problem Classification

α | β | γ Classification Scheme

Job Characteristics α1α2 | β1 . . . β13β1 . . . β13β1 . . . β13 | γ
β1 = prmp presence of preemption (resume or repeat)
β2 precedence constraints between jobs (with α = P, F)
acyclic digraph G = (V,A)

β2 = prec if G is arbitrary
β2 = {chains, intree, outtree, tree, sp-graph}

β3 = rj presence of release dates
β4 = pj = p preprocessing times are equal
(β5 = dj presence of deadlines)
β6 = {s-batch, p-batch} batching problem
β7 = {sjk, sjik} sequence dependent setup times

20

Course Introduction
Scheduling
Complexity Hierarchy

Problem Classification

α | β | γ Classification Scheme

Job Characteristics (2) α1α2 | β1 . . . β13β1 . . . β13β1 . . . β13 | γ
β8 = brkdwn machines breakdowns
β9 = Mj machine eligibility restrictions (if α = Pm)
β10 = prmu permutation flow shop
β11 = block presence of blocking in flow shop (limited buffer)
β12 = nwt no-wait in flow shop (limited buffer)
β13 = recrc Recirculation in job shop

21

Course Introduction
Scheduling
Complexity Hierarchy

Problem Classification

α | β | γ Classification Scheme

Objective (always f(Cj)) α1α2 | β1β2β3β4 | γγγ

Lateness Lj = Cj − dj

Tardiness Tj = max{Cj − dj , 0} = max{Lj , 0}
Earliness Ej = max{dj − Cj , 0}
Unit penalty Uj =

{
1 if Cj > dj

0 otherwise

22

Course Introduction
Scheduling
Complexity Hierarchy

Problem Classification

α | β | γ Classification Scheme

Objective α1α2 | β1β2β3β4 | γγγ

Makespan: Maximum completion Cmax = max{C1, . . . , Cn}
tends to max the use of machines
Maximum lateness Lmax = max{L1, . . . , Ln}
Total completion time

∑
Cj (flow time)

Total weighted completion time
∑
wj · Cj

tends to min the av. num. of jobs in the system, ie, work in
progress, or also the throughput time
Discounted total weighted completion time

∑
wj(1− e−rCj)

Total weighted tardiness
∑
wj · Tj

Weighted number of tardy jobs
∑
wjUj

All regular functions (nondecreasing in C1, . . . , Cn) except Ei

23

Course Introduction
Scheduling
Complexity Hierarchy

Problem Classification

α | β | γ Classification Scheme

Other Objectives α1α2 | β1β2β3β4 | γγγ
Non regular objectives

Min
∑
w′jEj +

∑
w”jTj (just in time)

Min waiting times
Min set up times/costs
Min transportation costs

24

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationExercises

Gate Assignment at an Airport

Airline terminal at a airport with dozes of gates and hundreds of
arrivals each day.

Gates and Airplanes have different characteristics

Airplanes follow a certain schedule

During the time the plane occupies a gate, it must go through a
series of operations

There is a scheduled departure time (due date)

Performance measured in terms of on time departures.

25

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationExercises

Scheduling Tasks in a Central Processing Unit (CPU)

Multitasking operating system

Schedule time that the CPU devotes to the different programs

Exact processing time unknown but an expected value might be
known

Each program has a certain priority level

Minimize the time expected sum of the weighted completion times
for all tasks

Tasks are often sliced into little pieces. They are then rotated such
that low priority tasks of short duration do not stay for ever in the
system.

26

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationExercises
Paper bag factory

Basic raw material for such an operation are rolls of paper.

Production process consists of three stages: (i) printing of the logo,
(ii) gluing of the side of the bag, (iii) sewing of one end or both ends.

Each stage consists of a number of machines which are not
necessarily identical.

Each production order indicates a given quantity of a specific bag
that has to be produced and shipped by a committed shipping date
or due date.

Processing times for the different operations are proportional to the
number of bags ordered.

There are setup times when switching over different types of bags
(colors, sizes) that depend on the similarities between the two
consecutive orders

A late delivery implies a penalty that depends on the importance of
the order or the client and the tardiness of the delivery.

27

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationSolutions

Distinction between
sequence
schedule
scheduling policy

Feasible schedule
A schedule is feasible if no two time intervals overlap on the same
machine, and if it meets a number of problem specific constraints.

Optimal schedule

A schedule is optimal if it is feasible and it minimizes the given objective.

28

Course Introduction
Scheduling
Complexity Hierarchy

Problem ClassificationClasses of Schedules
Semi-active schedule

A feasible schedule is called semi-active if no operation can be completed
earlier without changing the order of processing on any one of the machines.
(local shift)

Active schedule

A feasible schedule is called active if it is not possible to construct another
schedule by changing the order of processing on the machines and having at
least one operation finishing earlier and no operation finishing later. (global
shift without preemption)

Nondelay schedule

A feasible schedule is called nondelay if no machine is kept idle while an
operation is waiting for processing. (global shift with preemption)

There are optimal schedules that are nondelay for most models with
regular objective function.
There exists for Jm||γ (γ regular) an optimal schedule that is active.
nondelay ⇒ active but active 6⇒ nondelay

29

Course Introduction
Scheduling
Complexity HierarchyOutline

1. Course Introduction

2. Scheduling
Problem Classification

3. Complexity Hierarchy

30

Course Introduction
Scheduling
Complexity HierarchyComplexity Hierarchy

Reduction

A search problem Π is (polynomially) reducible to a search problem Π′

(Π −→ Π′) if there exists an algorithm A that solves Π by using a
hypothetical subroutine S for Π′ and except for S everything runs in
polynomial time. [Garey and Johnson, 1979]

NP-hard

A search problem Π′ is NP-hard if
1. it is in NP

2. there exists some NP-complete problem Π that reduces to Π′

In scheduling, complexity hierarchies describe relationships between
different problems.

Ex: 1||∑Cj −→ 1||∑wjCj

Interest in characterizing the borderline: polynomial vs NP-hard problems
31

Course Introduction
Scheduling
Complexity HierarchyProblems Involving Numbers

Partition

Input: finite set A and a size s(a) ∈ Z+ for each a ∈ A
Question: is there a subset A′ ⊆ A such that∑

a∈A′
s(a) =

∑
a∈A−A′

s(a)?

3-Partition

Input: set A of 3m elements, a bound B ∈ Z+, and a size
s(a) ∈ Z+ for each a ∈ A such that B/4 < s(a) < B/2 and such
that

∑
a∈A s(a) = mB

Question: can A be partitioned into m disjoint sets A1, . . . , Am

such that for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B (note that each Ai must

therefore contain exactly three elements from A)?

32

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 2

Marco Chiarandini

Complexity HierarchiesOutline

1. Complexity Hierarchies

2

Complexity HierarchiesOutline

1. Complexity Hierarchies

3Complexity Hierarchy of Problems
Polynomial time solvable problems

NP-hard problems in the ordinary sense

Strongly NP-hard problems

http://www.mathematik.uni-osnabrueck.de/research/OR/class/

Complexity HierarchiesComplexity Hierarchy

Elementary reductions for machine environment

7

Complexity HierarchiesComplexity Hierarchy

Elementary reductions for regular objective functions

8

Complexity Hierarchy of Problems

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 3

RCPSP and Mixed Integer Programming

Marco Chiarandini

Scheduling
Math ProgrammingOutline

1. Scheduling
CPM/PERT
Resource Constrained Project Scheduling Model

2. Mathematical Programming
Introduction
Solution Algorithms

2

Scheduling
Math Programming

CPM/PERT
RCPSPOutline

1. Scheduling
CPM/PERT
Resource Constrained Project Scheduling Model

2. Mathematical Programming
Introduction
Solution Algorithms

3

Scheduling
Math Programming

CPM/PERT
RCPSPProject Planning

5

Scheduling
Math Programming

CPM/PERT
RCPSPProject Planning

5

Scheduling
Math Programming

CPM/PERT
RCPSPProject Planning

5

Scheduling
Math Programming

CPM/PERT
RCPSPProject Planning

5

Scheduling
Math Programming

CPM/PERT
RCPSPRCPSP

Resource Constrained Project Scheduling Model

Given:
activities (jobs) j = 1, . . . , n

renewable resources i = 1, . . . ,m

amount of resources available Ri

processing times pj

amount of resource used rij

precedence constraints j → k

Further generalizations

Time dependent resource profile Ri(t)
given by (tµi , R

µ
i) where 0 = t1i < t2i < . . . < tmi

i = T
Disjunctive resource, if Rk(t) = {0, 1}; cumulative resource,
otherwise

Multiple modes for an activity j
processing time and use of resource depends on its mode m: pjm,
rjkm.

7

Scheduling
Math Programming

CPM/PERT
RCPSPModeling

Assignment 1

A contractor has to complete n activities.

The duration of activity j is pj

each activity requires a crew of size Wj .

The activities are not subject to precedence constraints.

The contractor has W workers at his disposal

his objective is to complete all n activities in minimum time.

8

Scheduling
Math Programming

CPM/PERT
RCPSP

Assignment 2

Exams in a college may have different duration.

The exams have to be held in a gym with W seats.

The enrollment in course j is Wj and

all Wj students have to take the exam at the same time.

The goal is to develop a timetable that schedules all n exams in
minimum time.

Consider both the cases in which each student has to attend a single
exam as well as the situation in which a student can attend more
than one exam.

9

Scheduling
Math Programming

CPM/PERT
RCPSP

Assignment 3

In a basic high-school timetabling problem we are given m classes
c1, . . . , cm,

h teachers a1, . . . , ah and

T teaching periods t1, . . . , tT .

Furthermore, we have lectures i = l1, . . . , ln.

Associated with each lecture is a unique teacher and a unique class.

A teacher aj may be available only in certain teaching periods.

The corresponding timetabling problem is to assign the lectures to
the teaching periods such that

each class has at most one lecture in any time period
each teacher has at most one lecture in any time period,
each teacher has only to teach in time periods where he is available.

10

Scheduling
Math Programming

CPM/PERT
RCPSP

Assignment 4

A set of jobs J1, . . . , Jg are to be processed by auditors A1, . . . , Am.

Job Jl consists of nl tasks (l = 1, . . . , g).

There are precedence constraints i1 → i2 between tasks i1, i2 of the same job.

Each job Jl has a release time rl, a due date dl and a weight wl.

Each task must be processed by exactly one auditor. If task i is processed by
auditor Ak, then its processing time is pik.

Auditor Ak is available during disjoint time intervals [sνk, l
ν
k] (ν = 1, . . . ,m)

with lνk < sνk for ν = 1, . . . ,mk − 1.

Furthermore, the total working time of Ak is bounded from below by H−k and
from above by H+

k with H−k ≤ H+
k (k = 1, . . . ,m).

We have to find an assignment α(i) for each task i = 1, . . . , n :=
Pg
l=1 nl to an

auditor Aα(i) such that

each task is processed without preemption in a time window of the
assigned auditor
the total workload of Ak is bounded by H−k and Hk

k for k = 1, . . . ,m.
the precedence constraints are satisfied,
all tasks of Jl do not start before time rl, and
the total weighted tardiness

Pg
l=1 wlTl is minimized.

11

Scheduling
Math Programming

Introduction
Solution AlgorithmsOutline

1. Scheduling
CPM/PERT
Resource Constrained Project Scheduling Model

2. Mathematical Programming
Introduction
Solution Algorithms

12

Scheduling
Math Programming

Introduction
Solution AlgorithmsMathematical Programming

Linear, Integer, Nonlinear

program = optimization problem

min f(x)
gi(x) = 0, i = 1, 2, . . . , k
hj(x) ≤ 0, j = 1, 2, . . . ,m
x ∈ Rn

general (nonlinear) program (NLP)

min cTx
Ax = a
Bx ≤ b
x ≥ 0
(x ∈ Rn)

linear program (LP)

min cTx
Ax = a
Bx ≤ b
x ≥ 0
(x ∈ Zn)
(x ∈ {0, 1}n)

integer (linear) program (IP, MIP)

14

Scheduling
Math Programming

Introduction
Solution AlgorithmsLinear Programming

Linear Program in standard form

min c1x1 + c2x2 + . . . cnxn
s.t. a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
a21x1 + a22x2 + . . . + a2nxn = bn
x1, x2, . . . , xn ≥ 0

min cTx
Ax = b
x ≥ 0

15

Scheduling
Math Programming

Introduction
Solution AlgorithmsHistoric Roots

1939 L. V. Kantorovitch: Foundations of linear programming (Nobel
Prize 1975)

George J. Stigler’s 1945 (Nobel Prize 1982) “Diet Problem”: “the
first linear program”
find the cheapest combination of foods that will
satisfy the daily requirements of a person
Army’s problem had 77 unknowns and 9 constraints.
http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

1947 G.B. Dantzig: Invention of the simplex algorithm

Founding fathers:
1950s Dantzig: Linear Programming 1954, the Beginning of IP
G. Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
1960s Gomory: Integer Programming

16

Scheduling
Math Programming

Introduction
Solution AlgorithmsLP Theory

Max-Flow Min-Cut Theorem
The maximal (s,t)-flow in a capaciatetd network is equal to the
minimal capacity of an (s,t)-cut

The Duality Theorem of Linear Programming

max cTx
Ax ≤ b
x ≥ 0

min yT b
yTA ≥ cT

y ≥ 0

If feasible solutions to both the primal and the dual problem in a
pair of dual LP problems exist, then there is an optimum solution to
both systems and the optimal values are equal.

17

Scheduling
Math Programming

Introduction
Solution AlgorithmsLP Theory

Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow)

The Duality Theorem of Integer Programming

max cTx
Ax ≤ b
x ≥ 0
x ∈ Zn

≤

min yT b
yTA ≥ cT

y ≥ 0
y ∈ Zn

18

Scheduling
Math Programming

Introduction
Solution AlgorithmsLP Solvability

Linear programs can be solved in polynomial time with
the Ellipsoid Method (Khachiyan, 1979)
Interior Point Methods (Karmarkar, 1984, and others)

Open: is there a strongly polynomial time algorithm for the solution
of LPs?

Certain variants of the Simplex Algorithm run - under certain
conditions - in expected polynomial time (Borgwardt, 1977...)

Open: Is there a polynomial time variant of the Simplex Algorithm?

19

Scheduling
Math Programming

Introduction
Solution AlgorithmsIP Solvability

Theorem
Integer, 0/1, and mixed integer programming are NP-hard.
Consequence

special cases
special purposes
heuristics

20

Scheduling
Math Programming

Introduction
Solution AlgorithmsSolution Algorithms

Algorithms for the solution of nonlinear programs
Algorithms for the solution of linear programs

1) Fourier-Motzkin Elimination (hopeless)
2) The Simplex Method (good, above all with duality)
3) The Ellipsoid Method (total failure)
4) Interior-Point/Barrier Methods (good)

Algorithms for the solution of integer programs
1) Branch & Bound
2) Cutting Planes

22

Scheduling
Math Programming

Introduction
Solution AlgorithmsNonlinear programming

Iterative methods that solve the equation and inequality systems
representing the necessary local optimality conditions.

Steepest descent (Kuhn-Tucker sufficient conditions)

Newton method

Subgradient method

23

Scheduling
Math Programming

Introduction
Solution AlgorithmsLinear programming

The Simplex Method

Dantzig, 1947: primal Simplex Method
Lemke, 1954; Beale, 1954: dual Simplex Method
Dantzig, 1953: revised Simplex Method
....
Underlying Idea: Find a vertex of the set of feasible LP solutions
(polyhedron) and move to a better neighbouring vertex, if possible.

24

Scheduling
Math Programming

Introduction
Solution AlgorithmsThe simplex method

25

Scheduling
Math Programming

Introduction
Solution AlgorithmsThe simplex method

25

Scheduling
Math Programming

Introduction
Solution AlgorithmsThe simplex method

Hirsch Conjecture
If P is a polytope of dimension n with m facets then every vertex of P can
be reached from any other vertex of P on a path of length at most m-n.

In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.
Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of
an n-dimensional polyhedron with m facets is at most m(log n+1).
Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).

26

Scheduling
Math Programming

Introduction
Solution AlgorithmsInteger Programming (easy)

special „simple" combinatorial optimization problems Finding a:

minimum spanning tree
shortest path
maximum matching
maximal flow through a network
cost-minimal flow
...

solvable in polynomial time by special purpose algorithms

27

Scheduling
Math Programming

Introduction
Solution AlgorithmsInteger Programming (hard)

special „hard" combinatorial optimization problems

traveling salesman problem
location and routing
set-packing, partitioning, -covering
max-cut
linear ordering
scheduling (with a few exceptions)
node and edge colouring
...

NP-hard (in the sense of complexity theory)
The most successful solution techniques employ linear programming.

28

Scheduling
Math Programming

Introduction
Solution AlgorithmsInteger Programming (hard)

1) Branch & Bound
2) Cutting Planes

Branch & cut, Branch & Price (column generation), Branch & Cut &
Price

29

Scheduling
Math Programming

Introduction
Solution AlgorithmsSummary

We can solve today explicit LPs with
up to 500,000 of variables and
up to 5,000,000 of constraints routinely

in relatively short running times.
We can solve today structured implicit LPs (employing column
generation and cutting plane techniques) in special cases with
hundreds of million (and more) variables and almost infinitely many
constraints in acceptable running times. (Examples: TSP, bus
circulation in Berlin)

[Martin Grötschel, Block Course at TU Berlin,
“Combinatorial Optimization at Work”, 2005

http://co-at-work.zib.de/berlin/]

30

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 4

Mixed Integer Programming (2)

Marco Chiarandini

Outline

2

Modeling

Min cost flow

Shortest path

Max flow

Assignment and Bipartite Matching

Transportation

Multicommmodies

3

Modeling

Set Covering

min
n∑

j=1

cjxj

n∑
j=1

aijxj ≥ 1 ∀i
xj ∈ {0, 1}

Set Partitioning

min
n∑

j=1

cjxj

n∑
j=1

aijxj = 1 ∀i
xj ∈ {0, 1}

Set Packing

max
n∑

j=1

cjxj

n∑
j=1

aijxj ≤ 1 ∀i
xj ∈ {0, 1}

4

Traveling Salesman Problem

5

Traveling Salesman Problem

5

Traveling Salesman Problem

5

Traveling Salesman Problem

5

Traveling Salesman Problem

5

Traveling Salesman Problem

5

Traveling Salesman Problem

5

minimize cT x subject to

0 ≤ xe ≤ 1 for all edges e,∑
(xe : v is an end of e) = 2 for all cities v,∑

(xe : e has one end in S and one end not in S) ≥ 2
for all nonempty proper subsets S of cities,∑i=3

i=0(
∑

(xe : e has one end in Si and one end not in Si) ≥ 10,
for any comb

6

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu

MIP for Scheduling

Formulation for Qm|pj = 1|∑ hj(Cj) and relation with
transportation problems

Formulation of 1|prec|∑ wjCj and Rm||∑ Cj as weighted
bipartite matching and assignment problems.

Formulation of 1|prec|∑ wjCj and how to deal with disjunctive
constraints

8

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 5

Mixed Integer Programming
Models and Exercises

Marco Chiarandini

Models
An Overview of Software for MIP
ZIBOptOutline

1. Models

2. An Overview of Software for MIP

3. ZIBOpt

2

Models
An Overview of Software for MIP
ZIBOptOutline

1. Models

2. An Overview of Software for MIP

3. ZIBOpt

3

Models
An Overview of Software for MIP
ZIBOptModeling

Min cost flow

Shortest path

Max flow

Assignment and Bipartite Matching

Transportation

Multicommmodies

4

Models
An Overview of Software for MIP
ZIBOptModeling

Set Covering

min
n∑

j=1

cjxj

n∑
j=1

aijxj ≥ 1 ∀i
xj ∈ {0, 1}

Set Partitioning

min
n∑

j=1

cjxj

n∑
j=1

aijxj = 1 ∀i
xj ∈ {0, 1}

Set Packing

max
n∑

j=1

cjxj

n∑
j=1

aijxj ≤ 1 ∀i
xj ∈ {0, 1}

5

Models
An Overview of Software for MIP
ZIBOptTraveling Salesman Problem

6

Models
An Overview of Software for MIP
ZIBOptTraveling Salesman Problem

6

Models
An Overview of Software for MIP
ZIBOptTraveling Salesman Problem

6

Models
An Overview of Software for MIP
ZIBOptTraveling Salesman Problem

6

Models
An Overview of Software for MIP
ZIBOptTraveling Salesman Problem

6

Models
An Overview of Software for MIP
ZIBOptTraveling Salesman Problem

6

Models
An Overview of Software for MIP
ZIBOptTraveling Salesman Problem

6

Models
An Overview of Software for MIP
ZIBOpt

minimize cT x subject to

0 ≤ xe ≤ 1 for all edges e,∑
(xe : v is an end of e) = 2 for all cities v,∑

(xe : e has one end in S and one end not in S) ≥ 2
for all nonempty proper subsets S of cities,∑i=3

i=0(
∑

(xe : e has one end in Si and one end not in Si) ≥ 10,
for any comb

7

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu

Models
An Overview of Software for MIP
ZIBOptMIP for Scheduling

Formulation for Qm|pj = 1|∑ hj(Cj) and relation with
transportation problems

Formulation of 1|prec|∑ wjCj and Rm||∑ Cj as weighted
bipartite matching and assignment problems.

Formulation of 1|prec|∑ wjCj and how to deal with disjunctive
constraints

9

Models
An Overview of Software for MIP
ZIBOptOutline

1. Models

2. An Overview of Software for MIP

3. ZIBOpt

10

Models
An Overview of Software for MIP
ZIBOptHow to solve MIP programs

Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

Use a modeling language to convert the theoretical model to a
computer usable representation and employ an out-of-the-box
general solver to find solutions.

Use a framework that already has many general algorithms available
and only implement problem specific parts, e. g., separators or upper
bounding.

Develop everything yourself, maybe making use of libraries that
provide high-performance implementations of specific algorithms.

Thorsten Koch
“Rapid Mathematical Programming”

Technische Universität, Berlin, Dissertation, 2004

11

Models
An Overview of Software for MIP
ZIBOptHow to solve MIP programs

Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

Advantages: easy if familiar with the workbench

Disadvantages: restricted, not state-of-the-art

12

Models
An Overview of Software for MIP
ZIBOptHow to solve MIP programs

Use a modeling language to convert the theoretical model to a
computer usable representation and employ an out-of-the-box
general solver to find solutions.

Advantages: flexible on modeling side, easy to use, immediate results,
easy to test different models, possible to switch between different state-
of-the-art solvers

Disadvantages: algoritmical restrictions in the solution process, no upper
bounding possible

13

Models
An Overview of Software for MIP
ZIBOptHow to solve MIP programs

Use a framework that already has many general algorithms available
and only implement problem specific parts, e.g., separators or upper
bounding.

Advantages: allow to implement sophisticated solvers, high performance
bricks are available, flexible

Disadvantages: view imposed by designers, vendor specific hence no
transferability,

14

Models
An Overview of Software for MIP
ZIBOptHow to solve MIP programs

Develop everything yourself, maybe making use of libraries that
provide high-performance implementations of specific algorithms.

Advantages: specific implementations and max flexibility

Disadvantages: for extremely large problems, bounding procedures are
more crucial than branching

15

Models
An Overview of Software for MIP
ZIBOptModeling Languages

Thorsten Koch
“Rapid Mathematical Programming”

Technische Universität, Berlin, Dissertation, 2004

16

Models
An Overview of Software for MIP
ZIBOptLP-Solvers

CPLEX http://www.ilog.com/products/cplex
XPRESS-MP http://www.dashoptimization.com
SOPLEX http://www.zib.de/Optimization/Software/Soplex
COIN CLP http://www.coin-or.org
GLPK http://www.gnu.org/software/glpk
LP_SOLVE http://lpsolve.sourceforge.net/

“Software Survey: Linear Programming” by Robert Fourer
http://www.lionhrtpub.com/orms/orms-6-05/frsurvey.html

17

Models
An Overview of Software for MIP
ZIBOptOutline

1. Models

2. An Overview of Software for MIP

3. ZIBOpt

18

Models
An Overview of Software for MIP
ZIBOptZIBOpt

Zimpl is a little algebraic Modeling language to translate the
mathematical model of a problem into a linear or (mixed-) integer
mathematical program expressed in .lp or .mps file format which can
be read and (hopefully) solved by a LP or MIP solver.

Scip is an IP-Solver. It solves Integer Programs and Constraint
Programs: the problem is successively divided into smaller
subproblems (branching) that are solved recursively. Integer
Programming uses LP relaxations and cutting planes to provide
strong dual bounds, while Constraint Programming can handle
arbitrary (non-linear) constraints and uses propagation to tighten
domains of variables.

SoPlex is an LP-Solver. It implements the revised simplex algorithm.
It features primal and dual solving routines for linear programs and is
implemented as a C++ class library that can be used with other
programs (like SCIP). It can solve standalone linear programs given
in MPS or LP-Format.

19

Models
An Overview of Software for MIP
ZIBOptModeling Cycle

H. Schichl. “Models and the history of modeling”.
In Kallrath, ed., Modeling Languages in Mathematical Optimization, Kluwer,

2004.

20

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 6

Constraint Programming

Marco Chiarandini

Math Programming
Constraint ProgrammingOutline

1. Math Programming
Scheduling Models
Further issues

2. Constraint Programming
Introduction

2

Math Programming
Constraint Programming

Scheduling Models
Further issuesOutline

1. Math Programming
Scheduling Models
Further issues

2. Constraint Programming
Introduction

3

Math Programming
Constraint Programming

Scheduling Models
Further issuesTime indexed variables

1|rj |P wjCj

Discretize time in t = 0, . . . , l, where l is upper bound

xjt ∈ {0, 1} j = 1, . . . , n; t = 0, . . . , l Variables indicate if j
starts at t

lX
t=1

xjt = 1 ∀j = 1, . . . , n
Every job starts at one
point in time

nX
j=1

t−1X
s=max{t−pj ,0}

xjs ≤ 1 ∀t = 0, . . . , l At most one job can
be processed in time

xjt = 0∀j = 1, . . . , n, t = 0, . . . , max{rj − 1, 0} Jobs cannot start be-
fore their release dates

min

nX
j=1

lX
t=0

wj(t + pj)xjs Objective

5

Math Programming
Constraint Programming

Scheduling Models
Further issuesSequencing variables

1|prec|P wjCj

xjk ∈ {0, 1} j, k = 1, . . . , n Variables indicate if j
preceeds k

xjj = 0 ∀j = 1, . . . , n

xkj + xjk = 1 ∀j, k = 1, . . . , n, j 6= k Precedence constraints

xkj + xlk + xjl ≥ 1 j, k, l = 1, . . . , nj 6= k, k 6= l, j 6= l

Precedence constraints

min

nX
j=1

nX
k=1

wjpkxkj +

nX
j=1

wjpj Objective

6

Math Programming
Constraint Programming

Scheduling Models
Further issuesReal Variables

Disjunctive Programming

1|prec|P wjCj

Disjunctive graph model made of conjunctive arcs A and disjunctive arcs I.
Select disjunctive arcs such that the grph does not contain a cycle.

xj ∈ R j = 1, . . . , n
Variables denote com-
pletion of job j

xk − xj ≥ pk ∀j → k ∈ A
precedence constraints
conjunctive arcs

xj ≥ pj ∀j = 1, . . . , n min processing time

xk − xj ≥ pk or xj − xk ≥ pj ∀(i, j) ∈ I Precedence constraints

min

nX
j=1

wjxj Objective

7

Math Programming
Constraint Programming

Scheduling Models
Further issuesLinearizations

How to linearize these non linear functions?

Disjunctive constraints

min |a− b|

min{max(a, b)}

min maxi=1,...,m(cT
i x + di) piecewise-linear functions

9

Math Programming
Constraint Programming

Scheduling Models
Further issuesConstraint types

x binary, y general integer, z a continous variable.
a and b integer numbers; p, q, r, s real numbers

Specific domain propagation, preprocessing and cut generation exist
for some of these constraints.
[Achterberg, T. Constraint Integer Programming Department of
Mathematics, Phd Thesis, Technical University of Berlin, Germany, 2007]

10

Math Programming
Constraint Programming IntroductionOutline

1. Math Programming
Scheduling Models
Further issues

2. Constraint Programming
Introduction

11

Math Programming
Constraint Programming IntroductionConstraint Programming

Constraint Programming is about a fomrulation of the problem
as a constraint satisfaction problem and about solving it by
means of general or domain specific methods.

13

Math Programming
Constraint Programming IntroductionConstraint Satisfaction Problem

Input:

a set of variables X1, X2, . . . , Xn

each variable has a non-empty domain Di of possible values

a set of constraints. Each constraint Ci involves some subset of the
variables and specifies the allowed combination of values for that
subset.
[A constraint C on variables Xi and Xj , C(Xi, Xj), defines the
subset of the Cartesian product of variable domains Di ×Dj of the
consistent assignments of values to variables. A constraint C on
variables Xi, Xj is satisfied by a pair of values vi, vj if
(vi, vj) ∈ C(Xi, Xj).]

Task:

find an assignment of values to all the variables
{Xi = vi, Xj = vj , . . .}
such that it is consistent, that is, it does not violate any constraint

If assignments are not all equally good, but some are preferable this is
reflected in an objective function.

14

Math Programming
Constraint Programming IntroductionSolution Process

Standard search problem:
initial state: the empty assignment {} in which all variables are
unassigned
successor function: a value can be assigned to any unassigned
variable, provided that it does not conflict with previous assignments
goal test: the current assignment is complete
path cost: a constant cost for every step.

Two fundamental issues:

exploration of search tree (of depth n)

constraint propagation (filtering)
at every node of the search tree, remove domain values that do not
belong to a solution
Repeat until nothing can be removed anymore

 In CP, we mostly mean complete search but incomplete search is also
included.

15

Math Programming
Constraint Programming IntroductionConstraint Propagation

Definition
Domain consistency A constraint C on the variables x1, . . . , xk is called
domain consistent if for each variable xi and each value di ∈ D(xi)
(i = 1, . . . , k), there exist a value dj ∈ D(xj) for all j 6= i such that
(d1, . . . , dk) ∈ C.

domain consistency = hyper-arc consistency or generalized-arc
consistency

Establishing domain consistency for binary constraints is inexpensive.

For higher arity constraints the naive approach requires time that is
exponential in the number of variables.

Exploiting underlying structure of a constraint can sometimes lead
to establish domain consistency much more efficiently.

16

Math Programming
Constraint Programming IntroductionTypes of Variables and Values

Discrete variables with finite domain:
complete enumeration is O(dn)

Discrete variables with infinite domains:
Impossible by complete enumeration.
Instead a constraint language (constraint logic programming and
constraint reasoning)
Eg, project planning.

Sj + pj ≤ Sk

NB: if only linear constraints, then integer linear programming

variables with continuous domains
NB: if only linear constraints or convex functions then mathematical
programming

17

Math Programming
Constraint Programming IntroductionTypes of constraints

Unary constraints

Binary constraints (constraint graph)

Higher order (constraint hypergraph)
Eg, Alldiff(), among(), etc.
Every higher order constraint can be reconduced to binary
(you may need auxiliary constraints)

Preference constraints
cost on individual variable assignments

19

Math Programming
Constraint Programming IntroductionGeneral Purpose Algorithms

Search algorithms

organize and explore the search tree

Search tree with branching factor at the top level nd and at the next
level (n− 1)d. The tree has n! · dn leves even if only dn possible
complete assignments.

Insight: CSP is commutative in the order of application of any given
set of action (the order of the assignment does not influence)

Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each
node in the search tree.
The tree has dn leaves.

Backtracking search

depth first search that chooses one variable at a time and backtracks
when a variable has no legal values left to assign.

20

Math Programming
Constraint Programming IntroductionBacktrack Search

21

Math Programming
Constraint Programming IntroductionBacktrack Search

No need to copy solutions all the times but rather extensions and
undo extensions

Since CSP is standard then the alg is also standard and can use
general purpose algorithms for initial state, successor function and
goal test.

Backtracking is uninformed and complete. Other search algorithms
may use information in form of heuristics

22

Math Programming
Constraint Programming IntroductionGeneral Purpose Backtracking

Implemnetation Refinements

1) Which variable should we assign next, and in what order should its
values be tried?

2) What are the implications of the current variable assignments for the
other unassigned variables?

3) When a path fails – that is, a state is reached in which a variable
has no legal values can the search avoid repeating this failure in
subsequent paths?

23

Math Programming
Constraint Programming Introduction

1) Which variable should we assign next, and in what order should its
values be tried?

Select-Initial-Unassigned-Variable
degree heuristic (reduces the branching factor) also used as tied
breaker

Select-Unassigned-Variable
Most constrained variable (DSATUR) = fail-first heuristic
= Minimum remaining values (MRV) heuristic (speeds up pruning)

Order-Domain-Values
least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

NB: If we search for all the solutions or a solution does not exists, then
the ordering does not matter.

24

Math Programming
Constraint Programming Introduction

2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints

Implicit in Select-Unassigned-Variable

Forward checking (coupled with MRV)

Constraint propagation (filtering)
arc consistency: force all (directed) arcs uv to be consistent: ∃ a
value in D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (MAC, Maintaining Arc Consistency)

Applied repeatedly

k-consistency: if for any set of k− 1 variables, and for any consistent
assignment to those variables, a consistent value can always be
assigned to any k-th variable.

determining the appropriate level of consistency checking is mostly
an empirical science.

25

Math Programming
Constraint Programming Introduction

Example: Arc Consistency Algorithm AC-3

26

Math Programming
Constraint Programming Introduction

3) When a path fails – that is, a state is reached in which a variable has
no legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
chronological backtracking, the most recent decision point is
revisited
backjumping, backtracks to the most recent variable in the conflict
set (set of previously assigned variables connected to X by
constraints).

every branch pruned by backjumping is also pruned by forward
checking

idea remains: backtrack to reasons of failure.

27

Math Programming
Constraint Programming IntroductionAn Empirical Comparison

Median number of consistency checks

28

Math Programming
Constraint Programming IntroductionThe structure of problems

Decomposition in subproblems:
connected components in the constraint graph
O(dcn/c) vs O(dn)

Constraint graphs that are tree are solvable in poly time by reverse
arc-consistency checks.

Reduce constraint graph to tree:
removing nodes (cutset conditioning: find the smallest cycle cutset.
It is NP-hard but good approximations exist)
collapsing nodes (tree decomposition)
divide-and-conquer works well with small subproblems

29

Math Programming
Constraint Programming IntroductionOptimization Problems

Objective function F (X1, X2, . . . , Xn)

Solve a modified Constraint Satisfaction Problem by setting a
(lower) bound z∗ in the objective function
Dichotomic search: U upper bound, L lower bound

M =
U + L

2

30

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 7

Constraint Programming (2)

Marco Chiarandini

Refinements on CP
Language and Systems

Outline

1. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

2. Language and Systems

2

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationOutline

1. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

2. Language and Systems

3

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationA Puzzle Example

SEND +
MORE =
MONEY

Two representations

The first yields initially a weaker constraint propagation. The tree
has 23 nodes and the unique solution is found after visiting 19 nodes

The second representation has a tree with 29 nodes and the unique
solution is found after visiting 23 nodes

However for the puzzle GERALD + DONALD = ROBERT the situation is
reverse. The first has 16651 nodes and 13795 visits while the second has
869 nodes and 791 visits

 Finding the best model is an empirical science
5

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationGuidelines

Rules of thumbs for modelling (to take with a grain of salt):

use representations that involve less variables and simpler constraints
for which constraint propagators are readily available

use constraint propagation techniques that require less preprocessing
(ie, the introduction of auxiliary variables) since they reduce the
search space better.
Disjunctive constraints may lead to an inefficient representation
since they can generate a large search space.

use global constraints (see below)

6

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationRandomization in Search Tree

Dynamical selection of solution components
in construction or choice points in backtracking.

Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

Randomization can also be used in incomplete search

8

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationIncomplete Search

http:
//4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

9

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationIncomplete Search

Credit-based search

Key idea: important decisions
are at the top of the tree

Credit = backtracking steps

Credit distribution: one half at
the best child the other divided
among the other children.

When credits run out follow
deterministic best-search

In addition: allow limited
backtracking steps (eg, 5) at
the bottom

Control parameters: initial
credit, distribution of credit
among the children, amount of
local backtracking at bottom.

10

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationIncomplete Search

Limited Discrepancy Search (LDS)

Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

Eg: count one discrepancy if
second best is chosen
count two discrepancies either
if third best is chosen or twice
the second best is chosen

Control parameter: the number
of discrepancies

11

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationIncomplete Search

Barrier Search

Extension of LDS

Key idea: we may encounter
several, independent problems
in our heuristic choice. Each of
these problems can be
overcome locally with a limited
amount of backtracking.

At each barrier start LDS-based
backtracking

12

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationLocal Search for CSP

Uses a complete-state formulation: a value assigned to each variable
(randomly)

Changes the value of one variable at a time

Min-conflicts heuristic is effective particularly when given a good
initial state.

Run-time independent from problem size

Possible use in online settings in personal assignment: repair the
schedule with a minimum number of changes

13

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationHandling special constraints

Higher order constraints

Definition
Global constraints are complex constraints that are taken care of by
means of a special purpose algorithm.

Modelling by means of global constraints is more efficient than relying on
the general purpose constraint propagator.

Examples:
alldiff

for m variables and n values cannot be satisfied if m > n,
consider first singleton variables
propagation based on bipartite matching considerations

15

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

cumulative for RCPSP [Aggoun and Beldiceanu, 1993]

Sj starting times of jobs

Pj duration of job

Rj resource consumption

R limit not to be exceeded at any point in time

cumulative([Sj], [Pj], [Rj], R) :=

{([sj], [pj], [rj]R) | ∀t
∑

i | si≤t≤si+pi

ri ≤ R}

The special purpose algorithm employes the edge-finding technique
(enforce precedences)

16

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

atmost Resource Constraint

check the sum of minimum values of single domains
delete maximum values if not consistent with minimum values of
others.

for large integer values not possible to represent the domain as a set
of integers but rather as bounds.
Then bounds propagation: Eg,

Flight271 ∈ [0, 165] and Flight272 ∈ [0, 385]
Flight271 + Flight272 ∈ [420, 420]
Flight271 ∈ [35, 165] and Flight272 ∈ [255, 385]

17

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

sortedness for job shop [Older, Swinkels, and van Emden, 1995]

sortedness([X1, . . . , Xn], [Y1, . . . , Y n]) :=
{([d1, . . . , dn], [e1, . . . , en])|[e1, . . . , en] is

the sorted permutation of [d1, . . . , dn]}

18

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

among(x|v, l, u) at least l and at most v variables take values in the
set v.

bin− packing(x|w, u, k) pack items in k bins such that they do
not exceed capacity u

cardinality(x|v, l, u) at least lj and at most uj of the variables
take the value vj

cardinality− clause(x|k)
∑n
j=1 xj ≥ k

cardinality− conditional(x, y|k, l) if
∑n
j=1 xj ≥ k then∑m

j=1 yj ≥ l

change(x|k, rel) counts number of times a given change occur

19

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

circuit(x) imposes Hamiltonian cycle on digraph.

clique(x|G, k) requires that a given graph contain a clique

conditional(D, C) between set of constrains D ⇒ C

cutset(x|G, k) requires that for the set of selected vertices V ′, the
set V \ V ′ induces a subgraph of G that contains no cycles.

cycle(x|y) select edges such that they form exactly y cycles.
directed cycles in a graph.

diffn((x1,∆x1), . . . , (xm,∆xm)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap

...

20

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationConstraint Morphology

21

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationKinds of symmetries

Variable symmetry:
permuting variables keeps solutions invariant (eg, N-queens)
{xi → vi} ∈ sol(P)⇔ {xπ(i) → vi} ∈ sol(P)

Value symmetry:
permuting values keeps solutions invariant (eg, GCP)
{xi → vi} ∈ sol(P)⇔ {xi → π(vi)} ∈ sol(P)

Variable/value symmetry:
permute both variables and values (eg, sudoku?)
{xi → vi} ∈ sol(P)⇔ {xπ(i) → π(vi)} ∈ sol(P)

23

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationSymmetry

inherent in the problem (sudoku, queens)

artefact of the model (order of groups)

How can we avoid it?

... by model reformulation (eg, use set variables,

... by adding constraints to the model
(ruling out symmetric solutions)

... during search

... by dominance detection

24

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationReified constraints

Constraints are in a big conjunction

How about disjunctive constraints?

A+B = C ∨ C = 0

or soft constraints?

Solution: reify the constraints:

(A+B = C ⇔ b0) ∧
(C = 0 ⇔ b1) ∧
(b0 ∨ b1 ⇔ true)

These kind of constraints are dealt with in efficient way by the
systems

Then if optimization problem (soft constraints) ⇒ min
∑
i bi

26

Refinements on CP
Language and Systems

Outline

1. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

2. Language and Systems

27

Refinements on CP
Language and Systems

Prolog Approach

Prolog II till Prolog IV [Colmerauer, 1990]

CHIP V5 [Dincbas, 1988] http://www.cosytec.com (commercial)

CLP [Van Hentenryck, 1989]

Ciao Prolog (Free, GPL)

GNU Prolog (Free, GPL)

SICStus Prolog

ECLiPSe[Wallace, Novello, Schimpf, 1997] http://eclipse-clp.org/
(Open Source)

Mozart programming system based on Oz language (incorporates
concurrent constraint programming) http://www.mozart-oz.org/
[Smolka, 1995]

28

Refinements on CP
Language and Systems

Example
The puzzle SEND+MORE = MONEY in ECLiPSe

29

Refinements on CP
Language and Systems

Other Approaches

Modelling languages similar in concept to ZIMPL:

OPL [Van Hentenryck, 1999] ILOG CP Optimizer
www.cpoptimizer.ilog.com (ILOG, commercial)

MiniZinc [] (open source, works for various systems, ECLiPSe,
Geocode)

30

Refinements on CP
Language and Systems

MiniZinc

31

Refinements on CP
Language and Systems

Other Approaches
Libraries:
Constraints are modelled as objects and are manipulated by means of
special methods provided by the given class.

CHOCO (free) http://choco.sourceforge.net/

Kaolog (commercial) http://www.koalog.com/php/index.php

ECLiPSe (free) www.eclipse-clp.org

ILOG CP Optimizer www.cpoptimizer.ilog.com (ILOG,
commercial)

Gecode (free) www.gecode.org C++, Programming interfaces Java
and MiniZinc

G12 Project
http://www.nicta.com.au/research/projects/constraint_
programming_platform

32

Refinements on CP
Language and Systems

CP Languages

Greater expressive power than mathematical programming

constraints involving disjunction can be represented directly

constraints can be encapsulated (as predicates) and used in the
definition of further constrains

However, CP models can often be translated into MIP model by

eliminating disjunctions in favor of auxiliary Boolean variables

unfolding predicates into their definitions

33

Refinements on CP
Language and Systems

CP Languages

Fundamental difference to LP
language has structure (global constraints)

different solvers support different constraints

In its infancy

Key questions:
what level of abstraction?

solving approach independent: LP, CP, ...?

how to map to different systems?

Modelling is very difficult for CP
requires lots of knowledge and tinkering

34

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 8

Constraint Programming (3)

Marco Chiarandini

Outline

2

Handling special constraints
Higher order constraints

Definition
Global constraints are complex constraints that are taken care of by
means of a special purpose algorithm.

Modelling by means of global constraints is more efficient than relying on
the general purpose constraint propagator.

Examples:
alldiff

for m variables and n values cannot be satisfied if m > n,
consider first singleton variables
propagation based on bipartite matching considerations

3

disjunctive(s | p) (si + pi ≤ sj) ∨ (sj + pj ≤ si)

cumulative(s | p, r, R) for RCPSP [Aggoun and Beldiceanu, 1993]

sj starting times of jobs

pj duration of job

rj resource consumption

R limit not to be exceeded at any point in time

cumulative(s | p, r,R) :=

{([sj], [pj], [rj], R) | ∀t
∑

i | si≤t≤si+pi

ri ≤ R}

edge-finding, not-first not-last rules

4

sortedness for job shop [Older, Swinkels, and van Emden, 1995]

sortedness([X1, . . . , Xn], [Y1, . . . , Y n]) :=
{([d1, . . . , dn], [e1, . . . , en]) | [e1, . . . , en] is

the sorted permutation of [d1, . . . , dn]}

5

atmost(x|v, k)

At most k variables of the x VARIABLES collection are assigned to
value v.
(1,<4,2,4,5>,2)
The atmost constraint holds since at most 1 value of the collection
<4,2,4,5> is equal to value 2.

among(x|v, l, u) at least l and at most u variables take values in the
set v.

nvalues(x | l, u) requires that the variables x take at least l and at
most u different values.

6

bin-packing(x|w, u, k) pack items in k bins such that they do not
exceed capacity u

cardinality(x|v, l, u) at least lj and at most uj of the variables
take the value vj

cardinality-clause(x|k)
∑n

j=1 xj ≥ k

cardinality-conditional(x, y|k, l) if
∑n

j=1 xj ≥ k then∑m
j=1 yj ≥ l

change(x|k, rel) counts number of times a given change occur

7

circuit(x) imposes Hamiltonian cycle on digraph.

clique(x|G, k) requires that a given graph contain a clique

conditional(D, C) between set of constrains D ⇒ C

cutset(x|G, k) requires that for the set of selected vertices V ′, the
set V \ V ′ induces a subgraph of G that contains no cycles.

cycle(x|y) select edges such that they form exactly y cycles.
directed cycles in a graph.

diffn((x1, ∆x1), . . . , (xm, ∆xm)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap

8

element(y, z | a) requires z to take the yth value in the tuple a.
Useful with variable indices (variable subscripts), eg, ay

(3,2 | <6,9,2,9>)
The element constraint holds since its third argument VALUE=2 is
equal to the 3th (INDEX=3) item of the collection <6,9,2,9>

9

Constraint Morphology

10

Modelling in Gecode/J

Implement model as a script

declare variables

post constraints (create propagators)

define branching

Solve script

basic search strategy (DFS)

interactive, graphical search tool (Gist)

11

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 9
Heuristics

Marco Chiarandini

Construction Heuristics
Local Search
Software Tools

Outline
1. Construction Heuristics

General Principles
Metaheuristics

A∗ search
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search

Efficiency vs Effectiveness
Application Examples

Metaheuristics
Tabu Search
Iterated Local Search

3. Software Tools
The Code Delivered
Practical Exercise

2

Construction Heuristics
Local Search
Software Tools

Introduction

Heuristic methods make use of two search paradigms:

construction rules (extends partial solutions)

local search (modifies complete solutions)

These components are problem specific and implement informed search.

They can be improved by use of metaheuristics which are general-purpose
guidance criteria for underlying problem specific components.

Final heuristic algorithms are often hybridization of several components.

3

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Outline
1. Construction Heuristics

General Principles
Metaheuristics

A∗ search
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search

Efficiency vs Effectiveness
Application Examples

Metaheuristics
Tabu Search
Iterated Local Search

3. Software Tools
The Code Delivered
Practical Exercise

4

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Construction Heuristics

Heuristic: a common-sense rule (or set of rules) intended to increase the
probability of solving some problem

Construction heuristics

(aka, single pass heuristics, dispatching rules, in scheduling)
They are closely related to tree search techniques but correspond to a single
path from root to leaf

search space = partial candidate solutions

search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
while s is not a complete solution do

choose a solution component c
add the solution component to s

6

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Greedy best-first search

7

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Sometimes greedy heuristics can be proved to be optimal
(Minimum Spanning Tree, Single Source Shortest Path,
1||PwjCj , 1||Lmax)

Other times an approximation ratio can be prooved

8

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Designing heuristics

Same idea of (variable, value) selection in CP without backtracking

Variable

* INT_VAR_NONE: First unassigned

* INT_VAR_MIN_MIN: With smallest min
* INT_VAR_MIN_MAX: With largest min
* INT_VAR_MAX_MIN: With smallest max
* INT_VAR_MAX_MAX: With largest max

* INT_VAR_SIZE_MIN: With smallest domain size
* INT_VAR_SIZE_MAX: With largest domain size

* INT_VAR_DEGREE_MIN: With smallest degree The degree of a variable is defined as the number of dependant
propagators. In case of ties, choose the variable with smallest domain.

* INT_VAR_DEGREE_MAX: With largest degree The degree of a variable is defined as the number of dependant
propagators. In case of ties, choose the variable with smallest domain.

* INT_VAR_SIZE_DEGREE_MIN: With smallest domain size divided by degree
* INT_VAR_SIZE_DEGREE_MAX: With largest domain size divided by degree

* INT_VAR_REGRET_MIN_MIN: With smallest min-regret The min-regret of a variable is the difference between
the smallest and second-smallest value still in the domain.

* INT_VAR_REGRET_MIN_MAX: With largest min-regret The min-regret of a variable is the difference between
the smallest and second-smallest value still in the domain.

* INT_VAR_REGRET_MAX_MIN: With smallest max-regret The max-regret of a variable is the difference between
the largest and second-largest value still in the domain.

* INT_VAR_REGRET_MAX_MAX: With largest max-regret The max-regret of a variable is the difference between
the largest and second-largest

value still in the domain.

Static vs Dynamic (è quality time tradeoff)

9

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Designing heuristics

Same idea of (variable, value) selection in CP without backtracking

Value

* INT_VAL_MIN: Select smallest value
* INT_VAL_MED: Select median value
* INT_VAL_MAX: Select maximal value

* INT_VAL_SPLIT_MIN: Select lower half of domain
* INT_VAL_SPLIT_MAX: Select upper half of domain

Static vs Dynamic (è quality time tradeoff)
9

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Dispatching Rules in Scheduling

RULE DATA OBJECTIVES
Rules Dependent ERD rj Variance in Throughput Times
on Release Dates EDD dj Maximum Lateness
and Due Dates MS dj Maximum Lateness

LPT pj Load Balancing over Parallel Machines
Rules Dependent SPT pj Sum of Completion Times, WIP
on Processing WSPT pj , wj Weighted Sum of Completion Times, WIP
Times CP pj , prec Makespan

LNS pj , prec Makespan
SIRO - Ease of Implementation

Miscellaneous SST sjk Makespan and Throughput
LFJ Mj Makespan and Throughput
SQNO - Machine Idleness

10

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Truncated Search

They can be seen as form of Metaheuristics

Limited Discrepancy Search (LDS)

Credit-based search

Barrier Search

12

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

A∗ best-first search

The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.

It is optimal if h(x) is an
admissible heuristic: never overestimates the cost to reach the goal
consistent: h(n) ≤ c(n, a, n′) + h(n′)

13

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

A∗ best-first search

14

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

A∗ best-first search

Possible choices for admissible heuristic functions

optimal solution to an easily solvable relaxed problem
optimal solution to an easily solvable subproblem
preferred heuristics functions with higher values (provided they do not
overestimate)

if several heuristics available h1, h2, . . . , hm and not clear which is the best
then:

h(x) = max{h1(x), . . . , hm(x)}

15

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

A∗ best-first search

Drawbacks

Time complexity: In the worst case, the number of nodes expanded is
exponential, but it is polynomial when the heuristic function h meets the
following condition:

|h(x)− h∗(x)| ≤ O(log h∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.

Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A∗ (IDA∗),
memory-bounded A∗ (MA∗) and simplified memory bounded A∗ (SMA∗)
and recursive best-first search (RBFS)

16

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Rollout Method

(aka, pilot method) [Bertsekas, Tsitsiklis, Cynara, JoH, 1997]
Derived from A∗

Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).

Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

At the k-th iteration the master process evaluates seemly feasible
components to add based on a look-ahead strategy based on heuristic
algorithms.

The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk
Sub-heuristics are combined in H(Sk+1) by

weighted sum
minimal value

17

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Rollout Method

Speed-ups:

halt whenever cost of current partial solution exceeds current upper bound

evaluate only a fraction of possible components

18

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Beam Search

[Lowerre, Complex System, 1976]
Derived from A∗ and branch and bound

maintains a set B of bw (beam width) partial candidate solutions

at each iteration extend each solution from B in fw (filter width) possible
ways

rank each bw × fw candidate solutions and take the best bw partial
solutions

complete candidate solutions obtained by B are maintained in Bf

Stop when no partial solution in B is to be extended

19

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Iterated Greedy

Key idea: use greedy construction

alternation of Construction and Deconstruction phases

an acceptance criterion decides whether the search continues from the new
or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

20

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) []

Key Idea: Combine randomized constructive search with subsequent
perturbative search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by perturbative search.

Perturbative search methods typically often require substantially fewer
steps to reach high-quality solutions
when initialized using greedy constructive search rather than
random picking.

By iterating cycles of constructive + perturbative search, further
performance improvements can be achieved.

22

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Greedy Randomized “Adaptive” Search Procedure (GRASP):
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary greedy randomized constructive search
||b perform subsidiary perturbative search on s

Note:

Randomization in constructive search ensures that a large number of good
starting points for subsidiary perturbative search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
given partial candidate solution r may depend on
solution components present in r.
Variants of GRASP without perturbative search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with perturbative search.

23

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

24

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Example: GRASP for SAT [Resende and Feo, 1996]

Given: CNF formula F over variables x1, . . . , xn

Subsidiary constructive search:

start from empty variable assignment

in each step, add one atomic assignment (i.e., assignment of
a truth value to a currently unassigned variable)

heuristic function h(i, v) := number of clauses that
become satisfied as a consequence of assigning xi := v

RCLs based on cardinality restriction (contain fixed number k
of atomic assignments with largest heuristic values)

Subsidiary perturbative search:

iterative best improvement using 1-flip neighborhood

terminates when model has been found or given number of
steps has been exceeded 25

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

GRASP has been applied to many combinatorial problems, including:

SAT, MAX-SAT

various scheduling problems

Extensions and improvements of GRASP:

reactive GRASP (e.g., dynamic adaptation of α
during search)

26

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsOutline

1. Construction Heuristics
General Principles
Metaheuristics

A∗ search
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search

Efficiency vs Effectiveness
Application Examples

Metaheuristics
Tabu Search
Iterated Local Search

3. Software Tools
The Code Delivered
Practical Exercise

27

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search Paradigm

search space = complete candidate solutions

search step = modification of one or more solution components

iteratively generate and evaluate candidate solutions
decision problems: evaluation = test if solution
optimization problems: evaluation = check objective function value

evaluating candidate solutions is typically computationally much cheaper
than finding (optimal) solutions

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s′ of s such that f(s′) < f(s)
s := s′

28

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search Algorithm (1)

Given a (combinatorial) optimization problem Π and one of its instances π:

search space S(π)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array (sequence of all truth assignments
to propositional variables)

Note: solution set S′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

evaluation function f(π) : S(π) 7→ R
(e.g., for SAT: number of false clauses)

neighborhood function, N (π) : S 7→ 2S(π)

(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

29

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search Algorithm (2)

set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

initialization function init : ∅ 7→ P(S(π)×M(π))
(specifies probability distribution over initial search positions and memory
states)

step function step : S(π)×M(π) 7→ P(S(π)×M(π))
(maps each search position and memory state onto
probability distribution over subsequent, neighboring
search positions and memory states)

termination predicate terminate : S(π)×M(π) 7→ P({>,⊥})
(determines the termination probability for each
search position and memory state)

30

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search Algorithm

For given problem instance π:

search space (solution representation) S(π)

neighborhood relation N (π) ⊆ S(π)× S(π)

evaluation function f(π) : S 7→ R

set of memory states M(π)

initialization function init : ∅ 7→ P(S(π)×M(π))

step function step : S(π)×M(π) 7→ P(S(π)×M(π))

termination predicate terminate : S(π)×M(π) 7→ P({>,⊥})

31

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Search Space

Defined by the solution representation:

permutations
linear (scheduling)
circular (TSP)

arrays (assignment problems: GCP)

sets or lists (partition problems: Knapsack)

32

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Neighborhood function N (π) : S(π) 7→ 2S(π)

Also defined as: N : S × S → {T, F} or N ⊆ S × S

neighborhood (set) of candidate solution s: N(s) := {s′ ∈ S | N (s, s′)}
neighborhood size is |N(s)|
neighborhood is symmetric if: s′ ∈ N(s)⇒ s ∈ N(s′)

neighborhood graph of (S,N, π) is a directed vertex-weighted graph:
GN (π) := (V,A) with V = S(π) and (uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood ⇒ undirected graph)

Note on notation: N when set, N when collection of sets or function

33

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

A neighborhood function is also defined by means of an operator.

An operator ∆ is a collection of operator functions δ : S → S such that

s′ ∈ N(s) ⇐⇒ ∃ δ ∈ ∆, δ(s) = s′

Definition

k-exchange neighborhood: candidate solutions s, s′ are neighbors iff s differs
from s′ in at most k solution components

Examples:

1-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

2-exchange neighborhood for TSP
(solution components = edges in given graph)

34

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Note:

Local search implements a walk through the neighborhood graph

Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

Memory state m can consist of multiple independent attributes, i.e.,
M(π) := M1 ×M2 × . . .×Ml(π).

Local search algorithms are Markov processes:
behavior in any search state {s,m} depends only
on current position s and (limited) memory m.

35

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Search step (or move):
pair of search positions s, s′ for which
s′ can be reached from s in one step, i.e., N (s, s′) and
step({s,m}, {s′,m′}) > 0 for some memory states m,m′ ∈M .

Search trajectory: finite sequence of search positions < s0, s1, . . . , sk >
such that (si−1, si) is a search step for any i ∈ {1, . . . , k}
and the probability of initializing the search at s0

is greater zero, i.e., init({s0,m}) > 0 for some memory state m ∈M .

Search strategy: specified by init and step function;
to some extent independent of problem instance and
other components of LS algorithm.

random
based on evaluation function
based on memory

36

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Uninformed Random Picking

N := S × S
does not use memory and evaluation function

init, step: uniform random choice from S,
i.e., for all s, s′ ∈ S, init(s) := step({s}, {s′}) := 1/|S|

Uninformed Random Walk

does not use memory and evaluation function

init: uniform random choice from S

step: uniform random choice from current neighborhood,

i.e., for all s, s′ ∈ S, step({s}, {s′}) :=

(
1/|N(s)| if s′ ∈ N(s)

0 otherwise

Note: These uninformed LS strategies are quite ineffective,
but play a role in combination with more directed search strategies.

37

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Evaluation (or cost) function:

function f(π) : S(π) 7→ R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;

used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:

Evaluation function: part of LS algorithm.

Objective function: integral part of optimization problem.

Some LS methods use evaluation functions different from given objective
function (e.g., dynamic local search).

38

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Iterative Improvement

does not use memory

init: uniform random choice from S

step: uniform random choice from improving neighbors,
i.e., step({s}, {s′}) := 1/|I(s)| if s′ ∈ I(s), and 0 otherwise,
where I(s) := {s′ ∈ S | N (s, s′) and f(s′) < f(s)}

terminates when no improving neighbor available
(to be revisited later)

different variants through modifications of step function
(to be revisited later)

Note: II is also known as iterative descent or hill-climbing.

39

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Iterative Improvement for SAT

search space S: set of all truth assignments to variables
in given formula F
(solution set S′: set of all models of F)

neighborhood function N : 1-flip neighborhood
(as in Uninformed Random Walk for SAT)

memory: not used, i.e., M := {0}
initialization: uniform random choice from S, i.e., init(∅, {a′}) := 1/|S|
for all assignments a′

evaluation function: f(a) := number of clauses in F
that are unsatisfied under assignment a
(Note: f(a) = 0 iff a is a model of F .)

step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/#I(a) if s′ ∈ I(a),
and 0 otherwise, where I(a) := {a′ | N (a, a′) ∧ f(a′) < f(a)}
termination: when no improving neighbor is available
i.e., terminate(a,>) := 1 if I(a) = ∅, and 0 otherwise.

40

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Definition:

Local minimum: search position without improving neighbors w.r.t. given
evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f(s) ≤ f(s′) for all s′ ∈ N(s).

Strict local minimum: search position s ∈ S such that
f(s) < f(s′) for all s′ ∈ N(s).

Local maxima and strict local maxima: defined analogously.

41

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

There might be more than one neighbor that have better cost.

Pivoting rule decides which to choose:

Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbor,
i.e., randomly select from I∗(s) := {s′ ∈ N(s) | f(s′) = f∗},
where f∗ := min{f(s′) | s′ ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step.

First Improvement: Evaluate neighbors in fixed order,
choose first improving step encountered.

Note: Can be much more efficient than Best Improvement; order of
evaluation can have significant impact on performance.

42

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Iterative Improvement for TSP (2-opt)

procedure TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ S(π)

∆ = 0;
do

Improvement=FALSE;
for i = 1 to n− 2 do
if i = 1 then n′ = n− 1 elsen′ = n

for j = i+ 2 to n′ do
∆ij = d(ci, cj) + d(ci+1, cj+1)− d(ci, ci+1)− d(cj , cj+1)
if ∆ij < 0 then

UpdateTour(s,i,j);
Improvement=TRUE;

end
end

until Improvement==FALSE;
end TSP-2opt-first

ä Are we in a local optimum when it terminates?
43

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsA note on terminology

Heuristic Methods ≡ Metaheuristics ≡ Local Search Methods ≡ Stochastic
Local Search Methods ≡ Hybrid Metaheuristics

Method 6= Algorithm

Stochastic Local Search (SLS) algorithms allude to:

Local Search: informed search based on local or incomplete knowledge as
opposed to systematic search

Stochastic: use randomized choices in generating and modifying candidate
solutions. They are introduced whenever it is unknown which deterministic
rules are profitable for all the instances of interest.

44

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsEscaping from Local Optima

Enlarge the neighborhood

Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g.,
using minimally worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.

46

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Diversification vs Intensification

Goal-directed and randomized components of LS strategy need to be
balanced carefully.

Intensification: aims to greedily increase solution quality or probability,
e.g., by exploiting the evaluation function.

Diversification: aim to prevent search stagnation by preventing search
process from getting trapped in confined regions.

Examples:

Iterative Improvement (II): intensification strategy.

Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms
the basis for advanced LS methods.

47

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLearning goals of this section

Review basic theoretical concepts

Learn about techniques and goals of experimental search space analysis.

Develop intuition on which features of local search are adequate to
contrast a specific situation.

49

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsDefinitions

Search space S

Neighborhood function N : S ⊆ 2S

Evaluation function f(π) : S 7→ R

Problem instance π

Definition:

The search landscape L is the vertex-labeled neighborhood graph given by the
triplet L = (S(π), N(π), f(π)).

50

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsFundamental Search Space Properties

The behavior and performance of an LS algorithm on a given problem instance
crucially depends on properties of the respective search space.

Simple properties of search space S:

search space size |S|
reachability: solution j is reachable from solution i if neighborhood graph
has a path from i to j.

strongly connected neighborhood graph

weakly optimally connected neighborhood graph

search space diameter diam(GN)
(= maximal distance between any two candidate solutions)
Note: Diameter of GN = worst-case lower bound for number of search
steps required for reaching (optimal) solutions.
Maximal shortest path between any two vertices in the neighborhood
graph.

51

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsSolution Representations and Neighborhoods

Three different types of solution representations:
Permutation

linear permutation: Single Machine Total Weighted Tardiness Problem
circular permutation: Traveling Salesman Problem

Assignment: Graph Coloring Problem, SAT, CSP

Set, Partition: Knapsack, Max Independent Set

A neighborhood function N : S → S × S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s′

53

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsPermutations

Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:

πi is the element at position i

posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

the permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι

∆N ⊂ Π

54

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsNeighborhood Operators for Linear Permutations

Swap operator
∆S = {δiS |1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δijX |1 ≤ i < j ≤ n}

δijX(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator
∆I = {δijI |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =


(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j

55

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsNeighborhood Operators for Circular Permutations

Reversal (2-edge-exchange)

∆R = {δijR |1 ≤ i < j ≤ n}
δijR (π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB |1 ≤ i < j < k ≤ n}
δijB (π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB |1 ≤ i < j ≤ n}
δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

56

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsNeighborhood Operators for Assignments

An assignment can be represented as a mapping
σ : {X1 . . . Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi, Xj = vj , . . .}
One-exchange operator

∆1E = {δil1E |1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
`
σ) =

˘
σ : σ′(Xi) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

¯
Two-exchange operator

∆2E = {δij2E |1 ≤ i < j ≤ n}

δij2E
˘
σ : σ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ′(Xl) = σ(Xl) ∀l 6= i, j
¯

57

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsNeighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s : {X} → {C,C}
(it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E |v ∈ C}

δv1E
`
s) =

˘
s : C′ = C ∪ v and C

′
= C \ v}

One-deletion operator
∆1E = {δv1E |v ∈ C}

δv1E
`
s) =

˘
s : C′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E |v ∈ C, u ∈ C}

δv1E
`
s) =

˘
s : C′ = C ∪ u \ v and C

′
= C ∪ v \ u}

58

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsDistances

Set of paths in GN with s, s′ ∈ S:
Φ(s, s′) = {(s1, . . . , sh)|s1 = s, sh = s′ ∀i : 1 ≤ i ≤ h− 1, 〈si, si+1〉 ∈ EN}

If φ = (s1, . . . , sh) ∈ Φ(s, s′) let |φ| = h be the length of the path; then the
distance between any two solutions s, s′ is the length of shortest path between
s and s′ in GN :

dN (s, s′) = min
φ∈Φ(s,s′)

|Φ|

diam(GN) = max{dN (s, s′) | s, s′ ∈ S}

Note: with permutations it is easy to see that:

dN (π, π′) = dN (π−1 · π′, ι)

60

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Distances for Linear Permutation Representations

Swap neighborhood operator
computable in O(n2) by the precedence based distance metric:
dS(π, π′) = #{〈i, j〉|1 ≤ i < j ≤ n, posπ′(πj) < posπ′(πi)}.
diam(GN) = n(n− 1)/2

Interchange neighborhood operator
Computable in O(n) +O(n) since
dX(π, π′) = dX(π−1 · π′, ι) = n− c(π−1 · π′)
where c(π) is the number of disjoint cycles that decompose a permutation.
diam(GNX) = n− 1

Insert neighborhood operator
Computable in O(n) +O(n log(n)) since
dI(π, π

′) = dI(π
−1 · π′, ι) = n− |lis(π−1 · π′)| where lis(π) denotes the

length of the longest increasing subsequence.
diam(GNI) = n− 1

61

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Distances for Circular Permutation Representations

Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm

62

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Distances for Assignment Representations

Hamming Distance

An assignment can be seen as a partition of n in k mutually exclusive
non-empty subsets

One-exchange neighborhood operator
The partition-distance d1E(P,P ′) between two partitions P and P ′ is the
minimum number of elements that must be moved between subsets in P
so that the resulting partition equals P ′.
The partition-distance can be computed in polynomial time by solving an
assignment problem. Given the assignment matrix M where in each cell
(i, j) it is |Si ∩ S′j | with Si ∈ P and S′j ∈ P ′ and defined A(P,P ′) the
assignment of maximal sum then it is d1E(P,P ′) = n−A(P,P ′)

63

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Search space size and diameter for the TSP

Search space size = (n− 1)!/2

Insert neighborhood
size = (n− 3)n
diameter = n− 2

2-exchange neighborhood
size =

`
n
2

´
= n · (n− 1)/2

diameter in [n/2, n− 2]

3-exchange neighborhood
size =

`
n
3

´
= n · (n− 1) · (n− 2)/6

diameter in [n/3, n− 1]

64

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
GN = n-dimensional hypercube; diameter of GN = n.

65

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Let N1 and N2 be two different neighborhood functions for the same instance
(S, f, π) of a combinatorial optimization problem.

If for all solutions s ∈ S we have N1(s) ⊆ N2(s′) then we say that N2

dominates N1

Example:

In TSP, 1-insert is domnated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchnages that are not
1-insert)

66

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsEfficiency vs Effectiveness

The performance of local search is determined by:

1. quality of local optima (effectiveness)

2. time to reach local optima (efficiency):

A. time to move from one solution to the next

B. number of solutions to reach local optima

68

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Note:

Local minima depend on g and neighborhood function N .
Larger neighborhoods N induce

neighborhood graphs with smaller diameter;
fewer local minima.

Ideal case: exact neighborhood, i.e., neighborhood function
for which any local optimum is also guaranteed to be
a global optimum.

Typically, exact neighborhoods are too large to be searched effectively
(exponential in size of problem instance).

But: exceptions exist, e.g., polynomially searchable neighborhood in
Simplex Algorithm for linear programming.

69

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Trade-off (to be assessed experimentally):

Using larger neighborhoods
can improve performance of II (and other LS methods).

But: time required for determining improving search steps
increases with neighborhood size.

Speedups Techniques for Efficient Neighborhood Search

1) Incremental updates

2) Neighborhood pruning

70

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsSpeedups in Neighborhood Examination

1) Incremental updates (aka delta evaluations)

Key idea: calculate effects of differences between
current search position s and neighbors s′ on
evaluation function value.

Evaluation function values often consist of
independent contributions of solution components;
hence, f(s) can be efficiently calculated from f(s′) by differences between
s and s′ in terms of solution components.

Typically crucial for the efficient implementation of
II algorithms (and other LS techniques).

71

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Incremental updates for TSP

solution components = edges of given graph G

standard 2-exchange neighborhood, i.e., neighboring
round trips p, p′ differ in two edges

w(p′) := w(p) − edges in p but not in p′

+ edges in p′ but not in p

Note: Constant time (4 arithmetic operations), compared to
linear time (n arithmetic operations for graph with n vertices)
for computing w(p′) from scratch.

72

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

2) Neighborhood Pruning

Idea: Reduce size of neighborhoods by excluding neighbors that are likely
(or guaranteed) not to yield improvements in f .

Note: Crucial for large neighborhoods, but can be also very useful for
small neighborhoods (e.g., linear in instance size).

Example: Heuristic candidate lists for the TSP

Intuition: High-quality solutions likely include short edges.

Candidate list of vertex v: list of v’s nearest neighbors (limited number),
sorted according to increasing edge weights.

Search steps (e.g., 2-exchange moves) always involve edges to elements of
candidate lists.

Significant impact on performance of LS algorithms
for the TSP.

73

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsOverview

Delta evaluations and neighborhood examinations in:

Permutations
TSP
SMTWTP

Assignments
SAT

Sets
Max Independent Set

74

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search for TSP

k-exchange heuristics
2-opt
2.5-opt
Or-opt
3-opt

complex neighborhoods
Lin-Kernighan
Helsgaun’s Lin-Kernighan
Dynasearch
ejection chains approach

Implementations exploit speed-up techniques

1 neighborhood pruning: fixed radius nearest neighborhood search

2 neighborhood lists: restrict exchanges to most interesting candidates

3 don’t look bits: focus perturbative search to “interesting” part

4 sophisticated data structures

75

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

TSP data structures

Tour representation:

determine pos of v in π

determine succ and prec

check whether uk is visited between ui and uj
execute a k-exchange (reversal)

Possible choices:

|V | < 1.000 array for π and π−1

|V | < 1.000.000 two level tree

|V | > 1.000.000 splay tree

Moreover static data structure:

priority lists

k-d trees

76

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

SMTWTP

Interchange: size
`
n
2

´
and O(|i− j|) evaluation each

first-improvement: πj , πk
pπj ≤ pπk for improvements, wjTj +wkTk must decrease because jobs

in πj , . . . , πk can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation
first-improvement: πj , πk
pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least as

the best interchange found so far because jobs in πj , . . . , πk
can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

Swap: size n− 1 and O(1) evaluation each

Insert: size (n− 1)2 and O(|i− j|) evaluation each
But possible to speed up with systematic examination by means of swaps:
an interchange is equivalent to |i− j| swaps hence overall examination
takes O(n2)

77

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS for GCP

search space S: set of all k-colorings of G

solution set S′: set of all proper k-coloring of F

neighborhood function N : 1-exchange neighborhood
(as in Uninformed Random Walk)

memory: not used, i.e., M := {0}
initialization: uniform random choice from S, i.e., init{∅, ϕ′} := 1/|S|
for all colorings ϕ′

step function:
evaluation function: g(ϕ) := number of edges in G
whose ending vertices are assigned the same color under assignment ϕ
(Note: g(ϕ) = 0 iff ϕ is a proper coloring of G.)
move mechanism: uniform random choice from improving neighbors, i.e.,
step{ϕ,ϕ′} := 1/|I(ϕ)| if s′ ∈ I(ϕ),
and 0 otherwise, where I(ϕ) := {ϕ′ | N (ϕ,ϕ′) ∧ g(ϕ′) < g(ϕ)}

termination: when no improving neighbor is available
i.e., terminate{ϕ,>} := 1 if I(ϕ) = ∅, and 0 otherwise.

78

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best improving candidate solution s′ in N ′
|||| update tabu attributes based on s′
b s := s′

80

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Note:

Non-tabu search positions in N(s) are called
admissible neighbors of s.

After a search step, the current search position
or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

Crucial for efficient implementation:
keep time complexity of search steps minimal
by using special data structures, incremental updating
and caching mechanism for evaluation function values;
efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx; x is tabu if
it− itx < tt, where it = current search step number.

81

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;

tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

82

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:
subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:
|| r := s
|| perform perturbation on s
|| perform subsidiary local search on s
|||| based on acceptance criterion,
b keep s or revert to s := r

83

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Outline
1. Construction Heuristics

General Principles
Metaheuristics

A∗ search
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search

Efficiency vs Effectiveness
Application Examples

Metaheuristics
Tabu Search
Iterated Local Search

3. Software Tools
The Code Delivered
Practical Exercise

84

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Software Tools

Modeling languages
interpreted languages with a precise syntax and semantics

Software libraries
collections of subprograms used to develop software

Software frameworks
set of abstract classes and their interactions

frozen spots (remain unchanged in any instantiation of the framework)

hot spots (parts where programmers add their own code)

85

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

No well established software tool for Local Search:

the apparent simplicity of Local Search induces to build applications from
scratch.

crucial roles played by delta/incremental updates which is problem
dependent

the development of Local Search is in part a craft,
beside engineering and science.

lack of a unified view of Local Search.

86

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Software tools for Local Search and Metaheuristics

Tool Reference Language Type
ILOG ? C++, Java, .NET LS
GAlib ? C++ GA
GAUL ? C GA
Localizer++ ? C++ Modeling
HotFrame ? C++ LS
EasyLocal++ ? C++, Java LS
HSF ? Java LS, GA
ParadisEO ? C++ EA, LS
OpenTS ? Java TS
MDF ? C++ LS
TMF ? C++ LS
SALSA ? — Language
Comet ? — Language

table prepared by L. Di Gaspero

87

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Separation of Concepts in Local Search Algorithms

implemented in EasyLocal++

88

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Input (util.h, util.c)

typedef struct {
long int number_jobs; /∗ number of jobs in instance ∗/
long int release_date[MAX_JOBS]; /∗there is no release date for these instances∗/
long int proc_time[MAX_JOBS];
long int weight[MAX_JOBS];
long int due_date[MAX_JOBS];

} instance_type;

instance_type instance;

void read_problem_size (char name[100])
void read_instances (char input_file_name[100])

90

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

State/Solution (util.h)

typedef struct {
long int job_at_pos[MAX_JOBS]; /∗ Gives the job at a certain pos ∗/
long int pos_of_job[MAX_JOBS]; /∗ Gives the position of a specific job ∗/
long int completion_time_job[MAX_JOBS]; /∗ Gives C_j of job j ∗/
long int start_time_job[MAX_JOBS]; /∗ Gives start time of job j ∗/
long int tardiness_job[MAX_JOBS]; /∗ Gives T_j of job j ∗/
long int value; /∗ Objective function value ∗/

} sol_representation;

sol_representation sequence;

Output (util.c)

void print_sequence (long int k)
void print_completion_times ()

State Manager (util.c)

void construct_sequence_random ()
void construct_sequence_canonical ()
long int evaluate ()

91

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Random Generator (random.h, random.c)

void set_seed (double arg)
double MRG32k3a (void)
double ranU01 (void)
int ranUint (int i, int j)
void shuffle (int *X, int size)

Timer (timer.c)

double getCurrentTime ()

92

Your Task on 1|| ∑j wjTj1|| ∑j wjTj1|| ∑j wjTj

Implement two basic local search procedures that return a local optimum:

void ls_swap_first() {};
void ls_interchange_first() {};

Implement the other neighborhood for permutation representation
mentioned at the lecture from one of the two previous neighborhoods.
Provide computational analysis of the LS implemented. Consider:

size of the neighborhood
diameter of neighborhood
complete neighborhood examination
local optima attainment

Devise speed ups to reduce the computational complexity of the LS
implemented

Improve your heuristic in order to find solutions of better quality. (Hint:
use a construction heuristic and/or a metaheuristic)

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 9

Heuristics

Marco Chiarandini

AntsOutline

1. Ants
Adaptive Iterated Construction Search

2

Ants Adaptive Iterated Construction SearchOutline

1. Ants
Adaptive Iterated Construction Search

3

Ants Adaptive Iterated Construction SearchAdaptive Iterated Construction Search

Key Idea: Alternate construction and perturbative local search phases as
in GRASP, exploiting experience gained during the search process.

Realisation:

Associate weights with possible decisions made during constructive
search.

Initialize all weights to some small value τ0 at beginning of search
process.

After every cycle (= constructive + perturbative local search phase),
update weights based on solution quality and solution components
of current candidate solution.

5

Ants Adaptive Iterated Construction Search

Adaptive Iterated Construction Search (AICS):
initialise weights
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary randomized constructive search
|||| perform subsidiary local search on s
||b adapt weights based on s

6

Ants Adaptive Iterated Construction Search

Subsidiary constructive search:

The solution component to be added in each step of constructive
search is based on weights and
heuristic function h.

h can be standard heuristic function as, e.g., used by
greedy construction heuristics, GRASP or tree search.

It is often useful to design solution component selection in
constructive search such that any solution component may be
chosen (at least with some small probability) irrespective of
its weight and heuristic value.

7

Ants Adaptive Iterated Construction Search

Subsidiary perturbative local search:

As in GRASP, perturbative local search phase is typically important
for achieving good performance.

Can be based on Iterative Improvement or more advanced LS
method (the latter often results in better performance).

Tradeoff between computation time used in construction phase vs
local search phase (typically optimized empirically, depends on
problem domain).

8

Ants Adaptive Iterated Construction Search

Weight updating mechanism:

Typical mechanism: increase weights of all solution components
contained in candidate solution obtained from local search.

Can also use aspects of search history; e.g., current incumbent
candidate solution can be used as basis for
weight update for additional intensification.

9

Ants Adaptive Iterated Construction Search

Example: A simple AICS algorithm for the TSP (1)

(Based on Ant System for the TSP [Dorigo et al., 1991])

Search space and solution set as usual (all Hamiltonian cycles in
given graph G).

Associate weight τij with each edge (i, j) in G.

Use heuristic values ηij := 1/w((i, j)).

Initialize all weights to a small value τ0 (parameter).

Constructive search starts with randomly chosen vertex
and iteratively extends partial round trip φ by selecting vertex
not contained in φ with probability

[τij]α · [ηij]β∑
l∈N ′(i)[τil]α · [ηij]β

10

Ants Adaptive Iterated Construction Search

Example: A simple AICS algorithm for the TSP (2)

Subsidiary local search = iterative improvement based on standard
2-exchange neighborhood (until local minimum
is reached).

Weight update according to

τij := (1− ρ) · τij + ∆(i, j, s′)

where ∆(i, j, s′) := 1/f(s′), if edge (i, j) is contained in
the cycle represented by s′, and 0 otherwise.

Criterion for weight increase is based on intuition that edges
contained in short round trips should be preferably used in
subsequent constructions.

11

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 10

Single Machine Models, Dynamic
Programming

Marco Chiarandini

Dispatching Rules
Single Machine ModelsOutline

1. Dispatching Rules

2. Single Machine Models

2

Dispatching Rules
Single Machine ModelsOutline

1. Dispatching Rules

2. Single Machine Models

3

Dispatching Rules
Single Machine ModelsDispatching rules

Distinguish static and dynamic rules.

Service in random order (SIRO)

Earliest release date first (ERD=FIFO)
tends to min variations in waiting time

Earliest due date (EDD)

Minimal slack first (MS)
j∗ = arg minj{max(dj − pj − t, 0)}.
tends to min due date objectives (T,L)

4

Dispatching Rules
Single Machine Models

(Weighted) shortest processing time first (WSPT)
j∗ = arg maxj{wj/pj}.
tends to min

P
wjCj and max work in progress and

Loongest processing time first (LPT)
balance work load over parallel machines

Shortest setup time first (SST)
tends to min Cmax and max throughput

Least flexible job first (LFJ)
eligibility constraints

5

Dispatching Rules
Single Machine Models

Critical path (CP)
first job in the CP

tends to min Cmax

Largest number of successors (LNS)

Shortest queue at the next operation (SQNO)
tends to min idleness of machines

6

Dispatching Rules
Single Machine ModelsDispatching Rules in Scheduling

RULE DATA OBJECTIVES
Rules Dependent ERD rj Variance in Throughput Times
on Release Dates EDD dj Maximum Lateness
and Due Dates MS dj Maximum Lateness

LPT pj Load Balancing over Parallel Machines
Rules Dependent SPT pj Sum of Completion Times, WIP
on Processing WSPT pj , wj Weighted Sum of Completion Times, WIP
Times CP pj , prec Makespan

LNS pj , prec Makespan
SIRO - Ease of Implementation

Miscellaneous SST sjk Makespan and Throughput
LFJ Mj Makespan and Throughput
SQNO - Machine Idleness

7

Dispatching Rules
Single Machine Models

When dispatching rules are optimal?

8

Dispatching Rules
Single Machine ModelsComposite dispatching rules

Why composite rules?

Example: 1 | | ∑wjTj :

WSPT, optimal if due dates are zero

EDD, optimal if due dates are loose

MS, tends to minimize T

ä The efficacy of the rules depends on instance factors

9

Dispatching Rules
Single Machine Models

Instance characterization
Job attributes: {weight, processing time, due date, release date}

Machine attributes: {speed, num. of jobs waiting, num. of jobs
eligible}

Possible instance factors:

1 | |PwjTj

θ1 = 1− d̄

Cmax
(due date tightness)

θ2 =
dmax − dmin

Cmax
(due date range)

1 | sjk|
P
wjTj

(θ1, θ2 with estimated Ĉmax =

nX
j=1

pj + ns̄)

θ3 =
s̄

p̄
(set up time severity)

10

Dispatching Rules
Single Machine Models

1 | |∑wjTj , dynamic apparent tardiness cost (ATC)

Ij(t) =
wj
pj

exp
(
−max(dj − pj − t, 0)

Kp̄

)
1 | sjk|

∑
wjTj , dynamic apparent tardiness cost with setups (ATCS)

Ij(t, l) =
wj
pj

exp
(
−max(dj − pj − t, 0)

K1p̄

)
exp

(−sjk
K2s̄

)
after job l has finished.

11

Dispatching Rules
Single Machine ModelsSummary

Scheduling classification

Solution methods

Practice with general solution methods
Mathematical Programming

Constraint Programming

Heuristic methods

12

Dispatching Rules
Single Machine ModelsOutlook on Scheduling

Objectives:
Look closer into scheduling models and learn:

special algorithms

application of general methods

Cases:

Single Machine

Parallel Machine

Permutation Flow Shop

Job Shop

Resource Constrained Project Scheduling

13

Dispatching Rules
Single Machine ModelsOutline

1. Dispatching Rules

2. Single Machine Models

14

Dispatching Rules
Single Machine ModelsOutlook

1 | | ∑wjCj : weighted shortest processing time first is optimal

1 | | ∑j Uj : Moore’s algorithm

1 | prec| Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | | ∑hj(Cj) : dynamic programming in O(2n)

1 | | ∑wjTj : local search and dynasearch

1 | rj , (prec) | Lmax : branch and bound

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

1 | | ∑wjTj : column generation approaches

Multicriteria 15

Dispatching Rules
Single Machine ModelsSummary

Single Machine Models:

Cmax is sequence independent

if rj = 0 and hj is monotone non decreasing in Cj then optimal
schedule is nondelay and has no preemption.

16

Dispatching Rules
Single Machine Models1 | | ∑wjCj1 | | ∑wjCj1 | | ∑wjCj

[Total weighted completion time]

Theorem: The weighted shortest processing time first (WSPT) rule is
optimal.

Extensions to 1 | prec | ∑wjCj

in the general case strongly NP-hard

chain precedences:
process first chain with highest ρ-factor up to, and included, job
with highest ρ-factor.

polytime algorithm also for tree and sp-graph precedences

17

Dispatching Rules
Single Machine Models

Extensions to 1 | rj , prmp |
∑
wjCj

in the general case strongly NP-hard

preemptive version of the WSPT if equal weights

however, 1 | rj |
∑
wjCj is strongly NP-hard

18

Dispatching Rules
Single Machine Models1 | | ∑j Uj1 | | ∑j Uj1 | | ∑j Uj

[Number of tardy jobs]

[Moore, 1968] algorithm in O(n log n)

Add jobs in increasing order of due dates

If inclusion of job j∗ results in this job being completed late
discard the scheduled job k∗ with the longest processing time

1 | | ∑j wjUj is a knapsack problem hence NP-hard

19

Dispatching Rules
Single Machine ModelsDynamic programming

Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions
must be optimal

Break down the problem into stages at which the decisions take
place
Find a recurrence relation that takes us backward (forward) from
one stage to the previous (next)

(In scheduling, backward procedure feasible only if the makespan is
schedule, eg, single machine problems without setups, multiple machines
problems with identical processing times.)

20

Dispatching Rules
Single Machine Models1 | prec| hmax1 | prec| hmax1 | prec| hmax

hmax = max{h1(C1), h2(C2), . . . , hn(Cn)}, hj regular

special case: 1 | prec| hmax [maximum lateness]

solved by backward dynamic programming in O(n2) [Lawler, 1978]

J set of jobs already scheduled;
Jc set of jobs still to schedule;
J ′ ⊆ Jc set of schedulable jobs

Step 1: Set J = ∅, Jc = {1, . . . , n} and J ′ the set of all jobs with
no successor

Step 2: Select j∗ such that j∗ = arg minj∈J′{hj
(∑

k∈Jc pk
)};

add j∗ to J ; remove j∗ from Jc; update J ′.
Step 3: If Jc is empty then stop, otherwise go to Step 2.

For 1 | | Lmax Earliest Due Date first

1|rj |Lmax is instead strongly NP-hard
21

Dispatching Rules
Single Machine Models1 | | ∑hj(Cj)1 | | ∑hj(Cj)1 | | ∑hj(Cj)

generalization of
∑
wjTj hence strongly NP-hard

(forward) dynamic programming algorithm O(2n)

J set of job already scheduled;

V (J) =
∑
j∈J hj(Cj)

Step 1: Set J = ∅, V (j) = hj(pj), j = 1, . . . , n

Step 2: V (J) = minj∈J
(
V (J − {j}) + hj

(∑
k∈J pk

))
Step 3: If J = {1, 2, . . . , n} then V ({1, 2, . . . , n}) is optimum,

otherwise go to Step 2.

22

Dispatching Rules
Single Machine Models1 | | ∑hj(Cj)1 | | ∑hj(Cj)1 | | ∑hj(Cj)

A lot of work done on 1 | | ∑wjTj
[single-machine total weighted tardiness]

1 | | ∑Tj is hard in ordinary sense, hence admits a pseudo
polynomial algorithm (dynamic programming in O(n4

∑
pj))

1 | | ∑wjTj strongly NP-hard (reduction from 3-partition)

exact solution via branch and bound feasible up to 40 jobs
[Potts and Wassenhove, Oper. Res., 1985]

exact solution via time-indexed integer programming formulation
used to lower bound in branch and bound solves instances of 100
jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]

dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett.,
2004]

23

Dispatching Rules
Single Machine Models1 | | ∑hj(Cj)1 | | ∑hj(Cj)1 | | ∑hj(Cj)

Local search

Interchange: size
(
n
2

)
and O(|i− j|) evaluation each

first-improvement: πj , πk
pπj ≤ pπk for improvements, wjTj +wkTk must decrease because

jobs in πj , . . . , πk can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the

computation
best-improvement: πj , πk
pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least

as the best interchange found so far because jobs in
πj , . . . , πk can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the
computation

Swap: size n− 1 and O(1) evaluation each
Insert: size (n− 1)2 and O(|i− j|) evaluation each
But possible to speed up with systematic examination by means of
swaps: an interchange is equivalent to |i− j| swaps hence overall
examination takes O(n2)

25

Dispatching Rules
Single Machine Models

Dynasearch

two interchanges δjk and δlm are independent
if max{j, k} < min{l,m} or min{l, k} > max{l,m};

the dynasearch neighborhood is obtained by a series of independent
interchanges;

it has size 2n−1 − 1;

but a best move can be found in O(n3) searched by dynamic
programming;

it yields in average better results than the interchange neighborhood
alone.

26

Dispatching Rules
Single Machine Models

state (k, π)

πk is the partial sequence at state (k, π) that has min
∑
wT

πk is obtained from state (i, π){
appending job π(k) after π(i) i = k − 1
appending job π(k) and interchanging π(i+ 1) and π(k) 0 ≤ i < k − 1

F (π0) = 0; F (π1) = wπ(1)

(
pπ(1) − dπ(1)

)+;

F (πk) = min


F (πk−1) + wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F (πi) + wπ(k)

(
Cπ(i) + pπ(k) − dπ(k)

)+ +

+
∑k−1
j=i+2 wπ(j)

(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(j)

)+ +
+wπ(i+1)

(
Cπ(k) − dπ(i+1)

)+}
27

Dispatching Rules
Single Machine Models

The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F (πn) is found by backtrack.

Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F (πtn) = F (π(t−1)

n), for iteration t).

Speedups:
pruning with considerations on pπ(k) and pπ(i+1)

maintainig a string of late, no late jobs

ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F (π

(t−1)
k) = F (π

(t−2)
k) for k = 1, . . . , ht and at iter t no need to

consider i < ht.

28

Dispatching Rules
Single Machine Models

Dynasearch, refinements:

[Grosso et al. 2004] add insertion moves to interchanges.

[Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).

29

Dispatching Rules
Single Machine Models1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is
optimal

31

Dispatching Rules
Single Machine Models

Branch and Bound
S root of the branching tree

1 LIST := {S};
2 U:=value of some heuristic solution;
3 current_best := heuristic solution;
4 while LIST 6= ∅
5 Choose a branching node k from LIST;
6 Remove k from LIST;
7 Generate children child(i), i = 1, . . . , nk, and calculate corresponding

lower bounds LBi;
8 for i:=1 to nk
9 if LBi < U then
10 if child(i) consists of a single solution then
11 U :=LBi;
12 current_best:=solution corresponding to child(i)
13 else add child(i) to LIST

32

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 11

Single Machine Models, Branch and Bound

Marco Chiarandini

Single Machine ModelsOutline

1. Single Machine Models
Branch and Bound
1 | sjk |Cmax

2

Single Machine Models Branch and Bound
1 | sjk |CmaxOutline

1. Single Machine Models
Branch and Bound
1 | sjk |Cmax

3

Single Machine Models Branch and Bound
1 | sjk |Cmax1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is
optimal

5

Single Machine Models Branch and Bound
1 | sjk |Cmax

Branch and Bound
S root of the branching tree

1 LIST := {S};
2 U:=value of some heuristic solution;
3 current_best := heuristic solution;
4 while LIST 6= ∅
5 Choose a branching node k from LIST;
6 Remove k from LIST;
7 Generate children child(i), i = 1, . . . , nk, and calculate corresponding lower

bounds LBi;
8 for i:=1 to nk

9 if LBi < U then
10 if child(i) consists of a single solution then
11 U :=LBi;
12 current_best:=solution corresponding to child(i)
13 else add child(i) to LIST

6

Single Machine Models Branch and Bound
1 | sjk |CmaxBranch and Bound

[Jens Clausen (1999). Branch and Bound Algorithms
- Principles and Examples.]

Eager Strategy:
1. select a node
2. branch
3. for each subproblem compute bounds and compare with

incumbent solution
4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

Lazy Strategy:
1. select a node
2. compute bound
3. branch
4. store the new nodes together with the bound of the processed

node

(often used when selection criterion for next node is max depth)
7

Single Machine Models Branch and Bound
1 | sjk |Cmax

Components

- Initial feasible solution (heuristic) – might be crucial!
1. Bounding function
2. Strategy for selecting
3. Branching
- Fathmoing (dominance test)

8

Single Machine Models Branch and Bound
1 | sjk |Cmax

Bounding

min
s∈P

g(s) ≤
{

mins∈P f(s)
mins∈S g(s)

}
≤ min

s∈S
f(s)

P : candidate solutions; S ⊆ P feasible solutions

relaxation: mins∈P f(s)
solve (to optimality) in P but with g

Lagrangian relaxation combines the two

should be polytime and strong (trade off)

9

Single Machine Models Branch and Bound
1 | sjk |Cmax

Strategy for selecting next subproblem

best first
(combined with eager strategy but also with lazy)

breadth first
(memory problems)

depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds
combined with branching on the node with the largest difference in
bound between the children)
(it seems to perform best)

10

Single Machine Models Branch and Bound
1 | sjk |Cmax

Branching

dichotomic

polytomic

Overall guidelines

finding good initial solutions is important

if initial solution is close to optimum then the selection strategy
makes little difference

Parallel B&B: distributed control or a combination are better than
centralized control

parallelization might be used also to compute bounds if few nodes
alive

parallelization with static work load distribution is appealing with
large search trees

11

Single Machine Models Branch and Bound
1 | sjk |Cmax

Branch and bound vs backtracking

= a state space tree is used to solve a problem.

6= branch and bound does not limit us to any particular way of
traversing the tree (backtracking is depth-first)

6= branch and bound is used only for optimization problems.

Branch and bound vs A∗

= In A∗ the admissible heuristic mimics bounding

6= In A∗ there is no branching. It is a search algorithm.

6= A∗ is best first

12

Single Machine Models Branch and Bound
1 | sjk |Cmax1 | | ∑wjTj1 | | ∑wjTj1 | | ∑wjTj

Branching:
work backward in time

elimination criterion:
if pj ≤ pk and dj ≤ dk and wj ≥ wk then there is an optimal
schedule with j before k

Lower Bounding:
relaxation to preemptive case
transportation problem

min
n∑
j=1

Cmax∑
t=1

cjtxjt

s.t.
Cmax∑
t=1

xjt = pj , ∀j = 1, . . . , n

n∑
j=1

xjt ≤ 1, ∀t = 1, . . . , Cmax

xjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax
13

Single Machine Models Branch and Bound
1 | sjk |Cmax

[Pan and Shi, 2007]’s lower bounding through time indexed
Stronger but computationally more expensive

min
n∑
j=1

T−1∑
t=1

cjtyjt

s.t.
T−pj∑
t=1

cjt ≤ hj(t+ pj)

T−pj∑
t=1

yjt = 1, ∀j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

yjt ≤ 1, ∀t = 1, . . . , Cmax

yjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax

14

Single Machine Models Branch and Bound
1 | sjk |Cmax1 | sjk | Cmax1 | sjk | Cmax1 | sjk | Cmax

[Makespan with sequence-dependent setup times]

general case is NP-hard (traveling salesman reduction).

special case:

parameters for job j:
aj initial state

bj final state

such that:

sjk ∝ |ak − bj |

[Gilmore and Gomory, 1964] give an O(n2) algorithm

16

Single Machine Models Branch and Bound
1 | sjk |Cmax

assume b0 ≤ b1 ≤ . . . ≤ bn (k > j and bk ≥ bj)

one-to-one correspondence with solution of
TSP with n+ 1 cities
city 0 has a0, b0
start at b0 finish at a0

tour representation φ : {0, 1, . . . , n} 7→ {0, 1, . . . , n}
(permutation map, single linked array)

Hence,

min c(φ) =
n∑
i=1

ci,φ(i) (1)

φ(S) 6= S ∀S ⊂ V (2)

find φ∗ by ignoring (2)
make φ∗ a tour by interchanges chosen solving a min spanning tree
and applied in a certain order

17

Single Machine Models Branch and Bound
1 | sjk |Cmax

Interchange δjk

δjk(φ) = {φ′ |φ′(j) = φ(k), φ(k) = φ(j), φ′(l) = φ(l), ∀l 6= j, k}

Cost

cφ(δjk) = c(δjk(φ))− c(φ)
= ‖ [bj , bk] ∩ [aφ(j), aφ(k)] ‖

Theorem: Let φ∗ be a permutation that ranks the a that is k > j
implies aφ(k) ≥ aφ(j) then

c(φ∗) = min
φ
c(φ).

Lemma: If φ is a permutation consisting of cycles C1, . . . , Cp and
δjk is an interchange with j ∈ Cr and k ∈ Cs, r 6= s, then δjk(φ)
contains the same cycles except that Cr and Cs have been replaced
by a single cycle containing all their nodes.

18

Single Machine Models Branch and Bound
1 | sjk |Cmax

Theorem: Let δj1k1 , δj2k2 , . . . , δjpkp be the interchanges
corresponding to the arcs of a spanning tree of Gφ∗ . The arcs may
be taken in any order. Then φ′,

φ′ = δj1k1 ◦ δj2k2 ◦ . . . ◦ δjpkp(φ∗)

is a tour.

The p− 1 interchanges can be found by greedy algorithm
(similarity to Kruskal for min spanning tree)

Lemma: There is a minimum spanning tree in Gφ∗ that contains
only arcs δj,j+1.

Generally, c(φ′) 6= c(δj1k1) + c(δj2k2) + . . .+ c(δjpkp).

19

Single Machine Models Branch and Bound
1 | sjk |Cmax

node j in φ is of

{
Type I, if bj ≤ aφ(j)

Type II, otherwise

interchange jk is of

{
Type I, if lower node of type I
Type II, if lower node of type II

Order:
interchanges in Type I in decreasing order
interchanges in Type II in increasing order

Apply to φ∗ interchanges of Type I and Type II in that order.

Theorem: The tour found is a minimal cost tour.

20

Single Machine Models Branch and Bound
1 | sjk |Cmax

Resuming the final algorithm [Gilmore and Gomory, 1964]:

Step 1: Arrange bj in order of size and renumber jobs so that
bj ≤ bj+1, j = 1, . . . , n.

Step 2: Arrange aj in order of size.

Step 3: Define φ by φ(j) = k where k is the j + 1-smallest of the
aj .

Step 4: Compute the interchange costs cδj,j+1 , j = 0, . . . , n− 1

cδj,j+1 = ‖ [bj , bj+1] ∩ [aφ(j), aφ(i)] ‖

Step 5: While G has not one single component, Add to Gφ the arc
of minimum cost c(δj,j+1) such that j and j + 1 are in
two different components.

Step 6: Divide the arcs selected in Step 5 in Type I and II.
Sort Type I in decreasing and Type II increasing order of
index.
Apply the relative interchanges in the order.

21

Single Machine Models Branch and Bound
1 | sjk |CmaxSummary

1 | | ∑wjCj : weighted shortest processing time first is optimal

1 | | ∑j Uj : Moore’s algorithm

1 | prec| Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | | ∑hj(Cj) : dynamic programming in O(2n)

1 | | ∑wjTj : local search and dynasearch

1 | rj , (prec) | Lmax : branch and bound

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

1 | | ∑wjTj : column generation approaches

Multiobjective: Multicriteria Optimization 23

Single Machine Models Branch and Bound
1 | sjk |CmaxComplexity resume

Single machine, single criterion problems 1 | | γ1 | | γ1 | | γ:
Cmax P
Tmax P
Lmax P
hmax P∑
Cj P∑
wjCj P∑
U P∑
wjUj weakly NP-hard∑
T weakly NP-hard∑
wjTj strongly NP-hard∑
hj(Cj) strongly NP-hard

24

Single Machine Models Branch and Bound
1 | sjk |CmaxExtensions

Non regular objectives

1 | dj = d | ∑Ej +
∑
Tj

In an optimal schedule,
early jobs are scheduled according to LPT

late jobs are scheduled according to SPT

25

Single Machine Models Branch and Bound
1 | sjk |Cmax

Multicriteria scheduling

Resolution process and decision maker intervention:
a priori methods (definition of weights, importance)

goal programming

weighted sum

...

interactive methods

a posteriori methods (Pareto optima)
lexicographic with goals

...

26

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 12

Single Machine Models, Column Generation

Marco Chiarandini
Slides from David Pisinger’s lectures at DIKU

Outline

1. Lagrangian Relaxation

2. Dantzig-Wolfe Decomposition
Dantzig-Wolfe Decomposition
Delayed Column Generation

3. Single Machine Models

2

Outline

1. Lagrangian Relaxation

2. Dantzig-Wolfe Decomposition
Dantzig-Wolfe Decomposition
Delayed Column Generation

3. Single Machine Models

3

Relaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

max
s∈P

g(s) ≥
{

maxs∈P f(s)
maxs∈S g(s)

}
≥ max

s∈S
f(s)

P : candidate solutions;
S ⊆ P feasible solutions;
g(x) ≥ f(x)

Which constraints should be relaxed?

Quality of bound (tightness of relaxation)

Remaining problem can be solved efficiently

Proper multipliers can be found efficiently

Constraints difficult to formulate mathematically

Constraints which are too expensive to write up

4

Different relaxations

LP-relaxation

Deleting constraint

Lagrange relaxation

Surrogate relaxation

Semidefinite relaxation

Best Lagrangian

relaxation

relaxation

Best surrogate

LP relaxation

Tighter

Relaxations are often used in combination.

5

Tightness of relaxation

max cx
s.t. Ax ≤ b

Dx ≤ d
x ∈ Zn+

LP-relaxation:

max {cx : x ∈ conv(Ax ≤ b,Dx ≤ d, x ∈ Z+)}
 Lagrangian Relaxation:

max zLR(λ) = cx− λ(Dx− d)
s.t. Ax ≤ b

x ∈ Zn+

LP-relaxation:

max {cx : Dx ≤ d, x ∈ conv(Ax ≤ b, x ∈ Z+)}
6

Relaxation strategies

Which constraints should be relaxed

"the complicating ones"

remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)

remaining problem is totally unimodular
(e.g. network problems)

remaining problem is NP-hard but good techniques exist
(e.g. knapsack)

constraints which cannot be expressed in MIP terms
(e.g. cutting)

constraints which are too extensive to express
(e.g. subtour elimination in TSP)

7

Subgradient optimization Lagrange multipliers

max z = cx

s. t. Ax ≤ b
Dx ≤ d
x ∈ Zn+

Lagrange Relaxation, multipliers λ ≥ 0

max zLR(λ) = cx− λ(Dx− d)
s. t. Ax ≤ b

x ∈ Zn+
Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

We do not need best multipliers in B&B algorithm

Subgradient optimization fast method

Works well due to convexity

Roots in nonlinear programming, Held and Karp (1971)
8

Subgradient optimization, motivation

Netwon-like method to minimize a
function in one variable

Lagrange function zLR(λ) is
piecewise linear and convex

9

Subgradient
Generalization of gradients to non-differentiable functions.

Definition

An m-vector γ is subgradient of f(λ) at λ− λ̄ if

f(λ) ≥ f(λ̄) + γ(λ− λ̄)

The inequality says that the hyperplane

y = f(λ̄) + γ(λ− λ̄)

is tangent to y = f(λ) at λ− λ̄ and supports f(λ) from below

10

Proposition Given a choice of nonnegative multipliers λ̄. If x′ is an
optimal solution to zLR(λ) then

γ = d−Dx′

is a subgradient of zLR(λ) at λ = λ̄.

Proof We wish to prove that from the subgradient definition:

max
Ax≤b

(cx = λ(Dx− d)) ≥ γ(λ− λ̄) + max
Ax≤b

(
cx− λ̄(Dx− d)

)
where x′ is an opt. solution to the right-most subproblem.
Inserting γ we get:

max
Ax≤b

(cx− λ(Dx− d)) ≥ (d−Dx′)(λ− λ̄) + (cx′ − λ̄(Dx′ − d))

= cx′ − λ(Dx′ − d)

11

Intuition
Lagrange relaxation

max zLR(λ) = cx− λ(Dx− d)
s.t. Ax ≤ b

x ∈ Zn+

Gradient in x′ is
γ = d−Dx′

Subgradient Iteration
Recursion

λk+1 = max
{
λk − θγk, 0}

where θ > 0 is step-size

If γ > 0 and θ is sufficiently small zLR(λ) will decrease.

Small θ slow convergence

Large θ unstable
12

13

Lagrange relaxation and LP
For an LP-problem where we Lagrange relax all constraints

Dual variables are best choice of Lagrange multipliers

Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

Iterative algorithms

Polynomial algorithms

14

Outline

1. Lagrangian Relaxation

2. Dantzig-Wolfe Decomposition
Dantzig-Wolfe Decomposition
Delayed Column Generation

3. Single Machine Models

15

Dantzig-Wolfe Decomposition

Motivation
split it up into smaller pieces a large or difficult problem

Applications
Cutting Stock problems

Multicommodity Flow problems

Facility Location problems

Capacitated Multi-item Lot-sizing problem

Air-crew and Manpower Scheduling

Vehicle Routing Problems

Scheduling (current research)

Two currently most promising directions for MIP:
Branch-and-price

Branch-and-cut

17

Dantzig-Wolfe Decomposition
The problem is split into a master problem and a subproblem

+ Tighter bounds

+ Better control of subproblem

− Model may become (very) large

Delayed column generation
Write up the decomposed model gradually as needed

Generate a few solutions to the subproblems

Solve the master problem to LP-optimality

Use the dual information to find most promising solutions to the
subproblem

Extend the master problem with the new subproblem solutions.

18

Delayed Column Generation

Delayed column generation, linear master

Master problem can (and will) contain many columns

To find bound, solve LP-relaxation of master

Delayed column generation gradually writes up master

29

Reduced Costs
Simplex in matrix form

min {cx |Ax = b, x ≥}
In matrix form: [

0 A
−1 c

] [
z
x

]
=
[
b
0

]
B = {1, 2, . . . , p} basic variables

L = {1, 2, . . . , q} non-basis variables (will be set to lower bound = 0)

(B,L) basis structure

xB, xL, cB, cL,

B = [A1, A2, . . . , Ap], L = [Ap+1, Ap+2, . . . , Ap+q]

[
0 B L
−1 cB cL

] zxB
xL

 =
[
b
0

]

BxB + LxL = b ⇒ xB +B−1LxL = B−1b ⇒
[
xL = 0
xB = B−1b 31

[
0 B L
−1 cB cL

] zxB
xL

 =
[
b
0

]
Simplex algorithm sets xL = 0 and xB = B−1b
B invertible, hence rows linearly independent

The objective function is obtained by multiplying and subtracting
constraints by means of multipliers π (the dual variables)

z =
p∑
j=1

[
cj −

p∑
i=1

πiaij

]
+

q∑
j=1

[
cj −

p∑
i=1

πiaij

]
+

p∑
i=1

πibi

Each basic variable has cost null in the objective function

cj −
p∑
i=1

πiaij = 0 =⇒ π = B−1cB

Reduced costs of non-basic variables:

cj −
p∑
i=1

πiaij

32

Questions

Will the process terminate?

Always improving objective value. Only a finite number of basis
solutions.

Can we repeat the same pattern?

No, since the objective functions is improved. We know the best
solution among existing columns. If we generate an already existing
column, then we will not improve the objective.

36

Outline

1. Lagrangian Relaxation

2. Dantzig-Wolfe Decomposition
Dantzig-Wolfe Decomposition
Delayed Column Generation

3. Single Machine Models

38

Scheduling

1|prec|PwjCj

Sequencing (linear ordering) variables

min
n∑
j=1

n∑
k=1

wjpkxkj +
n∑
j=1

wjpj

s.t. xkj + xlk + xjl ≥ 1 j, k, l = 1, . . . , nj 6= k, k 6= l

xkj + xjk = 1 ∀j, k = 1, . . . , n, j 6= k

xjk ∈ {0, 1} j, k = 1, . . . , n
xjj = 0 ∀j = 1, . . . , n

39

Scheduling

1|prec|Cmax

Completion time variables

min
n∑
j=1

wjzj

s.t. zk − zj ≥ pk for j → k ∈ A
zj ≥ pj , for j = 1, . . . , n
zk − zj ≥ pk or zj − zk ≥ pj , for (i, j) ∈ I
zj ∈ R, j = 1, . . . , n

40

Scheduling

1||Phj(Cj)

Time indexed variables

min
n∑
j=1

T−pj+1∑
t=1

hj(t+ pj)xjt

s.t.
T−pj+1∑
t=1

xjt = 1, for all j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

xjs ≤ 1, for each t = 1, . . . , T

xjt ∈ {0, 1}, for each j = 1, . . . , n; t = 1, . . . , T − pj + 1

+ This formulation gives better bounds than the two preceding

− pseudo-polynomial number of variables

41

Dantzig-Wolfe decomposition
Reformulation:

min
n∑
j=1

T−pj+1∑
t=1

hj(t+ pj)xjt

s.t.
T−pj+1∑
t=1

xjt = 1, for all j = 1, . . . , n

xjt ∈ X for each j = 1, . . . , n; t = 1, . . . , T − pj + 1

where X =

x ∈ {0, 1} :
n∑
j=1

t∑
s=t−pj+1

xjs ≤ 1, for each t = 1, . . . , T


xl, l = 1, . . . , L extreme points of X.

X =

 x ∈ {0, 1} : x =
∑L
l=1 λlx

l∑L
l=1 λl = 1,

λl ∈ {0, 1}


matrix of X is interval matrix

extreme points are integral

they are pseudo-schedules

42

Dantzig-Wolfe decomposition
Substituting X in original model getting master problem

min
n∑
j=1

T−pj+1∑
t=1

hj(t+ pj)(
L∑
l=1

λlx
l)

π s.t.
T−pj+1∑
t=1

L∑
l=1

λlx
l
jt = 1, for all j = 1, . . . , n⇐=

L∑
l=1

λln
l
j = 1

α

L∑
l=1

λl = 1,

λl ∈ {0, 1} ⇐= λl ≥ 0 LP-relaxation

solve LP-relaxation by column generation on pseudo-schedules xl

reduced cost of λk is c̄k =
n∑
j=1

T−pj+1∑
t=1

(cjt − πj)xkjt − α

43

The subproblem can be solved by finding shortest path in a network N
with

1, 2, . . . , T + 1 nodes corresponding to time periods

process arcs, for all j, t, t→ t+ pj and cost cjt − πj

idle time arcs, for all t, t→ t+ 1 and cost 0

a path in this network corrsponds to a pseudo-schedule in which a job
may be started more than once or not processed.

the lower bound on the master problem produced by the LP-relaxation
of the restricted master problem can be tighten by inequalities

[Pessoa, Uchoa, Poggi de Aragão, Rodrigues, 2008], propose another time
index formulation that dominates this one.
They can solve consistently instances up to 100 jobs.

44

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 13

Parallel Machine Models

Marco Chiarandini

Parallel Machine ModelsOutline

1. Parallel Machine Models

2

Parallel Machine ModelsOutline

1. Parallel Machine Models

3

Parallel Machine ModelsPm | | CmaxPm | | CmaxPm | | Cmax
(without preemption)

Pm | | Cmax LPT heuristic, approximation ratio: 4
3 − 1

3m

P∞ | prec | Cmax CPM

Pm | prec | Cmax strongly NP-hard, LNS heuristic (non optimal)

Pm | pj = 1, Mj | Cmax LFJ-LFM (optimal if Mj are nested)

4

Parallel Machine ModelsPm | prmp| CmaxPm | prmp| CmaxPm | prmp| Cmax
(with preemption)

Not NP-hard:

Linear Programming (exercise)

Construction based on LWB = max
{

p1,
∑n

j=1
pj

m

}
Dispatching rule: longest remaining processing time (LRPT)
optimal in discrete time

5

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 14

Flow Shop Models

Marco Chiarandini

Parallel Machine Models
Flow Shop

Outline

1. Parallel Machine Models

2. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

2

Parallel Machine Models
Flow Shop

Outline

1. Parallel Machine Models

2. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

3

Parallel Machine Models
Flow Shop

Identical machines

Min makespan, without preemption

Pm | | Cmax: LPT heuristic, approximation ratio: 4
3 − 1

3m

P∞ | prec | Cmax: CPM

Pm | prec | Cmax: strongly NP-hard, LNS heuristic (non optimal)

Pm | pj = 1,Mj | Cmax: least flexible job (LFJ) -
least flexible machine (LFM)
(optimal if Mj are nested)

4

Parallel Machine Models
Flow Shop

Identical machines

Min makespan, with preemption

Pm | | Cmax: Not NP-hard:

Linear Programming (exercise)

Construction based on LWB = max
{
p1,
∑n
j=1

pj

m

}
Dispatching rule: longest remaining processing time
(LRPT)
optimal in discrete time

5

Parallel Machine Models
Flow Shop

Uniform machines

Qm | prmp| Cmax

Construction based on

LWB = max

{
p1

v1
,
p1 + p2

v1 + v2
, . . . ,

∑n
j=1 pj∑m
j=1 vj

}

Dispatching rule: longest remaining processing time on the fastest
machine first (processor sharing)
optimal in discrete time

6

Parallel Machine Models
Flow Shop

Unrelated machines

R | | ∑∑∑j Cj is NP-hard

Solved by local search methods.

Solution representation

a collection of m sequences, one for each job

recall that 1 | | P
wjCj is solvable in O(n log n)

indirect representation
assignment of jobs to machines
the sequencing is left to the optimal SWPT rule

Neighborhood: one exchange, swap

Evaluation function. How costly is the computation?

7

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSOutline

1. Parallel Machine Models

2. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

8

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSFlow Shop

General Shop Scheduling:

J = {1, . . . , N} set of jobs; M = {1, 2, . . . ,m} set of machines

Jj = {Oij | i = 1, . . . , nj} set of operations for each job

pij processing times of operations Oij
µij ⊆M machine eligibilities for each operation

precedence constraints among the operations

one job processed per machine at a time,
one machine processing each job at a time

Cj completion time of job j

è Find feasible schedule that minimize some regular function of Cj
Flow Shop Scheduling:

µij = l, l = 1, 2, . . . ,m

precedence constraints: Oij → Oi+1,j , i = 1, 2, . . . , n for all jobs
10

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSExample

schedule representation
π1, π2, π3, π4:
π1 : O11, O12, O13, O14

π2 : O21, O22, O23, O24

π3 : O31, O32, O33, O34

π4 : O41, O42, O43, O44

Gantt chart

we assume unlimited buffer

if same job sequence on each machine è permutation flow shop
11

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSDirected Graph Representation

Given a sequence: operation-on-node network,
jobs on columns, and machines on rows

13

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSDirected Graph Representation

Recursion for Cmax

Ci,π(1) =
i∑
l=1

pl,π(1)

C1,π(j) =
j∑
l=1

pl,π(l)

Ci,π(j) = max{Ci−1,π(j), Ci,π(j−1)}+ pi,π(j)

Computation cost?

14

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSExample

Cmax = 34

corresponds to longest path

15

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSFm | |Cmax

Theorem
There always exist an optimum sequence without change in the first two
and last two machines.

Proof: By contradiction.

Corollary

F2 | | Cmax and F3 | | Cmax are permutation flow shop

Note: F3 | | Cmax is strongly NP-hard

17

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSF2 | |Cmax

Intuition: give something short to process to 1 such that 2 becomes
operative and give something long to process to 2 such that its buffer has
time to fill.

Constructs a sequence T : T (1), . . . , T (n) to process in the same order
on both machines by concatenating two sequences:
a left sequence L : L(1), . . . , L(t), and a right sequence
R : R(t+ 1), . . . , R(n), that is, T = L ◦R

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

Let J be the set of jobs to process
Let T, L,R = ∅

Step 1 Find (i∗, j∗) such that pi∗,j∗ = min{pij | i ∈ 1, 2, j ∈ J}
Step 2 If i∗ = 1 then L = L ◦ {i∗}

else if i∗ = 2 then R = R ◦ {i∗}
Step 3 J := J \ {j∗}
Step 4 If J 6= ∅ go to Step 1 else T = L ◦R

18

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TS

Theorem

The sequence T : T (1), , . . . , T (n) is optimal.

Proof

Assume at one iteration of the algorithm that job k has the min
processing time on machine 1. Show that in this case job k has to
go first on machine 1 than any other job selected later.

By contradiction, show that if in a schedule S a job j precedes k on
machine 1 and has larger processing time on 1, then S is a worse
schedule than S′.
There are three cases to consider.

Iterate the prove for all jobs in L.

Prove symmetrically for all jobs in R.
19

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSFm | prmu, pij = pj | Cmax

[Proportionate permutation flow shop]

Theorem: Cmax =
∑n
j=1 pj + (m− 1) max(p1, . . . , pn) and is

sequence independent

Generalization to include machines with different speed: pij = pj/vi

Theorem:
if the first machine is the bottleneck then LPT is optimal.
if the last machine is the bottleneck then SPT is optimal.

20

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSConstruction Heuristics (1)

F m | prmu | Cmax

Slope heuristic

schedule in decreasing order of Aj = −∑m
i=1(m− (2i− 1))pij

Campbell, Dudek and Smith’s heuristic (1970)

extension of Johnson’s rule to when permutation is not dominant
recursively create 2 machines 1 and m− 1

p′ij =
i∑

k=1

pkj p′′ij =
m∑

k=m−i+1

pkj

and use Johnson’s rule

repeat for all m− 1 possible pairings

return the best for the overall m machine problem

22

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSConstruction Heuristics (2)

F m | prmu | Cmax

Nawasz, Enscore, Ham’s heuristic (1983)

Step 1: order in decreasing
∑m
j=1 pij

Step 2: schedule the first 2 jobs at best

Step 3: insert all others in best position

Implementation in O(n2m)

[Framinan, Gupta, Leisten (2004)] examined 177 different arrangements of
jobs in Step 1 and concluded that the NEH arrangement is the best one
for Cmax.

23

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSIterated Greedy

F m | prmu | Cmax

Iterated Greedy [Ruiz, Stützle, 2007]

Destruction: remove d jobs at random

Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood
(first improvement, whole evaluation O(n2m))

Acceptance Criterion: random walk, best, SA-like

Performance on up to n = 500×m = 20 :
NEH average gap 3.35% in less than 1 sec.

IG average gap 0.44% in about 360 sec.
25

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TSEfficient local search for Fm | prmu | Cmax

Tabu search (TS) with insert neighborhood.

TS uses best strategy. è need to search efficiently!

Neighborhood pruning [Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]

A sequence t = (t1, t2, . . . , tm−1) defines a
path in π:

Cmax expression through critical path:

27

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TS

critical path: ~u = (u1, u2, . . . , um) : Cmax(π) = C(π, u)

Block Bk and Internal Block BIntk

Theorem (Werner, 1992)

Let π, π′ ∈ Π, if π′ has been obtained from π by an job insert so that
Cmax(π′) < Cmax(π) then in π′:
a) at least one job j ∈ Bk precedes job π(uk−1), k = 1, . . . ,m

b) at least one job j ∈ Bk succeeds job π(uk), k = 1, . . . ,m

28

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TS

Corollary (Elimination Criterion)

If π′ is obtained by π by an “internal block insertion” then
Cmax(π′) ≥ Cmax(π).

Hence we can restrict the search to where the good moves can be:

29

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TS

Further speedup: Use of lower bounds in delta evaluations:
Let δrx,uk

indicate insertion of x after uk (move of type ZRk(π))

∆(δrx,uk
) =

{
pπ(x),k+1 − pπ(uk),k+1 x 6= uk−1

pπ(x),k+1 − pπ(uk),k+1 + pπ(uk−1+1),k−1 − pπ(x),k−1 x = uk−1

That is, add and remove from the adjacent blocks
It can be shown that:

Cmax(δrx,uk
(π)) ≥ Cmax(π) + ∆(δrx,uk

)

Theorem (Nowicki and Smutnicki, 1996, EJOR)

The neighborhood thus defined is connected.

30

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TS

Metaheuristic details:

Prohibition criterion:
an insertion δx,uk

is tabu if it restores the relative order of π(x) and
π(x+ 1).

Tabu length: TL = 6 +
[
n

10m

]
Perturbation

perform all inserts among all the blocks that have ∆ < 0
activated after MaxIdleIter idle iterations

31

Parallel Machine Models
Flow Shop

Introduction
Makespan Problems
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient LS and TS

Tabu Search: the final algorithm:

Initialization : π = π0, C∗ = Cmax(π), set iteration counter to zero.
Searching : Create URk and ULk (set of non tabu moves)
Selection : Find the best move according to lower bound ∆.

Apply move. Compute true Cmax(δ(π)).
If improving compare with C∗ and in case update.
Else increase number of idle iterations.

Perturbation : Apply perturbation if MaxIdleIter done.
Stop criterion : Exit if MaxIter iterations are done.

32

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 15

Flow Shop and Job Shop Models

Marco Chiarandini

Job Shop

Outline

1. Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

2

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck HeuristicOutline

1. Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

3

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck HeuristicJob Shop

General Shop Scheduling:
J = {1, . . . , N} set of jobs; M = {1, 2, . . . ,m} set of machines

Jj = {Oij | i = 1, . . . , nj} set of operations for each job

pij processing times of operations Oij
µij ⊆M machine eligibilities for each operation

precedence constraints among the operations

one job processed per machine at a time,
one machine processing each job at a time

Cj completion time of job j

è Find feasible schedule that minimize some regular function of Cj
Job shop

µij = l, l = 1, . . . , nj and µij 6= µi+1,j (one machine per operation)

O1j → O2j → . . .→ Onj ,j precedences (without loss of generality)

without repetition and with unlimited buffers
5

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Task:

Find a schedule S = (Sij), indicating the starting times of Oij ,
such that:

it is feasible, that is,
Sij + pij ≤ Si+1,j for all Oij → Oi+1,j

Sij + pij ≤ Suv or Suv + puv ≤ Sij for all operations with µij = µuv.

and has minimum makespan: min{maxj∈J(Snj ,j + pnj ,j)}.

A schedule can also be represented by an m-tuple π = (π1, π2, . . . , πm)
where πi defines the processing order on machine i.

There is always an optimal schedule that is semi-active.

(semi-active schedule: for each machine, start each operation at the
earliest feasible time.)

6

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

7

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Often simplified notation: N = {1, . . . , n} denotes the set of
operations

Disjunctive graph representation: G = (N,A,E)
vertices N : operations with two dummy operations 0 and n+ 1
denoting “start” and “finish”.

directed arcs A, conjunctions

undirected arcs E, disjunctions

length of (i, j) in A is pi

8

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

A complete selection corresponds to choosing one direction for each
arc of E.

A complete selection that makes D acyclic corresponds to a feasible
schedule and is called consistent.

Complete, consistent selection ⇔ semi-active schedule (feasible
earliest start schedule).

Length of longest path 0–(n+ 1) in D corresponds to the makespan

9

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Longest path computation

In an acyclic digraph:

construct topological ordering (i < j for all i→ j ∈ A)

recursion:

r0 = 0
rl = max

{j | j→l∈A}
{rj + pj} for l = 1, . . . , n+ 1

10

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

A block is a maximal sequence of adjacent critical operations
processed on the same machine.

In the Fig. below: B1 = {4, 1, 8} and B2 = {9, 3}

Any operation, u, has two immediate predecessors and successors:
its job predecessor JP (u) and successor JS(u)

its machine predecessor MP (u) and successor MS(u)

11

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck HeuristicExact methods

Disjunctive programming

min Cmax
s.t. xij + pij ≤ Cmax ∀Oij ∈ N

xij + pij ≤ xlj ∀ (Oij , Olj) ∈ A
xij + pij ≤ xik ∨ xij + pij ≤ xik ∀ (Oij , Oik) ∈ E
xij ≤ 0 ∀ i = 1, . . . ,m j = 1, . . . , N

Constraint Programming

Branch and Bound [Carlier and Pinson, 1983]

Typically unable to schedule optimally more than 10 jobs on 10 machines.
Best result is around 250 operations.

14

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Branch and Bound [Carlier and Pinson, 1983] [B2, p. 179]

Let Ω contain the first operation of each job;
Let rij = 0 for all Oij ∈ Ω

Machine Selection Compute for the current partial schedule

t(Ω) = min
ij∈Ω
{rij + pij}

and let i∗ denote the machine on which the minimum is
achieved

Branching Let Ω′ denote the set of all operations Oi∗j on machine i∗

such that

ri∗j < t(Ω) (i.e. eliminate ri∗j ≥ t(Ω))

For each operation in Ω′, consider an (extended)partial
schedule with that operation as the next one on
machine i∗.
For each such (extended) partial schedule, delete the
operations from Ω, include its immediate follower in Ω and
return to Machine Selection.

15

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Lower Bounding:

longest path in partially selected disjunctive digraph

solve 1|rij |Lmax on each machine i like if all other machines could
process at the same time (see later shifting bottleneck heuristic) +
longest path.

16

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck HeuristicEfficient local search for job shop

Solution representation:
m-tuple π = (π1, π2, . . . , πm) ⇐⇒ oriented digraph Dπ = (N,A,Eπ)

Neighborhoods
Change the orientation of certain disjunctive arcs of the current complete
selection

Issues:

1. Can it be decided easily if the new digraph Dπ′ is acyclic?

2. Can the neighborhood selection S′ improve the makespan?

3. Is the neighborhood connected?

18

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Swap Neighborhood [Novicki, Smutnicki]
Reverse one oriented disjunctive arc (i, j) on some critical path.

Theorem
All neighbors are consistent selections.

Note: If the neighborhood is empty then there are no disjunctive arcs,
nothing can be improved and the schedule is already optimal.

Theorem
The swap neighborhood is weakly optimal connected.

19

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Insertion Neighborhood [Balas, Vazacopoulos, 1998]

For some nodes u, v in the critical path:
move u right after v (forward insert)

move v right before u (backward insert)

Theorem: If a critical path containing u and v also contains JS(v) and

L(v, n) ≥ L(JS(u), n)

then a forward insert of u after v yields an acyclic complete selection.

Theorem: If a critical path containing u and v also contains JS(v) and

L(0, u) + pu ≥ L(0, JP (v)) + pJP (v)

then a backward insert of v before v yields an acyclic complete selection.

20

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

21

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Theorem: (Elimination criterion) If Cmax(S′) < Cmax(S) then at
least one operation of a machine block B on the critical path has to be
processed before the first or after the last operation of B.

Swap neighborhood can be restricted to first and last operations in
the block

Insert neighborhood can be restricted to moves similar to those saw
for the flow shop. [Grabowski, Wodecki]

22

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Tabu Search requires a best improvement strategy hence the
neighborhood must be search very fast.

Neighbor evaluation:

exact recomputation of the makespan O(n)

approximate evaluation (rather involved procedure but much faster
and effective in practice)

The implementation of Tabu Search follows the one saw for flow shop.

23

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck HeuristicShifting Bottleneck Heuristic

A complete selection is made by the union of selections Sk for each
clique Ek that corresponds to machines.

Idea: use a priority rule for ordering the machines.
chose each time the bottleneck machine and schedule jobs on that
machine.

Measure bottleneck quality of a machine k by finding optimal
schedule to a certain single machine problem.

Critical machine, if at least one of its arcs is on the critical path.

25

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

– M0 ⊂M set of machines already sequenced.

– k ∈M \M0

– P (k,M0) is problem 1 | rj | Lmax obtained by:
the selections in M0

removing any disjunctive arc in p ∈M \M0

– v(k,M0) is the optimum of P (k,M0)

– bottleneck m = arg max
k∈M\M0

{v(k,M0)}

– M0 = ∅
Step 1: Identify bottleneck m among k ∈M \M0 and sequence it

optimally. Set M0 ←M0 ∪ {m}
Step 2: Reoptimize the sequence of each critical machine k ∈M0

in turn: set M ′o = M0 − {k} and solve P (k,M ′0).
Stop if M0 = M otherwise Step 1.

– Local Reoptimization Procedure
26

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Construction of P (k,M0)

1 | rj | Lmax:
rj = L(0, j)

dj = L(0, n)− L(j, n) + pj

L(i, j) length of longest path in G: Computable in O(n)

acyclic complete directed graph ⇐⇒ transitive closure of its unique
directed Hamiltonian path.

Hence, only predecessors and successor are to be checked.
The graph is not constructed explicitly, but by maintaining a list of jobs
per machines and a list machines per jobs.

1 | rj | Lmax can be solved optimally very efficiently.
Results reported up to 1000 jobs.

27

Job Shop
Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax From one of the past lectures

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is
optimal

28

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 16

Job Shop
The Alternative Graph Model

Marco Chiarandini

Job Shop GeneralizationsOutline

1. Job Shop Generalizations

2

Job Shop GeneralizationsResume

Job Shop:

Definition

Starting times and m-tuple permutation representation

Disjunctive graph representation [Roy and Sussman, 1964]

Shifting Bottleneck Heuristic [Adams, Balas and Zawack, 1988]

3

Job Shop GeneralizationsOutline

1. Job Shop Generalizations

4

Job Shop GeneralizationsGeneralizations: Time Lags

j

i
d i j

d

i

j
i j

−

Generalized time constraints

They can be used to model:

Release time:

S0 + ri ≤ Si ⇐⇒ d0i = ri

Deadlines:

Si + pi − di ≤ S0 ⇐⇒ di0 = pi − di

5

Job Shop Generalizations

Modelling

min Cmax
s.t. xij + dij ≤ Cmax ∀Oij ∈ N

xij + dij ≤ xlj ∀ (Oij , Olj) ∈ A
xij + dij ≤ xik ∨ xij + dij ≤ xik ∀ (Oij , Oik) ∈ E
xij ≥ 0 ∀ i = 1, . . . ,m j = 1, . . . , N

In the disjunctive graph, dij become the lengths of arcs

6

Job Shop Generalizations

Exact relative timing (perishability constraints):
if operation j must start lij after operation i:

Si + pi + lij ≤ Sj and Sj − (pi + lij) ≤ Si
(lij = 0 if no-wait constraint)

7

Job Shop Generalizations

Set up times:

Si + pi + sij ≤ Sj or Sj + pj + sji ≤ Si

Machine unavailabilities:
Machine Mk unavailable in [a1, b1], [a2, b2], . . . , [av, bv]
Introduce v artificial operations with λ = 1, . . . , v with µλ = Mk

and:
pλ = bλ − aλ
rλ = aλ
dλ = bλ

Minimum lateness objectives:

Lmax =
N

max
j=1
{Cj − dj} ⇐⇒ dnj ,n+1 = pnj

− dj

8

Blocking

Arises with limited buffers:
after processing, a job remains on the machine until the next machine is
freed

Needed a generalization of the disjunctive graph model
=⇒ Alternative graph model G = (N,E,A) [Mascis, Pacciarelli, 2002]

1. two non-blocking operations to be processed on the same machine

Si + pi ≤ Sj or Sj + pj ≤ Si

2. Two blocking operations i, j to be processed
on the same machine µ(i) = µ(j)

Sσ(j) ≤ Si or Sσ(i) ≤ Sj

3. i is blocking, j is non-blocking (ideal) and i, j
to be processed on the same machine
µ(i) = µ(j).

Si + pi ≤ Sj or Sσ(j) ≤ Si

Job Shop Generalizations

Example

O0, O1, . . . , O13

M(O1) = M(O5) = M(O9)
M(O2) = M(O6) = M(O10)
M(O3) = M(O7) = M(O11)

Length of arcs can be negative
Multiple occurrences possible: ((i, j), (u, v)) ∈ A and
((i, j), (h, k)) ∈ A
The last operation of a job j is always non-blocking.

10

A complete selection S is consistent if it chooses alternatives from
each pair such that the resulting graph does not contain positive
cycles.

Job Shop Generalizations

Example:

pa = 4

pb = 2

pc = 1

b must start at least 9 days after a has started

c must start at least 8 days after b is finished

c must finish within 16 days after a has started

Sa + 9 ≤ Sb
Sb + 10 ≤ Sc
Sc − 15 ≤ Sa

This leads to an absurd.
In the alternative graph the cycle is positive.

12

Job Shop Generalizations

The Makespan still corresponds to the longest path in the graph
with the arc selection G(S).

Problem: now the digraph may contain cycles. Longest path with
simple cyclic paths is NP-complete. However, here we have to care
only of non-positive cycles.

If there are no cycles of length strictly positive it can still be
computed efficiently in O(|N ||E ∪A|) by Bellman-Ford (1958)
algorithm.

The algorithm iteratively considers all edges in a certain order and
updates an array of longest path lengths for each vertex. It stops if a
loop over all edges does not yield any update or after |N | iterations
over all edges (in which case we know there is a positive cycle).

Possible to maintain incremental updates when changing the
selection [Demetrescu, Frangioni, Marchetti-Spaccamela, Nanni, 2000].

13

Job Shop GeneralizationsHeuristic Methods

The search space is highly constrained + detecting positive cycles is
costly

Hence local search methods not very successful

Rely on the construction paradigm

Rollout algorithm [Meloni, Pacciarelli, Pranzo, 2004]

14

Job Shop Generalizations

Rollout

Master process: grows a partial selection Sk:
decides the next element to fix based on an heuristic function
(selects the one with minimal value)

Slave process: evaluates heuristically the alternative choices.
Completes the selection by keeping fixed what passed by the master
process and fixing one alternative at a time.

15

Job Shop Generalizations

Slave heuristics
Avoid Maximum Current Completion time
find an arc (h, k) that if selected would increase most the length of
the longest path in G(Sk) and select its alternative

max
(uv)∈A

{l(0, u) + auv + l(v, n)}

Select Most Critical Pair
find the pair that, in the worst case, would increase least the length
of the longest path in G(Sk) and select the best alternative

max
((ij),(hk))∈A

min{l(0, u) + ahk + l(k, n), l(0, i) + aij + l(j, n)}

Select Max Sum Pair
find the pair with greatest potential effect on the length of the
longest path in G(Sk) and select the best alternative

max
((ij),(hk))∈A

|l(0, u) + ahk + l(k, n) + l(0, i) + aij + l(j, n)|

Trade off quality vs keeping feasibility
Results depend on the characteristics of the instance.

16

Job Shop Generalizations

Implementation details of the slave heuristics

Once an arc is added we need to update all L(0, u) and L(u, n).
Backward and forward visit O(|F |+ |A|)

When adding arc aij , we detect positive cycles if L(i, j) + aij > 0.
This happens only if we updated L(0, i) or L(j, n) in the previous
point and hence it comes for free.

Overall complexity O(|A|(|F |+ |A|))

Speed up of Rollout:

Stop if partial solution overtakes upper bound

limit evaluation to say 20% of arcs in A

17

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 17

Resource Constrained Project Scheduling
Reservations

Marco Chiarandini

Exercises
RCPS ModelOutline

1. Exercises

2. RCPS Model
Preliminaries
Heuristics for RCPSP

2

Exercises
RCPS ModelOutline

1. Exercises

2. RCPS Model
Preliminaries
Heuristics for RCPSP

3

Exercises
RCPS ModelResume: Job Shop

Disjunctive graph representation [Roy and Sussman, 1964]

Shifting Bottleneck Heuristic [Adams, Balas and Zawack, 1988]

Local Search

Generalizations:
Time lags dij to model:

set up times

synchronizations

deadlines

perishability (no-wait)

Blocking (alternative graph) Ü Rollout

4

Exercises
RCPS ModelExercise 1

Robotic Cell

Search for periodic pattern of moves (cycle)
one-unit cycle: the robot load (or unload) each machine exactly once
k-unit cycle: each activity is carried out exactly k times

5

Exercises
RCPS Model

Given:

m machines M1,M2, . . .Mm

ci,i+1 times of part transfer (unload+travel+load=activity) from Mi

to Mi+1

di,j times of the empty robot from Mi to Mj (ci,i+1 ≥ di,i+1)

pij processing time of part j on machine i (identical vs different
parts)

Task:

Determine input time for each part tj

Minimize throughput minimize period

Alternative graph model with intermediate robot operations
6

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPOutline

1. Exercises

2. RCPS Model
Preliminaries
Heuristics for RCPSP

7

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSP

insert figures that you find in diku.pdf

8

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPRCPS Model

Resource Constrained Project Scheduling Model
Given:

activities (jobs) j = 1, . . . , n

renewable resources i = 1, . . . ,m

amount of resources available Ri
processing times pj
amount of resource used rij
precedence constraints j → k

Further generalizations

Time dependent resource profile Ri(t) given by (tµi , R
µ
i)

where 0 = t1i < t2i < . . . < tmii = T

Multiple modes for an activity j
processing time and use of resource depends on its mode m: pjm,
rjkm.

9

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPModeling

Case 1
A contractor has to complete n activities.

The duration of activity j is pj
each activity requires a crew of size Wj .

The activities are not subject to precedence constraints.

The contractor has W workers at his disposal

his objective is to complete all n activities in minimum time.

10

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPModeling

Case 2
Exams in a college may have different duration.

The exams have to be held in a gym with W seats.

The enrollment in course j is Wj and

all Wj students have to take the exam at the same time.

The goal is to develop a timetable that schedules all n exams in
minimum time.

Consider both the cases in which each student has to attend a single
exam as well as the situation in which a student can attend more
than one exam.

11

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPModeling

Case 3
A set of jobs J1, . . . , Jg are to be processed by auditors A1, . . . , Am.

Job Jl consists of nl tasks (l = 1, . . . , g).

There are precedence constraints i1 → i2 between tasks i1, i2 of the same job.

Each job Jl has a release time rl, a due date dl and a weight wl.

Each task must be processed by exactly one auditor. If task i is processed by
auditor Ak, then its processing time is pik.

Auditor Ak is available during disjoint time intervals [sνk, l
ν
k] (ν = 1, . . . ,m)

with lνk < sνk for ν = 1, . . . ,mk − 1.

Furthermore, the total working time of Ak is bounded from below by H−k and
from above by H+

k with H−k ≤ H+
k (k = 1, . . . ,m).

We have to find an assignment α(i) for each task i = 1, . . . , n :=
Pg
l=1 nl to an

auditor Aα(i) such that

each task is processed without preemption in a time window of the
assigned auditor
the total workload of Ak is bounded by H−k and Hk

k for k = 1, . . . ,m.
the precedence constraints are satisfied,
all tasks of Jl do not start before time rl, and
the total weighted tardiness

Pg
l=1 wlTl is minimized.

13

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPPreprocessing: Temporal Analysis

Precedence network must be acyclic

Heads rj and Tails qj ⇐ Longest paths ⇐ Topological ordering
(deadlines dj can be obtained as UB − qj)

Preprocessing: constraint propagation

1. conjunctions i→ j Si + pi ≤ Sj
[precedence constrains]

2. parallelity constraints i || j Si + pi ≥ Sj and Sj + pj ≥ Si
[time windows [rj , dj],[rl, dl] and
pl + pj > max{dl, dj} −min{rl, rj}]

3. disjunctions i – j Si + pi ≤ Sj or Sj + pj ≤ Si
[resource constraints: rjk + rlk > Rk]

N. Strengthenings: symmetric triples, etc.
15

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPSolutions

Task: Find a schedule indicating the starting time of each activity

All solution methods restrict the search to feasible schedules, S, S′

Types of schedules
Local left shift (LLS): S → S′ with S′j < Sj and S′l = Sl for all
l 6= j.

Global left shift (GLS): LLS passing through infeasible schedule

Semi active schedule: no LLS possible

Active schedule: no GLS possible

Non-delay schedule: no GLS and LLS possible even with preemption

If regular objectives =⇒ exists an optimum which is active

16

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSP

Hence:

Schedule not given by start times Si
space too large O(Tn)

difficult to check feasibility

Sequence (list, permutation) of activities π = (j1, . . . , jn)

π determines the order of activities to be passed to a
schedule generation scheme

17

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPSchedule Generation Schemes

Given a sequence of activity, SGS determine the starting times of each
activity

Serial schedule generation scheme (SSGS)

n stages, Sλ scheduled jobs, Eλ eligible jobs

Step 1 Select next from Eλ and schedule at earliest.

Step 2 Update Eλ and Rk(τ).
If Eλ is empty then STOP,
else go to Step 1.

19

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSP

Parallel schedule generation scheme (PSGS)

(Time sweep)

stage λ at time tλ

Sλ (finished activities), Aλ (activities not yet finished),
Eλ (eligible activities)

Step 1 In each stage select maximal resource-feasible subset of
eligible activities in Eλ and schedule it at tλ.

Step 2 Update Eλ, Aλ and Rk(τ).
If Eλ is empty then STOP,

else move to tλ+1 = min

 min
j∈Aλ

Cj , min
k=1,...,r
i∈mk

tµi


and go to Step 1.

If constant resource, it generates non-delay schedules

Search space of PSGS is smaller than SSGS 20

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSP

Possible uses:

Forward

Backward

Bidirectional

Forward-backward improvement (justification techniques)
[V. Valls, F. Ballestín and S. Quintanill, EJOR, 2005]

21

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPDispatching Rules

Determines the sequence of activities to pass to
the schedule generation scheme

activity based

network based

path based

resource based

Static vs Dynamic

22

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPLocal Search

All typical neighborhood operators can be used:

Swap

Interchange

Insert

reduced to only those moves compatible with precedence constraints

23

Exercises
RCPS Model

Preliminaries
Heuristics for RCPSPGenetic Algorithms

Recombination operator:

One point crossover

Two point crossover

Uniform crossover

Implementations compatible with precedence constraints

24

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 18

Reservations and
Educational Timetabling

Marco Chiarandini

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingOutline

1. Reservations without slack

2. Reservations with slack

3. Timetabling with one Operator

4. Timetabling with Operators

5. Educational Timetabling
Introduction
School Timetabling

2

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Timetabling

Educational Timetabling
School/Class timetabling
University timetabling

Personnel/Employee timetabling
Crew scheduling
Crew rostering

Transport Timetabling
Sports Timetabling
Communication Timetabling

3

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingOutline

1. Reservations without slack

2. Reservations with slack

3. Timetabling with one Operator

4. Timetabling with Operators

5. Educational Timetabling
Introduction
School Timetabling

5

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingReservations without slack

Interval Scheduling

Given:
m parallel machines (resources)

n activities

rj starting times (integers),
dj termination (integers),
wj or wij weight,
Mj eligibility

without slack pj = dj − rj
Task: Maximize weight of assigned activities

Examples: Hotel room reservation, Car rental

6

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingPolynomially solvable cases

1. pj = 1

Solve an assignment problem at each time slot

2. wj = 1, Mj = M , Obj. minimize resources used

Corresponds to coloring interval graphs with minimal number of
colors

Optimal greedy algorithm (First Fit):

order r1 ≤ r2 ≤ . . . ≤ rn
Step 1 assign resource 1 to activity 1
Step 2 for j from 2 to n do

Assume k resources have been used.
Assign activity j to the resource with minimum feasible
value from {1, . . . , k + 1}

7

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

8

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

9

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

3. wj = 1, Mj = M , Obj. maximize activities assigned

Corresponds to coloring max # of vertices in interval graphs with k
colors

Optimal k-coloring of interval graphs:

order r1 ≤ r2 ≤ . . . ≤ rn
J = ∅, j = 1

Step 1 if a resource is available at time rj then assign activity j
to that resource;
include j in J ; go to Step 3

Step 2 Else, select j∗ such that Cj∗ = max
j∈J

Cj

if Cj = rj + pj > Cj∗ go to Step 3
else remove j∗ from J , assign j in J

Step 3 if j = n STOP else j = j + 1 go to Step 1

10

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingOutline

1. Reservations without slack

2. Reservations with slack

3. Timetabling with one Operator

4. Timetabling with Operators

5. Educational Timetabling
Introduction
School Timetabling

11

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingReservations with Slack

Given:
m parallel machines (resources)

n activities

rj starting times (integers),
dj termination (integers),
wj or wij weight,
Mj eligibility

with slack pj ≤ dj − rj
Task: Maximize weight of assigned activities

12

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingHeuristics

Most constrained variable, least constraining value heuristic

|Mj | indicates how much constrained an activity is
νit: # activities that can be assigned to i in [t− 1, t]

Select activity j with smallest Ij = f
(

wj

pj
, |Mj |

)
Select resource i with smallest g(νi,t+1, . . . , νi,t+pj

) (or discard j if no
place free for j)

Examples for f and g:

f

(
wj

pj
, |Mj |

)
=
|Mj |
wj/pj

g(νi,t+1, . . . , νi,t+pj
) = max(νi,t+1, . . . , νi,t+pj

)

g(νi,t+1, . . . , νi,t+pj) =
pj∑

l=1

νi,t+l

pj

13

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingOutline

1. Reservations without slack

2. Reservations with slack

3. Timetabling with one Operator

4. Timetabling with Operators

5. Educational Timetabling
Introduction
School Timetabling

14

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingTimetabling with one Operator

There is only one type of operator that processes all the activities

Example:
A contractor has to complete n activities.

The duration of activity j is pj

Each activity requires a crew of size Wj .

The activities are not subject to precedence constraints.

The contractor has W workers at his disposal

His objective is to complete all n activities in minimum time.

RCPSP Model

If pj all the same Ü Bin Packing Problem (still NP-hard)

15

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Example: Exam scheduling

Exams in a college with same duration.

The exams have to be held in a gym with W seats.

The enrollment in course j is Wj and

all Wj students have to take the exam at the same time.

The goal is to develop a timetable that schedules all n exams in
minimum time.

Each student has to attend a single exam.

Bin Packing model

In the more general (and realistic) case it is a RCPSP

16

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Heuristics for Bin Packing

Construction Heuristics
Best Fit Decreasing (BFD)

First Fit Decreasing (FFD) Cmax(FFD) ≤ 11
9

Cmax(OPT) + 6
9

Local Search: [Alvim and Aloise and Glover and Ribeiro, 1999]
Step 1: remove one bin and redistribute items by BFD

Step 2: if infeasible, re-make feasible by redistributing items
for pairs of bins, such that their total weights
becomes equal (number partitioning problem)

17

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

[Levine and Ducatelle, 2004]

18

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingOutline

1. Reservations without slack

2. Reservations with slack

3. Timetabling with one Operator

4. Timetabling with Operators

5. Educational Timetabling
Introduction
School Timetabling

19

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational TimetablingTimetabling with Operators

There are several operators and activities can be done by an
operator only if he is available

Two activities that share an operator cannot be scheduled at the
same time

Examples:

aircraft repairs

scheduling of meetings (people Ü operators; resources Ü rooms)

exam scheduling (students may attend more than one exam Ü
operators)

If pj = 1 Ü Graph-Vertex Coloring (still NP-hard)

20

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Mapping to Graph-Vertex Coloring

activities Ü vertices

if 2 activities require the same operators Ü edges

time slots Ü colors

feasibility problem (if # time slots is fixed)

optimization problem

21

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

DSATUR heuristic for Graph-Vertex Coloring

saturation degree: number of differently colored adjacent
vertices

set of empty color classes {C1, . . . , Ck}, where k = |V |

Sort vertices in decreasing order of their degrees

Step 1 A vertex of maximal degree is inserted into C1.

Step 2 The vertex with the maximal saturation degree is chosen
and inserted according to the greedy heuristic (first
feasible color). Ties are broken preferring vertices with the
maximal number of adjacent, still uncolored vertices; if
further ties remain, they are broken randomly.

22

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Outline

1. Reservations without slack

2. Reservations with slack

3. Timetabling with one Operator

4. Timetabling with Operators

5. Educational Timetabling
Introduction
School Timetabling

23

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Educational timetabling process

Phase: Planning Scheduling Dispatching

Horizon: Long Term Timetable
Period

Day of
Operation

Objective: Service Level Feasibility Get it Done

Steps: Manpower,
Equipment Weekly

Timetabling

Repair

24

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

The Timetabling Activity

Assignment of events to a limited number of time periods and locations
subject to constraints

Two categories of constraints:
Hard constraints H = {H1, . . . ,Hn}: must be strictly satisfied, no

violation is allowed
Soft constraints Σ = {S1, . . . ,Sm}: their violation should be minimized

(determine quality)

Each institution may have some unique combination of hard constraints
and take different views on what constitute the quality of a timetable.

26

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

A recurrent sub-problem in Timetabling is Matching

Input: A (weighted) bipartite graph G = (V,E) with bipartition {A,B}.
Task: Find the largest size set of edges M ∈ E such that each vertex in
V is incident to at most one edge of M .

Efficient algorithms for constructing matchings are based on augmenting
paths in graphs. An implementation is available at:
http://www.cs.sunysb.edu/~algorith/implement/bipm/implement.shtml

27

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Theorem

Theorem [Hall, 1935]: G contains a matching of A if and only if
|N(U)| ≥ |U | for all U ⊆ A.

28

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

School Timetabling

[aka, teacher-class model]
The daily or weekly scheduling for all the classes of a high school,
avoiding teachers meeting two classes in the same time.
Input:

a set of classes C = {C1, . . . , Cm}
A class is a set of students who follow exactly the same program.
Each class has a dedicated room.

a set of teachers P = {P1, . . . , Pn}
a requirement matrix Rm×n where Rij is the number of lectures
given by teacher Rj to class Ci.

all lectures have the same duration (say one period)

a set of time slots T = {T1, . . . , Tp} (the available periods in a day).

Output: An assignment of lectures to time slots such that no teacher or
class is involved in more than one lecture at a time

30

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

IP formulation:

Binary variables: assignment of teacher Pj to class Ci in Tk

xijk = {0, 1} ∀i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , p

Constraints:
p∑

k=1

xijk = Rij ∀i = 1, . . . ,m; j = 1, . . . , n

n∑
j=1

xijk ≤ 1 ∀i = 1, . . . ,m; k = 1, . . . , p

m∑
i=1

xijk ≤ 1 ∀j = 1, . . . , n; k = 1, . . . , p

31

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Graph model

Bipartite multigraph G = (C,P,R):

nodes C and P: classes and teachers
Rij parallel edges

Time slots are colors Ü Graph-Edge Coloring problem

Theorem: [König] There exists a solution to (1) iff:

m∑
i=1

Rij ≤ p ∀j = 1, . . . , n

n∑
i=1

Rij ≤ p ∀i = 1, . . . ,m

32

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Extension

From daily to weekly schedule
(timeslots represent days)

ai max number of lectures for a class in a day

bj max number of lectures for a teacher in a day

IP formulation:

Variables: number of lectures to a class in a day

xijk ∈ N ∀i = 1, . . . , m; j = 1, . . . , n; k = 1, . . . , p

Constraints:
pX

k=1

xijk = Rij ∀i = 1, . . . , m; j = 1, . . . , n

mX
i=1

xijk ≤ bj ∀j = 1, . . . , n; k = 1, . . . , p

nX
j=1

xijk ≤ ai ∀i = 1, . . . , m; k = 1, . . . , p

33

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Graph model

Edge coloring model still valid but with
no more than ai edges adjacent to Ci have same colors and
and more than bj edges adjacent to Tj have same colors

Theorem: [König] There exists a solution to (2) iff:

m∑
i=1

Rij ≤ bjp ∀j = 1, . . . , n

n∑
i=1

Rij ≤ aip ∀i = 1, . . . ,m

34

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

The edge coloring problem in the multigraph is solvable in
polynomial time by solving a sequence of network flows problems p.
Possible approach: solve the weekly timetable first and then the
daily timetable

Further constraints that may arise:

Preassignments
Unavailabilities
(can be expressed as preassignments with dummy class or teachers)

They make the problem NP-complete.

Bipartite matchings can still help in developing heuristics, for
example, for solving xijk keeping any index fixed.

35

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Further complications:

Simultaneous lectures (eg, gymnastic)

Subject issues (more teachers for a subject and more subject for a
teacher)

Room issues (use of special rooms)

36

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

So far feasibility problem.

Preferences (soft constraints) may be introduced

Desirability of assignment pj to class ci in tk

min
n∑

i=1

m∑
j=1

p∑
k=1

dijkxijk

Organizational costs: having a teacher available for possible
temporary teaching posts

Specific day off for a teacher

37

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Introducing soft constraints the problem becomes a multiobjective
problem.

Possible ways of dealing with multiple objectives:

weighted sum

lexicographic order

minimize maximal cost

distance from optimal or nadir point

Pareto-frontier

...

38

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Heuristic Methods

Construction heuristic

Based on principles:

most-constrained lecture on first (earliest) feasible timeslot

most-constrained lecture on least constraining timeslot

Enhancements:
limited backtracking

local search optimization step after each assignment

More later

39

Reservations without slack
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Introduction
School Timetabling

Local Search Methods and Metaheuristics
High level strategy:

Single stage (hard and soft constraints minimized simultaneously)

Two stages (feasibility first and quality second)

Dealing with feasibility issue:
partial assignment: do not permit violations of H but allow some
lectures to remain unscheduled

complete assignment: schedule all the lectures and seek to minimize
H violations

More later

40

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 19

University Timetabling

Marco Chiarandini

University TimetablingOutline

1. University Timetabling
Formalization and Modelling
An Example
Timetabling in Practice

2

University Timetabling
Modelling
An Example
PracticeOutline

1. University Timetabling
Formalization and Modelling
An Example
Timetabling in Practice

3

University Timetabling
Modelling
An Example
PracticeCourse Timetabling

The weekly scheduling of the lectures/events/courses of courses avoiding
students, teachers and room conflicts.
Input:

A set of courses C = {C1, . . . , Cn} each consisting of a set of
lectures Ci = {Li1, . . . , Lili}. Alternatively,
A set of lectures L = {L1, . . . , Ll}.
A set of curricula S = {S1, . . . , Sr} that are groups of courses with
common students (curriculum based model). Alternatively,
A set of enrollments S = {S1, . . . , Ss} that are groups of courses
that a student wants to attend (Post enrollment model).
a set of time slots T = {T1, . . . , Tp} (the available periods in the
scheduling horizon, one week).
All lectures have the same duration (say one period)

Output:
An assignment of each lecture Li to some period in such a way that no
student is required to take more than one lecture at a time.

5

University Timetabling
Modelling
An Example
PracticeGraph model

Graph G = (V,E):
V correspond to lectures Li

E correspond to conflicts between lectures due to curricula or
enrollments

Time slots are colors Ü Graph-Vertex Coloring problem Ü NP-complete
(exact solvers max 100 vertices)

Typical further constraints:
Unavailabilities
Preassignments

The overall problem can still be modeled as Graph-Vertex Coloring. How?

6

University Timetabling
Modelling
An Example
PracticeIP model

Including the assignment of indistinguishable rooms
mt rooms ⇒ maximum number of lectures in time slot t

Variables

xit ∈ {0, 1} i = 1, . . . , n; t = 1, . . . , p

Number of lectures per course

p∑
t=1

xit = li ∀i = 1, . . . , n

Number of lectures per time slot

n∑
i=1

xit ≤ mt ∀t = 1, . . . , p

7

University Timetabling
Modelling
An Example
Practice

Number of lectures per time slot (students’ perspective)

n∑
Ci∈Sj

xit ≤ 1 ∀i = 1, . . . , n; t = 1, . . . , p

If some preferences are added:

max
∑p

i=1

∑n
i=1 ditxit

Corresponds to a bounded coloring. [de Werra, 1985]

8

University Timetabling
Modelling
An Example
Practice

Further complications:
Teachers that teach more than one course
(not really a complication: treated similarly to students’ enrollment)

A set of rooms R = {R1, . . . , Rn}
with eligibility constraints
(this can be modeled as Hypergraph Coloring [de Werra, 1985]:

introduce an (hyper)edge for events that can be scheduled in the
same room
the edge cannot have more colors than the rooms available of that
type)

Moreover,

Students’ fairness
Logistic constraints: not two adjacent lectures if at different campus
Max number of lectures in a single day and changes of campuses.
Precedence constraints
Periods of variable length

9

University Timetabling
Modelling
An Example
PracticeIP approach

3D IP model including room eligibility [Lach and Lübbecke, 2008]

R(c) ⊆ R: rooms eligible for course c
Gconf = (Vconf , Econf): conflict graph (vertices are pairs (c, t))

min
X
ctr

d(c, t)xctr ∀c ∈ CX
t∈T

r∈R(c)

xctr = l(c) ∀c ∈ C

X
c∈R−1(r)

xctr ≤ 1 ∀t ∈ T, r ∈ R
X

r∈R(c1)

xc1t1r +
X

r∈R(c2)

xc2t2r ≤ 1 ∀((c1, t1)(c2, t2)) ∈ Econf

xctr ∈ {1, 0} ∀(c, t) ∈ Vconf , r ∈ R

This 3D model is too large in size and computationally hard to solve

10

University Timetabling
Modelling
An Example
Practice

2D IP model including room eligibility [Lach and Lübbecke, 2008]

Decomposition of the problem in two stages:

Stage 1 assign courses to timeslots

Stage 2 match courses with rooms within each timeslot
solved by bipartite matching

Model in stage 1

Variables: course c assigned to time slot t

xct ∈ {0, 1} c ∈ C, t ∈ T

Edge constraints
(forbids that c1 is assigned to t1 and c2 to t2 simultaneously)

xc1,t1 + xc2,t2 ≤ 1 ∀ ((c1, t1), (c2, t2)) ∈ Econf
11

University Timetabling
Modelling
An Example
Practice

Hall’s constraints
(guarantee that in stage 1 we find only solutions that are feasibile for
stage 2)
Gt = (Ct ∪Rt, Et) bipartite graph for each t
G = ∪tGt

n∑
c∈U

xct ≤ |N(U)| ∀ U ∈ C, t ∈ T

If some preferences are added:

max
p∑

i=1

n∑
i=1

ditxit

12

University Timetabling
Modelling
An Example
Practice

Hall’s constraints are exponentially many

[Lach and Lübbecke] study the polytope of the bipartite matching and
find strengthening conditions

(polytope: convex hull of all incidence vectros defining subsets of C
perfectly matched)

Algorithm for generating all facets not given but claimed efficient

Could solve the overall problem by branch and cut (separation
problem is easy).
However the the number of facet inducing Hall inequalities is in
practice rather small hence they can be generated all at once

13

University Timetabling
Modelling
An Example
Practice

So far feasibility.

Preferences (soft constraints) may be introduced [Lach and Lübbecke,
2008b]

Compactness or distribution

Minimum working days

Room stability

Student min max load per day

Travel distance

Room eligibility

Double lectures

Professors’ preferences for time slots

Different ways to model them exist.
Often the auxiliary variables have to be introduced

14

University Timetabling
Modelling
An Example
PracticeExamination Timetabling

By substituting lecture with exam we have the same problem!
However:

Course Timetabling Exam Timetabling

limited number of time slots unlimited number of time slots,
seek to minimize

conflicts in single slots, seek to
compact

conflicts may involve entire days
and consecutive days,seek to
spread

one single course per room possibility to set more than one
exam in a room with capacity
constraints

lectures have fixed duration exams have different duration

15

University Timetabling
Modelling
An Example
Practice2007 Competition

Constraint Programming is shown by [Cambazard et al. (PATAT 2008)]
to be not yet competitive

Integer programming is promising [Lach and Lübbecke] and under
active development (see J.Marecek
http://www.cs.nott.ac.uk/~jxm/timetabling/)
however it was not possible to submit solvers that make use of IP
commericial programs

Two teams submitted to all three tracks:

[Ibaraki, 2008] models everything in terms of CSP in its optimization
counterpart. The CSP solver is relatively very simple, binary variables
+ tabu search

[Tomas Mueller, 2008] developed an open source Constraint Solver
Library based on local search to tackle University course timetabling
problems (http://www.unitime.org)

All methods ranked in the first positions are heuristic methods based
on local search

17

University Timetabling
Modelling
An Example
PracticeHeuristic Methods

Hybrid Heuristic Methods

Some metaheuristic solve the general problem while others or exact
algorithms solve the special problem

Replace a component of a metaheuristic with one of another or of
an exact method (ILS+ SA, VLSN)

Treat algorithmic procedures (heuristics and exact) as black boxes
and serialize

Let metaheuristics cooperate (evolutionary + tabu search)

Use different metaheuristics to solve the same solution space or a
partitioned solution space

18

Basic
components

Metaheuristics Assemblage

Testable
units

Testable
units

Testable
units

Evolutionary Algorithm

Solving the
global problemHard constraints, Soft Constraints

Graph Coloring, Bipartite Matching,

Solving sub−problems

configurations
algorithm

Programming

Programming
Constraint

Integer

Construction
Heuristics

Ant Colony Optimization

Iterated Local Search

Simulated Annealing

Tabu Search

Iterated Greedy

Beam Search

...

Variable Neighborhood Search

Guided Local Search

Search
Neighborhood

University Timetabling
Modelling
An Example
Practice

Configuration Problem

Algorithms must be configured and tuned and the best selected.

This has to be done anew every time because constraints and their
density (problem instance) are specific of the institution.

Appropriate techniques exist to aid in the experimental assessment of
algorithms. Example: F-race [Birattari et al. 2002]
(see: http://www.imada.sdu.dk/~marco/exp/ for a full list of
references)

20

University Timetabling
Modelling
An Example
PracticePost Enrollment Timetabling

Definition
Find an assignment of lectures to time slots and rooms which is

Feasible

rooms are only used by one lecture at a time,
each lecture is assigned to a suitable room,
no student has to attend more than one lecture at once,
lectures are assigned only time slots where they are available;
precedences are satisfied;

9>>>>=>>>>;
Hard
Constraints

and Good

no more than two lectures in a row for a student,
unpopular time slots avoided (last in a day),
students do not have one single lecture in a day.

9=; Soft
Constraints

22

University Timetabling
Modelling
An Example
PracticeGraph models

We define:

precedence digraph D = (V,A): directed graph having a vertex for
each lecture in the vertex set V and an arc from u to v, u, v ∈ V , if
the corresponding lecture u must be scheduled before v.

Transitive closure of D: D′ = (V,A′)

conflict graph G = (V,E): edges connecting pairs of lectures if:

the two lectures share students;

the two lectures can only be scheduled in a room that is the same for
both;

there is an arc between the lectures in the digraph D′.

23

University Timetabling
Modelling
An Example
Practice

A look at the instances

These are large scale instances.

24

University Timetabling
Modelling
An Example
Practice

A look at the evaluation of a timetable can help
in understanding the solution strategy

High level solution strategy:

Single phase strategy (not well suited here due to soft constraints)

Ü Two phase strategy: Feasibility first, quality second

Searching a feasible solution:
Room eligibility complicate the use of IP and CP.

Heuristics:

1. Complete assignment of lectures
2. Partial assignment of lectures

Room assignment:
A. Left to matching algorithm
B. Carried out heuristically (matrix representation of solutions)

26

University Timetabling
Modelling
An Example
Practice

Solution Representation

A. Room assignment left to matching algorithm:

Array of Lectures and Time-slots and/or
Collection of sets Lectures, one for each Time-slot

B. Room assignment included

Assignment Matrix

R
oo

m
s

Time-slots
T1 T2 Ti Tj T45

R1 −1 L4 · · · L10 · · · L14 · · · −1
R2 L1 L5 · · · L11 · · · L15 · · · −1
R3 L2 L6 · · · L12 · · · −1 · · · −1
...

...
...

...
...

Rr L3 L7 · · · L13 L16 · · · −1

27

University Timetabling
Modelling
An Example
Practice

Construction Heuristic
most-constrained lecture on least constraining time slot

Step 1. Initialize the set L̂ of all unscheduled lectures with L̂ = L.
Step 2. Choose a lecture Li ∈ L̂ according to a heuristic rule.
Step 3. Let X̂ be the set of all positions for Li in the assignment

matrix with minimal violations of the hard constraints H.
Step 4. Let X̄ ⊆ X̂ be the subset of positions of X̂ with minimal

violations of the soft constraints Σ.
Step 5. Choose an assignment for Li in X̄ according to a heuristic

rule. Update information.
Step 6. Remove Li from L̂, and go to step 2 until L̂ is not empty.

28

University Timetabling
Modelling
An Example
Practice

Local Search Algorithms

Neighborhood Operators:

A. Room assignment left to matching algorithm

The problem becomes a bounded graph coloring
Ü Apply well known algorithms for GCP with few adaptations

Ex:
1. complete assignment representation: TabuCol with one

exchange

2. partial assignment representation: PartialCol with i-swaps

See [Blöchliger and N. Zufferey, 2008] for a description

29

University Timetabling
Modelling
An Example
Practice

B. Room assignment included

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27

R10 382 1 56 362 45 247 392 85 389 384 17 394 200 294 273 391 180 42 157 388 397 331 131 363 383

R9 396 144 173 78 25 183 387 337 240 132 328 212 370 308 336 244 126 14 231 51 342 136 93 129 266 393 155

R8 256 32 147 270 289 130 48 282 0 116 251 307 44 260 79 296 242 150 81 353 158 293 338 218 161

R7 228 31 107 371 30 355 46 227 246 271 182 313 224 128 89 258 356 343 280 35 109 306 43 83 11 154

R6 322 225 352 28 168 72 49 69 12 92 38 373 390 164 135 121 268 115 75 87 140 165 104 137 133 385 346

R5 324 291 309 339 267 283 269 170 299 311 34 65 216 275 199 26 27 327 33 39 285

R4 181 160 90 82 193 206 156 152 341 179 171 226 4 348 127 365 213 80

R3 263 71 186 67 222 288 99 24 237 232 253 117 195 203 102 207 287 290 146 286 358 303 277

R2 360 345 2 153 354 91 61 319 349 278 86 204 316 220 323 176 314 7 108 50 312 235 330

R1 187 239 378 66 380 53 208 279 300 350 211 375 254 366 369 223 163 298 118 368 234 97 329 274 58

Monday Tuesday Wednesday

N1: One Exchange
N2: Swap
N5: Insert + Rematch

N3: Period Swap
N4: Kempe Chain Interchange
N6: Swap + Rematch

30

Example of stochastic local search for Hard Constraints, representation A.

initialize data (fast updates, dont look bit, etc.)
while (hcv!=0 && stillTime && idle iterations < PARAMETER)

shuffle the time slots
for each lecture L causing a conflict
for each time slot T
if not dont look bit
if lecture is available in T
if lectures in T < number of rooms
try to insert L in T
compute delta
if delta < 0 || with a PARAMETER probability if delta==0
if there exists a feasible matching room-lectures
implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break

for all lectures in time slot
try to swap time slots
compute delta
if delta < 0 || with a PARAMETER probability if delta==0

implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break

University Timetabling
Modelling
An Example
Practice

Algorithm Flowchart

It. Improvement
Kempe−chains

It. Improvement
timeslot swap

Simulated Annealing
one−ex and swap

with Matching

Tabu Search
one−ex

Preprocessing

Timetable
Construct

one−ex and swap
It. Improvement

5 loops?

It. Improvement
one−ex

one−ex and swap
It. Improvement

It. Improvement
one−ex and swap

with matching

improvement?
any

S
of

t C
on

st
ra

in
ts

 O
pt

im
iz

er

no

H
ar

d
C

on
st

ra
in

ts
 S

ol
ve

r

yes

feasible?
Select the best
from Archive

Add into Archive

no yes

It. Improvement
one−ex

yes

no
yes

no

heuristics
all

used?

32

University Timetabling
Modelling
An Example
PracticeIn Practice

A timetabling system consists of:

Information management (database maintenance)

Solver (written in a fast language, i.e., C, C++)

Input and Output management (various interfaces to handle input
and output)

Interactivity: Declaration of constraints (professors’ preferences may
be inserted directly through a web interface and stored in the
information system of the University)

See examples http://www.easystaff.it
http://www.eventmap-uk.com

34

University Timetabling
Modelling
An Example
Practice

The timetabling process

1. Collect data from the information system

2. Execute a few runs of the Solver starting from different solutions
selecting the timetable of minimal cost. The whole computation
time should not be longer than say one night. This becomes a
“draft” timetable.

3. The draft is shown to the professors who can require adjustments.
The adjustments are obtained by defining new constraints to pass to
the Solver.

4. Post-optimization of the “draft” timetable using the new constraints

5. The timetable can be further modified manually by using the Solver
to validate the new timetables.

35

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 20

Timetabling in Transportation

Marco Chiarandini

Transportation Timet.Outline

1. Transportation Timetabling
Tanker Scheduling
Coping with hard IPs
Air Transport

2

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air TransportOutline

1. Transportation Timetabling
Tanker Scheduling
Coping with hard IPs
Air Transport

3

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air TransportOutline

Problems
Tanker Scheduling

Aircraft Routing and Scheduling

Public Transports

MIP Models using complicated variables: Let a variable represent a road
trip, a schedule section, or a whole schedule for a crew.

Set packing

Set partitioning

Solution techniques
Branch and bound

Lagrangian relaxation (solution without Simplex)

Branch and price (column generation)

4

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air TransportTanker Scheduling

Input:

p ports

limits on the physical characteristics of the ships

n cargoes:

type, quantity, load port, delivery port, time window constraints on
the load and delivery times

ships (tanker): s company-owned plus others chartered
Each ship has a capacity, draught, speed, fuel consumption, starting
location and times

These determine the costs of a shipment: cli (company-owned) c∗j
(chartered)

Output: A schedule for each ship, that is, an itinerary listing the ports
visited and the time of entry in each port within the rolling horizon
such that the total cost of transportation is minimized

6

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air TransportNetwork Flow

Network representation of the tanker scheduling problem:

a node for each shipment

an arc from i to j if possible to accomplish j after completing i

a directed path corresponds to a feasible schedule for the tank

Model as minimum value problem solvable by maximum flow algorithm in
the following network:

split each node i into i′ and i′′

introduce shipment arcs (i′, i′′) of flow lower bound 1

introduce source and sink

set all flow upper bounds to 1

Finds minimum number of ships required to cover the cargos. Does not
include costs.

7

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air TransportIP model

Two phase approach:

1. determine for each ship i the set Si of all possible itineraries

2. select the itineraries for the ships by solving an IP problem

Phase 1 can be solved by some ad-hoc enumeration or heuristic
algorithm that checks the feasibility of the itinerary and its cost.

For each itinerary l of ship i compute the profit with respect to charter:

πl
i =

n∑
j=1

al
ijc
∗
j − cli

where al
ij = 1 if cargo j is shipped by ship i in itinerary l and 0 otherwise.

8

Phase 2:

A set packing model with additional constraints

Variables

xl
i ∈ {0, 1} ∀i = 1, . . . , s; l ∈ Si

Each cargo is assigned to at most one ship:

s∑
i=1

∑
l∈Si

al
ijx

l
i ≤ 1 ∀j = 1, . . . , n

Each tanker can be assigned at most one itinerary∑
l∈Si

xl
i ≤ 1 ∀i = 1, . . . , s

Objective: maximize profit

max
s∑

i=1

∑
l∈Si

πl
ix

l
i

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

Branch and bound (Variable fixing)

Solve LP relaxation (this provides an upper bound) and branch by:
selecting a fractional variable with value closest to 0.5
(keep tree balanced)
set a branch xl

i = 0 and
the other xl

i = 1 (this rules out the other itineraries of ship i and of
other ships covering the same cargo)

selecting one ship and branching on its itineraries
select the ship that may lead to largest profit or largest cargo or with
largest number of fractional variables.

10

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air TransportPrimal heuristics

Improve the formulation: the goal of improving the lower bounds or
solutions whose real variables are closer to be integer

Use heuristics within the IP framework. Goal: finding good feasible
solutions

construction heuristics

improvement heuristics

The following heuristics can be applied at each node of a
branch-and-cut/bound tree

12

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

Truncated MIP

Run branch-and-cut/bound for a fixed amount of time and return the
best solution when time exceeds.

Diving

Carry out a depth-first search in branch-and-cut/bound tree.
At each node, fix variables that take integer values in the LP relaxation
and branch on the others

LP-driven dives: fix the variable that is closest to integer

IP-driven or guided dives: given an incumbent solution, choose the
variable to be fixed next and assign it the value it has in the
incumbent

These are typically already implemented in MIP systems
LP or incumbent solutions are the guide.

13

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

LP-and-fix or Cut-and-Fix

Fix everything that is integer and solve the resulting MIPLP−FIX

Either the new problem is infeasible or it provides and LP-and-fix
heuristic solution

(best solutions if formulation is tight and has few fractional variables)

14

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

Relax-and-fix
Partition the variables into R disjoint sets and solve sequentially R MIPs,
MIP r with 1 ≤ r ≤ R.
(For example partitions correspond to variables of a tank, machine,
product family, location, most often time periods)

In the first MIP 1 impose integrality in the first partition and relax
all the others

Fix the variables in the first partition at the values found in MIP 1

In the subsequent MIP r, for 2 ≤ r ≤ R additionally fix the values
of the variables of the r − 1-th partition at the optimal value from
MIP r−1 and add integrality restriction for the variables in the r-th
partition.

Either MIP r is infeasible for some r and the heuristic has failed or
else the solution found at r = R is a relax-and-fix heuristic solution

(allow overlap between the partitions may be a good idea)
(Note: only MIP 1 is a valid lower bound to the MIP)

15

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

Exchange

Improvement version of the relax-and-fix heuristic

At each step r with 1 ≤ r ≤ R the MIP solved is obtained by fixing at
their value in the best solution all the variables in the set r − 1 partitions
and imposing integrality to the variables in the r partition

16

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

Relaxation Induced Neighborhood Search

Explore neighborhood between LP solution ŝ and best known feasible
solution s̄

Fix a variable that has same value in ŝ and s̄ and solve the IP problem

Either the solution found is infeasible or it is not found within a time limit
so the heuristic has failed or the solution found is an heuristic solution

17

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

Local Branching

The procedure is in the spirit of heuristic local search paradigm.
The neighborhoods are obtained through the introduction in the
MIP model of (invalid) linear inequalities called local branching cuts.
Takes advantage of black box efficient MIP solvers.

In branch and bound most often unclear how to fix variables
Ü Idea: soft fixing

Given a feasible solution x̄ let Ō := {i ∈ B : x̄i = 1}.
Define the k-opt neighborhood N (x̄, k) as the set of feasible solutions
satisfying the additional local branching constraint:

∆(x, x̄) :=
∑
i∈Ō

(1− xi) +
∑

i∈B\Ō
xi ≤ k ∆ counts

number of flips

Partition at the branching node:

∆(x, x̄) ≤ k (left branching) or ∆(x, x̄) ≥ k + 1 (right branching)
18

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

19

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

The idea is that the neighborhood N(x̄, k) corresponding to the left
branch must be “sufficiently small” to be optimized within short
computing time, but still “large enough” to likely contain better
solutions than x.

According to computational experience, good values for k are in
[10, 20]

This procedure coupled with an efficient MIP solver (subgradient
optimization of Lagrangian multipliers) was shown able to solve very
large problems with more than 8000 variables.

20

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air TransportOR in Air Transport Industry

Aircraft and Crew Schedule Planning
Schedule Design (specifies legs and times)
Fleet Assignment
Aircraft Maintenance Routing
Crew Scheduling

crew pairing problem
crew assignment problem (bidlines)

Airline Revenue Management
number of seats available at fare level
overbooking
fare class mix (nested booking limits)

Aviation Infrastructure
airports

runaways scheduling (queue models, simulation; dispatching,
optimization)
gate assignments

air traffic management

22

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air TransportDaily Aircraft Routing and Scheduling

[Desaulniers, Desrosiers, Dumas, Solomon and Soumis, 1997]
Input:

L set of flight legs with airport of origin and arrival, departure time
windows [ei, li], i ∈ L, duration, cost/revenue
Heterogeneous aircraft fleet T , with mt aircrafts of type t ∈ T

Output: For each aircraft, a sequence of operational flight legs and
departure times such that operational constraints are satisfied:

number of planes for each type

restrictions on certain aircraft types at certain times and certain
airports

required connections between flight legs (thrus)

limits on daily traffic at certain airports

balance of airplane types at each airport

and the total profits are maximized.
23

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

Lt denotes the set of flights that can be flown by aircraft of type t

St the set of feasible schedules for an aircraft of type t (inclusive of
the empty set)

al
ti = {0, 1} indicates if leg i is covered by l ∈ St

πti profit of covering leg i with aircraft of type i

πl
t =

∑
i∈Lt

πtia
l
ti for l ∈ St

P set of airports, Pt set of airports that can accommodate type t

ol
tp and dl

tp equal to 1 if schedule l, l ∈ St starts and ends, resp., at
airport p

24

A set partitioning model with additional constraints
Variables

xl
t ∈ {0, 1} ∀t ∈ T ; l ∈ St and x0

t ∈ N ∀t ∈ T
Maximum number of aircraft of each type:X

l∈St

xl
t = mt ∀t ∈ T

Each flight leg is covered exactly once:X
t∈T

X
l∈St

al
tix

l
t = 1 ∀i ∈ L

Flow conservation at the beginning and end of day for each aircraft typeX
l∈St

(ol
tp − dl

tp)xl
t = 0 ∀t ∈ T ; p ∈ P

Maximize total anticipate profit

max
X
t∈T

X
l∈St

πl
tx

l
t

Transportation Timet.
Tanker Scheduling
Coping with hard IPs
Air Transport

Solution Strategy: branch-and-price

At the high level branch-and-bound similar to the Tanker Scheduling
case

Upper bounds obtained solving linear relaxations by column
generation.

Decomposition into
Restricted Master problem, defined over a restricted number of
schedules

Subproblem, used to test the optimality or to find a new feasible
schedule to add to the master problem (column generation)

Each restricted master problem solved by LP.
It finds current optimal solution and dual variables

Subproblem (or pricing problem) corresponds to finding longest path
with time windows in a network defined by using dual variables of
the current optimal solution of the master problem. Solve by
dynamic programming.

26

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 21

Timetabling in Transportation

Marco Chiarandini

Transportation Timet.Outline

1. Transportation Timetabling
Train Timetabling

2

Transportation Timet. Train TimetablingOutline

1. Transportation Timetabling
Train Timetabling

3

Transportation Timet. Train Timetabling

Planning problems in public transport

Phase: Planning Scheduling Dispatching

Horizon: Long Term Timetable Period Day of Operation

Objective: Service Level Cost Reduction Get it Done

Steps: Network Design Vehicle Scheduling Crew Assignment
Line Planning Duty Scheduling Delay Management
Timetabling Duty Rostering Failure Management
Fare Planning Depot Managementx x

Master Schedule
Dynamic Management−−−−−−−−−−−−−→ Conflict resolution

[Borndörfer, Grötschel, Pfetsch, 2005, ZIB-Report 05-22]

4

Transportation Timet. Train Timetabling

[Borndörfer, Liebchen, Pfetsch, course 2006, TU Berlin]

5

Transportation Timet. Train Timetabling

[Borndörfer, Liebchen, Pfetsch, course 2006, TU Berlin]
6

Transportation Timet. Train Timetabling

Time-space diagram

[Borndörfer, Liebchen, Pfetsch, course 2006, TU Berlin]
7

Transportation Timet. Train TimetablingTrain Timetabling

Input:

Corridors made up of two independent one-way tracks

L links between L + 1 stations.

T set of trains and Tj , Tj ⊆ T , subset of trains that pass through
link j

Output: We want to find a periodic (eg, one day) timetable for the
trains on one track (the other can be mirrored) that specifies:

yij = time train i enters link j

zij = time train i exists link j

such that specific constraints are satisfied and costs minimized.

9

Transportation Timet. Train Timetabling

Constraints:
Minimal time to traverse one link

Minimum stopping times at stations to allow boarding

Minimum headways between consecutive trains on each link for
safety reasons

Trains can overtake only at train stations

There are some “predetermined” upper and lower bounds on arrival
and departure times for certain trains at certain stations

Costs due to:
deviations from some “preferred” arrival and departure times for
certain trains at certain stations

deviations of the travel time of train i on link j

deviations of the dwelling time of train i at station j

10

Transportation Timet. Train Timetabling

Solution Approach

All constraints and costs can be modeled in a MIP with the variables:
yij , zij and xihj = {0, 1} indicating if train i precedes train h

Two dummy trains T ′ and T ′′ with fixed times are included to
compact and make periodic

Large model solved heuristically by decomposition.

Key Idea: insert one train at a time and solve a simplified MIP.

In the simplified MIP the order in each link of trains already
scheduled is maintained fixed while times are recomputed. The only
order not fixed is the one of the new train inserted k (xihj simplifies
to xij which is 1 if k is inserted in j after train i)

11

Transportation Timet. Train Timetabling

Overall Algorithm
Step 1 (Initialization)

Introduce in T0 two “dummy trains” as first and last trains

Step 2 (Select an Unscheduled Train) Select the next train k
through the train selection priority rule

Step 3 (Set up and preprocess the MIP) Include train k in set T0

Set up MIP(K) for the selected train k
Preprocess MIP(K) to reduce number of 0–1 variables and
constraints

Step 4 (Solve the MIP) Solve MIP(k). If algorithm does not yield
feasible solution STOP.
Otherwise, add train k to the list of already scheduled
trains and fix for each link the sequences of all trains in T0.

Step 5 (Reschedule all trains scheduled earlier) Consider the
current partial schedule that includes train k.
For each train i ∈ {T0 − k} delete it and reschedule it

Step 6 (Stopping criterion) If T0 consists of all train, then STOP
otherwise go to Step 2.

12

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 23

Workforce Scheduling

Marco Chiarandini

Transportation Timet.
Workforce SchedulingOutline

1. Transportation Timetabling

2. Workforce Scheduling
Crew Scheduling and Rostering
Employee Timetabling

Shift Scheduling
Nurse Scheduling

2

Transportation Timet.
Workforce SchedulingOutline

1. Transportation Timetabling

2. Workforce Scheduling
Crew Scheduling and Rostering
Employee Timetabling

Shift Scheduling
Nurse Scheduling

3

Transportation Timet.
Workforce SchedulingPeriodic Event Scheduling Problem

Blackboard

4

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingOutline

1. Transportation Timetabling

2. Workforce Scheduling
Crew Scheduling and Rostering
Employee Timetabling

Shift Scheduling
Nurse Scheduling

5

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingWorkforce Scheduling

Overview

A note on terminology
Shift: consecutive working hours
Roster: shift and rest day patterns over a fixed period of time (a week or
a month)

Two main approaches:
coordinate the design of the rosters and the assignment of the shifts
to the employees, and solve it as a single problem.

consider the scheduling of the actual employees only after the rosters
are designed, solve two problems in series.

Features to consider: rest periods, days off, preferences, availabilities,
skills.

6

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingWorkforce Scheduling

Overview

Workforce Scheduling:
1. Crew Scheduling and Rostering
2. Employee Timetabling

1. Crew Scheduling and Rostering is workforce scheduling applied in
the transportation and logistics sector for enterprises such as airlines,
railways, mass transit companies and bus companies (pilots,
attendants, ground staff, guards, drivers, etc.)

The peculiarity is finding logistically feasible assignments.

7

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingWorkforce Scheduling

Overview

2. Employee timetabling (aka labor scheduling) is the operation of
assigning employees to tasks in a set of shifts during a fixed period
of time, typically a week.

Examples of employee timetabling problems include:
assignment of nurses to shifts in a hospital,

assignment of workers to cash registers in a large store

assignment of phone operators to shifts and stations in a
service-oriented call-center

Differences with Crew scheduling:

no need to travel to perform tasks in locations

start and finish time not predetermined

8

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingCrew Scheduling

Input:
A set of flight legs (departure, arrival, duration)

A set of crews
Output: A subset of flights feasible for each crew

How do we solve it?

Set partitioning or set covering??

Often treated as set covering because:
its linear programming relaxation is numerically more stable and thus
easier to solve
it is trivial to construct a feasible integer solution from a solution to
the linear programming relaxation
it makes possible to restrict to only rosters of maximal length

10

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingShift Scheduling

Creating daily shifts:

roster made of m time intervals not necessarily identical
during each period, bi personnel is required
n different shift patterns (columns of matrix A)

min cT x

st Ax ≥ b

x ≥ 0 and integer

12

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling(k,m)-cyclic Staffing Problem

Assign persons to an m-period cyclic schedule so that:
requirements bi are met
each person works a shift of k consecutive periods and is free for the
other m− k periods. (periods 1 and m are consecutive)

and the cost of the assignment is minimized.

min cx

st



1 0 0 1 1 1 1
1 1 0 0 1 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1


x ≥ b

x ≥ 0 and integer

(P)

13

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Recall: Totally Unimodular Matrices

Definition: A matrix A is totally unimodular (TU) if every square
submatrix of A has determinant +1, -1 or 0.

Proposition 1: The linear program max{cx : Ax ≤ b, x ∈ Rm
+} has an

integral optimal solution for all integer vectors b for which it has a finite
optimal value if and only if A is totally unimodular

Recognizing total unimodularity can be done in polynomial time (see
[Schrijver, 1986])

14

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingTotal Unimodular Matrices

Resume’

Basic examples:

Theorem

The V ×E-incidence matrix of a graph G = (V, E) is totally unimodular if and
only if G is bipartite

Theorem

The V ×A-incidence matrix of a directed graph D = (V, A) is totally
unimodular

Theorem

Let D = (V, A) be a directed graph and let T = (V, A0) be a directed tree on
V . Let M be the A0 ×A matrix defined by, for a = (v, w) ∈ A and a′ ∈ A0

Ma′,a := +1 if the unique v − w-path in T passes through a′ forwardly;
−1 if the unique v − w-path in T passes through a′ backwardly;

0 if the unique v − w-path in T does not pass through a′

M is called network matrix and is totally unimodular.

16

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingTotal Unimodular Matrices

Resume’

All totally unimodular matrices arise by certain compositions from
network matrices and from certain 5× 5 matrices [Seymour, 1980]. This
decomposition can be tested in polynomial time.

Definition

A (0, 1)–matrix B has the consecutive 1’s property if for any column j,
bij = bi′j = 1 with i < i′ implies blj = 1 for i < l < i′. That is, if there
is a permutation of the rows such that the 1’s in each column appear
consecutively.

Whether a matrix has the consecutive 1’s property can be determined in
polynomial time [D. R. Fulkerson and O. A. Gross; Incidence matrices
and interval graphs. 1965 Pacific J. Math. 15(3) 835-855.]

A matrix with consecutive 1’s property is called an interval matrix and
they can be shown to be network matrices by taking a directed path for
the directed tree T

17

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

What about this matrix?

1 0 0 1 1 1 1
1 1 0 0 1 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1


Definition A (0, 1)-matrix B has the circular 1’s property for rows (resp.
for columns) if the columns of B can be permuted so that the 1’s in each
row are circular, that is, appear in a circularly consecutive fashion

The circular 1’s property for columns does not imply circular 1’s property
for rows.

Whether a matrix has the circular 1’s property for rows (resp. columns)
can be determined in O(m2n) time [A. Tucker, Matrix characterizations
of circular-arc graphs. (1971) Pacific J. Math. 39(2) 535-545]

18

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Integer programs where the constraint matrix A have the circular 1’s
property for rows can be solved efficiently as follows:

Step 1 Solve the linear relaxation of (P) to obtain x′1, . . . , x
′
n. If

x′1, . . . , x
′
n are integer, then it is optimal for (P) and

STOP. Otherwise go to Step 2.
Step 2 Form two linear programs LP1 and LP2 from the

relaxation of the original problem by adding respectively
the constraints

x1 + . . . + xn = bx′1 + . . . + x′nc (LP1)

and

x1 + . . . + xn = dx′1 + . . . + x′ne (LP2)

From LP1 and LP2 an integral solution certainly arises (P)

19

Cyclic Staffing with Overtime

Hourly requirements bi

Basic work shift 8 hours
Overtime of up to additional 8 hours possible

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Days-Off Scheduling

Guarantee two days-off each week, including every other weekend.

IP with matrix A:

21

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Cyclic Staffing with Part-Time Workers

Columns of A describe the work-shifts
Part-time employees can be hired for each time period i at cost c′i
per worker

min cx + c′x′

st Ax + Ix′ ≥ b

x, x′ ≥ 0 and integer

22

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Cyclic Staffing with Linear Penalties for Understaffing and Overstaffing

demands are not rigid
a cost c′i for understaffing and a cost c′′i for overstaffing

min cx + c′x′ + c′′(b−Ax− x′)

st Ax + Ix′ ≥ b

x, x′ ≥ 0 and integer

23

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee TimetablingNurse Scheduling

Hospital: head nurses on duty seven days a week 24 hours a day
Three 8 hours shifts per day (1: daytime, 2: evening, 3: night)
In a day each shift must be staffed by a different nurse
The schedule must be the same every week
Four nurses are available (A,B,C,D) and must work at least 5 days a
week.
No shift should be staffed by more than two different nurses during
the week
No employee is asked to work different shifts on two consecutive days
An employee that works shifts 2 and 3 must do so at least two days
in a row.

24

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Mainly a feasibility problem

A CP approach

Two solution representations

Sun Mon Tue Wed Thu Fri Sat
Shift 1 A B A A A A A
Shift 2 C C C B B B B
Shift 3 D D D D C C D

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3

25

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Variables wsd nurse assigned to shift s on day d and yid the shift
assigned for each day

wsd ∈ {A, B,C, D} yid ∈ {0, 1, 2, 3}

Three different nurses are scheduled each day

alldiff(w·d) ∀d

Every nurse is assigned to at least 5 days of work

cardinality(w·· | (A, B,C, D), (5, 5, 5, 5), (6, 6, 6, 6))

At most two nurses work any given shift

nvalues(ws· | 1, 2) ∀s

26

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

All shifts assigned for each day

alldiff(y·d) ∀d

Maximal sequence of consecutive variables that take the same values

stretch-cycle(yi· | (2, 3), (2, 2), (6, 6), P)
∀i, P = {(s, 0), (0, s) | s = 1, 2, 3}

Channeling constraints between the two representations:
on any day, the nurse assigned to the shift to which nurse i is assigned
must be nurse i

wyid,d = i ∀i, d

ywsd,d = s ∀s, d

27

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

The complete CP model

28

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Constraint Propagation:

alldiff: matching

nvalues: max flow

stretch: poly-time dynamic programming

index expressions wyidd replaced by z and constraint:
element(y, x, z): z be equal to y-th variable in list x1, . . . , xm

Search:

branching by splitting domanins with more than one element

first fail branching

symmetry breaking:

employees are indistinguishable
shifts 2 and 3 are indistingushable
days can be rotated

Eg: fix A, B, C to work 1, 2, 3 resp. on sunday

29

Transportation Timet.
Workforce Scheduling

Crew Scheduling and Rostering
Employee Timetabling

Local search methods and metaheuristics are used if the problem has large
scale. Procedures very similar to what we saw for employee timetabling.

30

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 24

Vehicle Routing

Marco Chiarandini

Vehicle Routing
Integer ProgrammingOutline

1. Vehicle Routing

2. Integer Programming

2

Vehicle Routing
Integer ProgrammingOutline

1. Vehicle Routing

2. Integer Programming

3

Vehicle Routing
Integer ProgrammingProblem Definition

Vehicle Routing: distribution of goods between depots and customers.

Delivery, collection, transportation.

Examples: solid waste collection, street cleaning, school bus routing,
dial-a-ride systems, transportation of handicapped persons, routing of
salespeople and maintenance unit.

Vehicle Routing Problems

Input: Vehicles, depots, road network, costs and customers requirements.
Output: Set of routes such that:

requirement of customers are fulfilled,
operational constraints are satisfied and
a global transportation cost is minimized.

4

Vehicle Routing
Integer Programming

5

Vehicle Routing
Integer ProgrammingRefinement

Road Network

represented by a (directed or undirected) complete graph
travel costs and travel times on the arcs obtained by shortest paths

Customers
vertices of the graph
collection or delivery demands
time windows for service
service time
subset of vehicles that can serve them
priority (if not obligatory visit)

6

Vehicle Routing
Integer Programming

Vehicles
capacity
types of goods
subsets of arcs traversable
fix costs associated to the use of a vehicle
distance dependent costs
a-priori partition of customers
home depot in multi-depot systems
drivers with union contracts

Operational Constraints

vehicle capacity
delivery or collection
time windows
working periods of the vehicle drivers
precedence constraints on the customers

7

Vehicle Routing
Integer Programming

Objectives

minimization of global transportation cost (variable + fixed costs)
minimization of the number of vehicles
balancing of the routes
minimization of penalties for un-served customers

History:
Dantzig, Ramser “The truck dispatching problem”, Management Science,
1959
Clark, Wright, “Scheduling of vehicles from a central depot to a number
of delivery points”. Operation Research. 1964

8

Vehicle Routing
Integer ProgrammingVehicle Routing Problems

Capacited (and Distance Constrained) VRP (CVRP and DCVRP)
VRP with Time Windows (VRPTW)
VRP with Backhauls (VRPB)
VRP with Pickup and Delivery (VRPPD)
Periodic VRP (PVRP)
Multiple Depot VRP (MDVRP)
Split Delivery VRP (SDVRP)
VRP with Satellite Facilities (VRPSF)
Site Dependent VRP
Open VRP
Stochastic VRP (SVRP)
...

9

Vehicle Routing
Integer ProgrammingCapacited Vehicle Routing (CVRP)

Input: (common to all VRPs)

(di)graph (strongly connected, typically complete) G(V,A), where
V = {0, . . . , n} is a vertex set:

0 is the depot.
V ′ = V \{0} is the set of n customers
A = {(i, j) : i, j ∈ V } is a set of arcs

C a matrix of non-negative costs or distances cij between customers
i and j (shortest path or Euclidean distance)
(cik + ckj ≥ cij ∀ i, j ∈ V)

a non-negative vector of costumer demands di

a set of K (identical!) vehicles with capacity Q, di ≤ Q

10

Vehicle Routing
Integer Programming

Task:
Find collection of K circuits with minimum cost, defined as the sum of
the costs of the arcs of the circuits and such that:

each circuit visits the depot vertex

each customer vertex is visited by exactly one circuit; and

the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.

Note: lower bound on K
dd(V ′)/Qe

number of bins in the associated Bin Packing Problem

11

Vehicle Routing
Integer Programming

A feasible solution is composed of:

a partition R1, . . . , Rm of V ;

a permutation πi of Ri
⋃

0 specifying the order of the customers on
route i.

A route Ri is feasible if
∑πm

i=π1
di ≤ Q.

The cost of a given route (Ri) is given by: F (Ri) =
∑πi

m

i=πi
0
ci,i+1

The cost of the problem solution is: FV RP =
∑m
i=1 F (Ri) .

12

Vehicle Routing
Integer Programming

Relation with TSP

VRP with K = 1, no limits, no (any) depot, customers with no
demand Ü TSP

VRP is a generalization of the Traveling Salesman Problem (TSP)
Ü is NP-Hard.

VRP with a depot, K vehicles with no limits, customers with no
demand Ü Multiple TSP = one origin and K salesman

Multiple TSP is transformable in a TSP by adding K identical
copies of the origin and making costs between copies infinite.

13

Vehicle Routing
Integer Programming

Variants of CVRP:
minimize number of vehicles

different vehicles Qk, k = 1, . . . ,K

Distance-Constrained VRP: length tij on arcs and total duration of a
route cannot exceed T associated with each vehicle
Generally cij = tij
(Service times si can be added to the travel times of the arcs:
t′ij = tij + si/2 + sj/2)

Distance constrained CVRP

14

Vehicle Routing
Integer ProgrammingVehicle Routing with Time Windows (VRPTW)

Further Input:

each vertex is also associated with a time interval [ai, bj].

each arc is associated with a travel time tij

each vertex is associated with a service time si

Task:
Find a collection of K simple circuits with minimum cost, such that:

each circuit visit the depot vertex

each customer vertex is visited by exactly one circuit; and

the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.

for each customer i, the service starts within the time windows
[ai, bi] (it is allowed to wait until ai if early arrive)

15

Vehicle Routing
Integer Programming

Time windows induce an orientation of the routes.
16

Vehicle Routing
Integer Programming

Variants

Minimize number of routes
Minimize hierarchical objective function
Makespan VRP with Time Windows (MPTW)

minimizing the completion time
Delivery Man Problem with Time Windows (DMPTW)

minimizing the sum of customers waiting times

17

Vehicle Routing
Integer ProgrammingSolution Techniques for CVRP

Integer Programming

Construction Heuristics

Local Search

Metaheuristics

Hybridization with Constraint Programming

18

Vehicle Routing
Integer ProgrammingOutline

1. Vehicle Routing

2. Integer Programming

19

Vehicle Routing
Integer ProgrammingBasic Models

vehicle flow formulation

integer variables on the edges counting the number of time it is
traversed
two or three index variables

commodity flow formulation

additional integer variables representing the flow of
commodities along the paths traveled bu the vehicles

set partitioning formulation

20

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 25

Vehicle Routing
Mathematical Programming

Marco Chiarandini

Integer ProgrammingOutline

1. Integer Programming

2

Integer ProgrammingOutline

1. Integer Programming

3

Integer ProgrammingBasic Models

arc flow formulation

integer variables on the edges counting the number of time it is
traversed
one, two or three index variables

set partitioning formulation

multi-commodity network flow formulation for VRPTW

integer variables representing the flow of commodities along the
paths traveled by the vehicles and
integer variables representing times

4

Integer Programming

Two index arc flow formulation

min
∑
i∈V

∑
j∈V

cijxij (1)

s.t.
∑
i∈V

xij = 1 ∀j ∈ V \ {0} (2)

∑
j∈V

xij = 1 ∀i ∈ V \ {0} (3)

∑
i∈V

xi0 = K (4)

∑
j∈V

x0j = K (5)

∑
i∈S

∑
i6∈S

xij ≥ r(S) ∀S ⊆ V \ {0}, S 6= ∅ (6)

xij ∈ {0, 1} ∀i, j ∈ V (7)

5

Integer Programming

One index arc flow formulation

min
∑
e∈E

cexe (8)

s.t.
∑
e∈δ(i)

xe = 2 ∀i ∈ V \ {0} (9)

∑
e∈δ(0)

xe = 2K (10)

∑
e∈δS

xe ≥ 2r(S) ∀S ⊆ V \ {0}, S 6= ∅(11)

xe ∈ {0, 1} ∀e 6∈ δ(0)(12)

xe ∈ {0, 1, 2} ∀e ∈ δ(0)(13)

6

Integer Programming

Three index arc flow formulation

min
∑
i∈V

∑
j∈V

cij

K∑
k=1

xijk (14)

s.t.
K∑
k=1

yik = 1 ∀i ∈ V \ {0} (15)

K∑
k=1

y0k = 1 (16)∑
j∈V

xijk =
∑
j∈V

xjik = yik ∀i ∈ V, k = 1, . . . , K (17)

∑
i∈V

diyik ≤ C ∀k = 1, . . . , K (18)

∑
i∈S

∑
i6∈S

xijk ≥ yhk ∀S ⊆ V \ {0}, h ∈ S, k = 1, 1, . . . , K (19)

yik ∈ {0, 1} ∀i ∈ V, k = 1, . . . , K (20)

xijk ∈ {0, 1} ∀i, j ∈ V, k = 1, . . . , K (21)

7

Integer Programming

What can we do with these integer programs?

plug them into a commercial solver and try to solve them
preprocess them
determine lower bounds

solve the linear relaxation
combinatorial relaxations
relax some constraints and get an easy solvable problem
Lagrangian relaxation
polyhedral study to tighten the formulations

upper bounds via heuristics
branch and bound
cutting plane
branch and cut
column generation (via reformulation)
branch and price
Dantzig Wolfe decomposition
upper bounds via heuristics

8

Integer ProgrammingCombinatorial Relaxations
Lower bounding via combinatorial relaxations

Relax: capacity cut constraints (CCC)
or generalized subtour elimination constraints (GSEC) Consider both

ACVRP and SCVRP

Relax CCC in 2-index formulation
obtain a transportation problem
Solution may contain isolated circuits and exceed vertex capacity

Relax CCC in 1-index formulation
obtain a b-matching problem

min
∑
e∈E

cexe

s.t.
∑
e∈δ(i)

xe = bi ∀i ∈ V{0}

xe ∈ {0, 1} ∀e 6∈ δ(0)
xe ∈ {0, 1, 2} ∀e ∈ δ(0)

Solution has same problems as above
9

Integer Programming

relax in two index flow formulation:

min
∑
i∈V

∑
j∈V

cijxij

s.t.
∑
i∈V

xij = 1 ∀j ∈ V \ {0}

∑
j∈V

xij = 1 ∀i ∈ V \ {0}

∑
i∈V

xi0 = K

∑
j∈V

x0j = K

∑
i∈S

∑
i 6∈S

xij ≥ r(S)1 ∀S ⊆ V \ {0}, S 6= ∅

xij ∈ {0, 1} ∀i, j ∈ V

K-shortest spanning arborescence problem

10

Integer Programming

relax in two index formulation

min
∑
e∈E

cexe

s.t.
∑
e∈δ(i)

xe = 2 ∀i ∈ V \ {0}

∑
e∈δ(0)

xe = 2K

∑
e∈δS

xe ≥ 2r(S) ∀S ⊆ V \ {0}, S 6= ∅

xe ∈ {0, 1} ∀e 6∈ δ(0)
K-tree: min cost set of n+ K edges spanning the graph with degree
2K at the depot.

Lagrangian relaxation of the sub tour constraints iteratively added
after violation recognized by separation procedure.
Subgradient optimization for the multipliers.

11

Integer ProgrammingBranch and Cut

min
∑
e∈E

cexe (22)

s.t.
∑
e∈δ(i)

xe = 2 ∀i ∈ V \ {0} (23)

∑
e∈δ(0)

xe = 2K (24)

∑
e∈δS

xe ≥ 2dd(S)

C
e ∀S ⊆ V \ {0}, S 6= ∅ (25)

xe ∈ {0, 1} ∀e 6∈ δ(0) (26)

xe ∈ {0, 1, 2} ∀e ∈ δ(0) (27)

12

Integer ProgrammingBranch and Cut

Let LP(∞) be linear relaxation of IP

zLP(∞) ≤ zIP

Problems if many constraints

Solve LP(h) instead and add constraints later

If LP(h) has integer solution then we are done, that is optimal
If not, then zLP(h) ≤ zLP(h+1) ≤ zLP(∞) ≤ zIP

Crucial step: separation algorithm given a solution to LP(h) it tell
us if some constraints are violated.

If the procedure does not return an integer solution we proceed by branch
and bound

13

Integer Programming

Problems with B&C:

i) no good algorithm for the separation phase
it may be not exact in which case bounds relations still hold and we
can go on with branching

ii) number of iterations for cutting phase is too high

iii) program unsolvable because of size

iv) the tree explodes

The main problem is (iv).
Worth trying to strengthen the linear relaxation by inequalities that
although unnecessary in the integer formulation force the optimal
solution of LP and IP to get closer. è Polyhedral studies

14

Integer ProgrammingSet Covering Formulation

R = {1, 2, . . . , R} index set of routes

air =

{
1 if costumer i is served by r
0 otherwise

xr =

{
1 if route r is selected
0 otherwise

min
∑
r∈R

crxr (28)

s.t.
∑
r∈R

airxr ≥ 1 ∀i ∈ V (29)∑
r∈R

xr ≤ K (30)

xr ∈ {0, 1} ∀r ∈ R (31)
(32)

15

Integer Programming

Solving the SCP integer program

Branch and bound

Generate routes such that:
they are good in terms of cost
they reduce the potential for fractional solutions

constraint branching [Ryan, Foster, 1981]

∃ constraints r1, r2 : 0 <
∑

j∈J(r1,r2)

xj < 1

J(r1, r2) all columns covering r1, r2 simultaneously. Branch on:

/ \∑
j∈J(r1,r2)

xj ≤ 0
∑

j∈J(r1,r2)

xj ≥ 1

16

Integer Programming

Solving the SCP linear relaxation

Column Generation Algorithm

Step 1 Generate an initial set of columns R ′
Step 2 Solve problem P ′ and get optimal primal variables, x̄, and

optimal dual variables, (π̄, θ̄)

Step 3 Solve problem CG, or identify routes r ∈ R satisfying
c̄r < 0

Step 4 For every r ∈ R with c̄r < 0 add the column r to R ′ and
go to Step 2

Step 5 If no routes r have c̄r < 0, i.e., c̄min ≥ 0 then stop.

In most of the cases we are left with a fractional solution

17

Integer ProgrammingConvergence in CG

[plot by Stefano Gualandi, Milan Un.]
18

Integer Programming

Solving the SCP integer program:

cutting plane
branch and price

Cutting Plane Algorithm

Step 1 Generate an initial set R ′ of columns
Step 2 Solve, using column generation, the problem P ′ (linear

programming relaxation of P)
Step 3 If the optimal solution to P ′ is integer stop.

Else, generate cutting plane separating this fractional
solution.
Add these cutting planes to the linear program P ′

Step 4 Solve the linear program p ′. Goto Step 3.

Is the solution to this procedure overall optimal?

19

Integer Programming

Cuts

Intersection graph G = (V, E) where V are the routes and E is made by
the links between routes that intercept
Independence set in G is a collection of routes where each customer is
visited only once.

Clique constraints ∑
r∈K

x̄r ≤ 1 ∀ cliques K of G

Cliques searched heuristically

Odd holes
Odd hole: odd cycle with no chord∑

r∈H
x̄r ≤ |H| − 1

2
∀ odd holes H

Generation via layered graphs
20

Integer Programming

[illustration by Stefano Gualandi, Milan Un.]
(the pricing problem is for a GCP)

21

Integer Programming

Branch and price

it must be possible to incorporate information on the node in the
column generation procedure

easy to incorporate xr = 1, just omit nodes in Sr from generation;
but not clear how to impose xr = 0.

different branching: on the edges: xij = 1 then in column generation
set cij = −∞; if xij = 0 then cij =∞

22

Integer Programming

Implementation details

throw out from LP columns that have not been basic for a long time
good procedures to generate good columns
generate columns that are disjoint, collectively exhaustive and of
minimal cost

23

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 26

Vehicle Routing
Mathematical Programming

Marco Chiarandini

Integer ProgrammingOutline

1. Integer Programming

2

Integer ProgrammingOutline

1. Integer Programming

3

Integer ProgrammingVRPTW

min
∑
k∈K

∑
(i,j)∈A

cijxijk (1)

s.t.
∑
k∈K

∑
(i,j)∈δ+(i)

xijk = 1 ∀i ∈ V (2)

∑
(i,j)∈δ+(0)

xijk =
∑

(i,j)∈δ−(0)

xijk = 1 ∀k ∈ K (3)

∑
(i,j)∈δ−(i)

xjik −
∑

(i,j)∈δ+(i)

xijk = 0 i ∈ V, k ∈ K (4)

∑
(i,j)∈A

dixijk ≤ C ∀k ∈ K (5)

xijk(wik + tij) ≤ wjk ∀k ∈ K, (i, j) ∈ A (6)
ai ≤ wik ≤ bi ∀k ∈ K, i ∈ V (7)
xijk ∈ {0, 1} (8)

4

Integer ProgrammingPre-processing

Arc elimination
ai + tij > bj Ü arc (i, j) cannot exist
di + dj > C Ü arcs (i, j) and (j, i) cannot exist

Time windows reduction
[ai, bi]← [max{a0 + t0i, ai},min{bn+1 − ti,n+1, bi}] why?

5

Integer Programming

Time windows reduction:

Iterate over the following rules until no one applies anymore:

6

Integer ProgrammingLower Bounds

Combinatorial relaxation
reduce to network flow problem

Lagrangian relaxation
not very good because easy to not satisfy the capacity and time
windows constraints

7

Integer ProgrammingDantzig Wolfe Decomposition

The VRPTW has the structure:

min ckxk∑
k∈K

Akxk ≤ b

Dkxk ≤ dk ∀k ∈ K
xk ∈ Z ∀k ∈ K

8

Integer ProgrammingDantzig Wolfe Decomposition

Illustrated with matrix blocks

[illustration by Simon Spoorendonk, DIKU]

9

Integer Programming

Linking constraint in VRPTW is
∑
k∈K
∑

(i,j)∈δ+(i) xijk = 1, ∀i. The
description of the block Dkxk ≤ dk is all the rest:

∑
(i,j)∈A

dixij ≤ C (9)

∑
j∈V

x0j =
∑
i∈V

xi,n+1 = 1 (10)

∑
i∈V

xih −
∑
j∈V

xhj = 0 ∀h ∈ V (11)

wi + tij −Mij(1− xij) ≤ wj ∀(i, j) ∈ A (12)
ai ≤ wi ≤ bi ∀i ∈ V (13)
xij ∈ {0, 1} (14)

where we omitted the index k because, by the assumption of
homogeneous fleet, all blocks are equal.

10

Integer ProgrammingDantzig Wolfe Decomposition

[illustration by Simon Spoorendonk, DIKU]

11

Integer Programming

Master problem

A Set Partitioning Problem

min
∑
p∈P

cijαijpλp (15)

∑
p∈P

∑
(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ V (16)

λp = {0, 1} ∀p ∈ P (17)

where P is the set of valid paths and αijp =

{
0 if (i, j) 6∈ p
1 otherwise

Subproblem

Elementary Shortest Path Problem with Resource Constraints (ESPPRC)

arcs modified with duals (possible negative costs), NP-hard

find shortest path without violating resource limits
12

Integer ProgrammingSubproblem

min
∑

(i,j)∈A
ĉijxij (18)

s.t.
∑

(i,j)∈A
dixij ≤ C (19)

∑
j∈V

x0j =
∑
i∈V

xi,n+1 = 1 (20)

∑
i∈V

xih −
∑
j∈V

xhj = 0 ∀h ∈ V (21)

wi + tij −Mij(1− xij) ≤ wj ∀(i, j) ∈ A (22)
ai ≤ wi ≤ bi ∀i ∈ V (23)
xij ∈ {0, 1} (24)

13

Integer ProgrammingSubproblem

Solution Approach:

Solved by dynamic programming. Algorithms maintain labels at
vertices and remove dominated labels. Domination rules are crucial.

relaxing and allowing cycles the problem can be sovled in
pseudo-polynomial time.
Negative cycles are however limited by the resource constraints

optimal solution has only elementary routes if triangle inequality
holds.
Otherwise post-process by cycle elimination procedures

For details see chp. 2 of [B11]

14

Integer ProgrammingBranch and Bound
Cuts in the original three index problem formulation (before DWD)

[illustration by Simon Spoorendonk, DIKU]
15

Integer Programming

Branching

branch on
∑
k xijk

choose a candidate not close to 0 or 1
max cijmin{xijk, 1− xijk)

branch on time windows
split time windows s.t. at least one route becomes infeasible
compute [lri , u

r
i] (earliest latest) for the current fractional flow

Li = max
fract. routes r

{lri } ∀i ∈ V
Ui = max

fract. routes r
{uri } ∀i ∈ V

if Li > Ui è at least two routes have disjoint feasibility intervals

16

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 27

Vehicle Routing
Heuristics

Marco Chiarandini

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Construction Heuristics
Construction Heuristics for CVRP
Construction Heuristics for VRPTW

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

2

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTWOutline

1. Construction Heuristics
Construction Heuristics for CVRP
Construction Heuristics for VRPTW

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

3

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTWConstruction Heuristics for CVRP

TSP based heuristics

Savings heuristics (Clarke and Wright)

Insertion heuristics

Cluster-first route-second
Sweep algorithm
Generalized assignment
Location based heuristic
Petal algorithm

Route-first cluster-second

Cluster-first route-second seems to perform better
(Note: Distinction Construction Heuristic / Iterative Improvement
is often blurred)

5

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Construction heuristics for TSP
They can be used for route-first cluster-second or for growing multiple
tours subject to capacity constraint.

Heuristics that Grow Fragments
Nearest neighborhood heuristics
Double-Ended Nearest Neighbor heuristic
Multiple Fragment heuristic (aka, greedy heuristic)

Heuristics that Grow Tours
Nearest Addition
Farthest Addition
Random Addition

Clarke-Wright savings heuristic

Nearest Insertion
Farthest Insertion
Random Insertion

Heuristics based on Trees
Minimum spanning tree heuristic
Christofides’ heuristics

(But recall! Concorde: http://www.tsp.gatech.edu/)
6

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

[Bentley, 1992]

NN (Flood, 1956)
1. Randomly select a starting node
2. Add to the last node the closest node until no more node is available
3. Connect the last node with the first node

Running time O(N2)

7

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

[Bentley, 1992]

Add the cheapest edge provided it does not create a cycle.

8

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

[Bentley, 1992]

NA
1. Select a node and its closest node and build a tour of two nodes
2. Insert in the tour the closest node v until no more node is available

Running time O(N3)

9

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

[Bentley, 1992]

FA
1. Select a node and its farthest and build a tour of two nodes
2. Insert in the tour the farthest node v until no more node is available

FA is more effective than NA because the first few farthest points sketch
a broad outline of the tour that is refined after.

Running time O(N3)
10

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

[Bentley, 1992]

11

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

[Bentley, 1992]

1. Find a minimum spanning tree O(N2)

2. Append the nodes in the tour in a depth-first, inorder traversal

Running time O(N2) A = MST(I)/OPT(I) ≤ 2
12

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

[Bentley, 1992]

1. Find the minimum spanning tree T. O(N2)

2. Find nodes in T with odd degree and find the cheapest perfect
matching M in the complete graph consisting of these nodes only.
Let G be the multigraph all nodes and edges in T and M. O(N3)

3. Find an Eulerian walk (each node appears at least once and each
edge exactly once) on G and an embedded tour. O(N)

Running time O(N3) A = CH(I)/OPT(I) ≤ 3/2
13

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Construction Heuristics Specific for VRP

Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is

the depot for VRP or any chosen city for TSP)
Sequential:
2. consider in turn route (0, i, . . . , j, 0) determine ski and sjl
3. merge with (k, 0) or (0, l)

14

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Construction Heuristics Specific for VRP

Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is

the depot for VRP or any chosen city for TSP)
Parallel:
2. Calculate saving sij = c0i + c0j − cij and order the saving in non-

increasing order
3. scan sij

merge routes if i) i and j are not in the same tour ii) neither i and j
are interior to an existing route iii) vehicle and time capacity are not
exceeded 14

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

15

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Matching Based Saving Heuristic

1. Start with an initial allocation of one vehicle to each customer (0 is
the depot for VRP or any chosen city for TSP)

2. Compute spq = t(Sp) + t(Sq) − t(Sp ∪ Sq) where t(·) is the TSP
solution

3. Solve a max weighted matching on the Sk with weights spq on
edges. A connection between a route p and q exists only if the
merging is feasible.

16

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Insertion Heuristic

α(i, k, j) = cik + cki − λcij

β(i, k, j) = µc0k − α(i, k, j)

1. construct emerging route (0, k, 0)

2. compute for all k unrouted the feasible insertion cost:

α∗(ik, k, jk) = min
p

{α(ip, k, ip+1)}

if no feasible insertion go to 1 otherwise choose k∗ such that

β∗(i∗k, k
∗, j∗k) = max

k
{β(ik, k, jk}

17

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Cluster-first route-second: Sweep algorithm [Wren & Holliday (1971)]

1. Choose i∗ and set θ(i∗) = 0 for the rotating ray
2. Compute and rank the polar coordinates (θ, ρ) of each point
3. Assign customers to vehicles until capacity not exceeded. If needed

start a new route. Repeat until all customers scheduled.

18

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

19

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Cluster-first route-second: Generalized-assignment-based algorithm
[Fisher & Jaikumur (1981)]

1. Choose a jk at random for each route k
2. For each point compute

dik = min{c0,i + ci,jk
+ cjk,0, c0jk

+ cjk,i + ci,0} − (c0,jk
+ cjk,0)

3. Solve GAP with dik, Q and qi

20

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Cluster-first route-second: Location based heuristic [Bramel & Simchi-Levi
(1995)]

1. Determine seeds by solving a capacited location problem (k-median)

2. Assign customers to closest seed

(better performance than insertion and saving heuristics)

21

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Cluster-first route-second: Petal Algorithm

1. Construct a subset of feasible routes

2. Solve a set partitioning problem

22

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Route-first cluster-second [Beasley, 1983]

1. Construct a TSP tour over all customers

2. Choose an arbitrary orientation of the TSP;
partition the tour according to capacity constraint;
repeat for several orientations and select the best
Alternatively, solve a shortest path in an acyclic digraph with cots on
arcs: dij = c0i + c0j + lij where lij is the cost of traveling from i to
j in the TSP tour.

(not very competitive)

23

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTWExercise

Which heuristics can be used to minimize K
and which ones need to have K fixed a priori?

24

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTWConstruction Heuristics for VRPTW

Extensions of those for CVRP [Solomon (1987)]

Savings heuristics (Clarke and Wright)

Time-oriented nearest neighbors

Insertion heuristics

Time-oriented sweep heuristic

26

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Time-Oriented Nearest-Neighbor

Add the unrouted node “closest” to the depot or the last node added
without violating feasibility
Metric for “closest”:

cij = δ1dij + δ2Tij + δ3vij

dij geographical distance

Tij time distance

vij urgency to serve j

27

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Insertion Heuristics
Step 1: Compute for each unrouted costumer u the best feasible

position in the route:

c1(i(u), u, j(u)) = min
p=1,...,m

{c1(ip−1, u, ip)}

(c1 is a composition of increased time and increase route
length due to the insertion of u)
(use push forward rule to check feasibility efficiently)

Step 2: Compute for each unrouted customer u which can be
feasibly inserted:

c2(i(u∗), u∗, j(u∗)) = max
u

{λd0u − c1(i(u), u, j(u))}

(max the benefit of servicing a node on a partial route
rather than on a direct route)

Step 3: Insert the customer u∗ from Step 2
28

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Constr. Heur. for CVRP
Constr. Heur. for VRPTW

Let’s assume waiting is allowed and si indicates service times

bi = max{ei, bj + sj + tji} begin of service

insertion of u: (i0, i1, . . . , ip,u, ip+1, . . . , im)

PFip+1
= bnew

ip+1
− bip+1

≥ 0 push forward

PFir+1
= max{0, PFir −wir+1

}, p ≤ r ≤ m− 1

Theorem
The insertion is feasible if and only if:

bu ≤ lu and PFir + bir ≤ lir ∀p < r ≤ m
Check vertices k, u ≤ k ≤ m sequentially.

if bk + PFk > lk then stop: the insertion is infeasible
if PFk = 0 then stop: the insertion is feasible

29

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Construction Heuristics
Construction Heuristics for CVRP
Construction Heuristics for VRPTW

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

30

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPLocal Search for CVRP and VRPTW

Neighborhoods structures:

Intra-route: 2-opt, 3-opt, Lin-Kernighan (not very well suited)
2H-opt, Or-opt

Inter-routes: λ-interchange, relocate, exchange, cross, 2-opt∗,
ejection chains, GENI

Solution representation and data structures
They depend on the neighborhood.
It can be advantageous to change them from one stage to another of
the heuristic

31

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPIntra-route Neighborhoods

2-opt

{i, i+ 1}{j, j+ 1} −→ {i, j}{i+ 1, j+ 1}

i i+1

jj+1

i i+1

jj+1

O(n2) possible exchanges
One path is reversed

32

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPIntra-route Neighborhoods

3-opt

{i, i+ 1}{j, j+ 1}{k, k+ 1} −→ . . .

i i+1

kk+1

j

j+1

i i+1

kk+1

j

j+1

i i+1

kk+1

j

j+1

O(n3) possible exchanges
Paths can be reversed

33

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPIntra-route Neighborhoods

Or-opt [Or (1976)]
{i1 − 1, i1}{i2, i2 + 1}{j, j+ 1} −→ {i1 − 1, i2 + 1}{j, i1}{i2, j+ 1}

jj+1

i −11 i +1

i 21

2

i

jj+1

i −11 i +1

i 21

2

i

sequences of one, two, three consecutive vertices relocated
O(n2) possible exchanges — No paths reversed

34

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPInter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

35

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPInter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

36

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPInter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

37

Inter-route Neighborhoods

GENI: generalized insertion [Gendreau, Hertz, Laporte, Oper. Res. (1992)]

select the insertion restricted to the neighborhood of the vertex to
be added (not necessarily between consecutive vertices)
perform the best 3- or 4-opt restricted to reconnecting arc links that
are close to one another.

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPEfficient Implementation

Intra-route

Time windows: Feasibility check

In TSP verifying k-optimality requires O(nk) time
In TSPTW feasibility has to be tested then O(nk+1) time

(Savelsbergh 1985) shows how to verify constraints in constant time
Search strategy + Global variables

⇓
O(nk) for k-optimality in TSPTW

39

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Search Strategy

Lexicographic search, for 2-exchange:
i = 1, 2, . . . , n− 2 (outer loop)
j = i+ 2, i+ 3, . . . , n (inner loop)

1

2

3

4

5

{1,2}{3,4}−>{1,3}{2,4}1

2

3

4

5

{1,2}{4,5}−>{1,4}{2,5}1

2

3

4

5

Previous path is expanded by the edge {j− 1, j}

40

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Global variables (auxiliary data structure)

Maintain auxiliary data such that it is possible to:

handle single move in constant time

update their values in constant time

Ex.: in case of time windows:

total travel time of a path

earliest departure time of a path

latest arrival time of a path

41

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Construction Heuristics
Construction Heuristics for CVRP
Construction Heuristics for VRPTW

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

42

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPMetaheuristics

Many and fancy examples, but first thing to try:

Variable Neighborhood Search + Iterated greedy

43

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Basic Variable Neighborhood Descent (BVND)

Procedure VND
input : Nk, k = 1, 2, . . . , kmax, and an initial solution s
output: a local optimum s for Nk, k = 1, 2, . . . , kmax

k← 1

repeat
s ′ ← FindBestNeighbor(s,Nk)
if g(s ′) < g(s) then

s← s ′

(k← 1)
else

k← k+ 1

until k = kmax ;

44

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Variable Neighborhood Descent (VND)

Procedure VND
input : Nk, k = 1, 2, . . . , kmax, and an initial solution s
output: a local optimum s for Nk, k = 1, 2, . . . , kmax

k← 1

repeat
s ′ ← IterativeImprovement(s,Nk)
if g(s ′) < g(s) then

s← s ′

(k← 1)
else

k← k+ 1

until k = kmax ;

45

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Final solution is locally optimal w.r.t. all neighborhoods

First improvement may be applied instead of best improvement

Typically, order neighborhoods from smallest to largest

If iterative improvement algorithms IIk, k = 1, . . . , kmax

are available as black-box procedures:
order black-boxes
apply them in the given order
possibly iterate starting from the first one
order chosen by: solution quality and speed

46

General recommendation: use a combination of 2-opt∗ + or-opt [Potvin,
Rousseau, (1995)]

However,

Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

It is important to make such algorithms as much efficient as possible.

Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often
a trade-off between examination cost and solution quality must be
decided.

The assessment is conducted through:
analytical analysis (computational complexity)
experimental analysis

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPIterated Greedy

Key idea: use the VRP cosntruction heuristics

alternation of Construction and Deconstruction phases
an acceptance criterion decides whether the search continues from
the new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
apply subsidiary iterative improvement procedure (eg, VNS)
based on acceptance criterion,

keep s or revert to s := r

49

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

In the literature, the overall heuristic idea received different names:

Removal and reinsertion

Ruin and repair

Iterated greedy

Fix and re-optimize

50

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Remove
Remove some related customers
(their re-insertion is likely to change something)

Relatedness measure rij

geographical

rij =
1

D
(d ′(i, j) + d ′(i, j+ n) + d ′(i+ n, j) + d ′(i+ n, j+ n))

temporal and load based

d ′(u, v) = |Tpi
− Tpj

| + |Tdi
− Tdj

| + |li − lj|

cluster removal

history based: neighborhood graph removal

51

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Dispersion sub-problem:
choose q customers to remove with minimal rij

Heuristic stochastic procedure:

choose a pair randomly;
select an already removed i and find j that minimizes rij

52

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Insertion procedures:

Greedy (cheapest insertion)

Max regret:

∆f
q
i due to insert i into its best position in its qth best route

i = arg max(∆f2i − ∆f1i)

Constraint Programming (max 20 costumers)

53

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Advantages of removal-reinsert procedure with many side constraints:

the search space in local search may become disconnected

it is easier to implement feasibility checks

no need of computing delta functions in the objective function

54

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Further ideas

Adaptive removal: start by removing 1 pair and increase after a
certain number of iterations

use of roulette wheel to decide which removal and reinsertion
heuristic to use

pi =
πi∑
πi

for each heuristic i

SA as accepting criterion after each reconstruction

55

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Construction Heuristics
Construction Heuristics for CVRP
Construction Heuristics for VRPTW

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

56

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPPerformance of exact methods

Current limits of exact methods [Ropke, Pisinger (2007)]:

CVRP: up to 135 customers by branch and cut and price

VRPTW: 50 customers (but 1000 customers can be solved if the
instance has some structure)

CP can handle easily side constraints but hardly solve VRPs with more
than 30 customers.

57

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRPLarge Neighborhood Search

Other approach with CP: [Shaw, 1998]

Use an over all local search scheme

Moves change a large portion of the solution

CP system is used in the exploration of such moves.

CP used to check the validity of moves and determine the values of
constrained variables

As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.

58

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Solution representation:

Handled by local search:
Next pointers: A variable ni for every customer i representing the
next visit performed by the same vehicle

ni ∈ N ∪ S ∪ E

where S =
⋃
Sk and E =

⋃
Ek are additional visits for each vehicle

k marking the start and the end of the route for vehicle k

Handled by the CP system: time and capacity variables.

59

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Insertion
by CP:

constraint propagation rules: time windows, load and bound
considerations

search heuristic most constrained variable + least constrained valued
(for each v find cheapest insertion and choose v with largest such
cost)

Complete search: ok for 15 visits (25 for VRPTW) but with heavy
tails

Limited discrepancy search

60

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

[Shaw, 1998]

61

DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 28

Rich Vehicle Routing Problems

Marco Chiarandini

A Uniform Model
Other Variants of VRPOutline

1. A Uniform Model

2. Other Variants of VRP

2

A Uniform Model
Other Variants of VRPOutline

1. A Uniform Model

2. Other Variants of VRP

3

A Uniform Model
Other Variants of VRPEfficient Local Search

Blackboard [Irnich 2008].

4

A Uniform Model
Other Variants of VRPOutline

1. A Uniform Model

2. Other Variants of VRP

5

A Uniform Model
Other Variants of VRPRich VRP

Definition
Rich Models are non idealized models that represetn the appliucation at
hand in an adequate way by including all important optimization criteria,
constraints and preferences [Hasle et al., 2006]

Solution

Exact methods are often impractical:

instancs are too large

decision support systems require short response times

Metaheuristics based on local search components are mostly used

6

A Uniform Model
Other Variants of VRPVRP with Backhauls

Further Input from CVRP:
a partition of customers:
L = {1, . . . , n} Lineahaul customers (deliveries)
B = {n + 1, . . . , n + m} Backhaul customers (collections)
precedence constraint:
in a route, customers from L must be served before customers from
B

Task: Find a collection of K simple circuits with minimum costs, such
that:

each circuit visit the depot vertex
each customer vertex is visited by exactly one circuit; and
the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.
in any circuit all the linehaul customers precede the backhaul
customers, if any.

7

A Uniform Model
Other Variants of VRPVRP with Pickup and Delivery

Further Input from CVRP:
each customer i is associated with quantities di and pi to be
delivered and picked up, resp.
for each customer i, Oi denotes the vertex that is the origin of the
delivery demand and Di denotes the vertex that is the destination of
the pickup demand

Task:
Find a collection of K simple circuits with minimum costs, such that:

each circuit visit the depot vertex
each customer vertex is visited by exactly one circuit; and
the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

for each customer i, the customer Oi when different from the depot,
must be served in the same circuit and before customer i

for each customer i, the customer Di when different from the depot,
must be served in the same circuit and after customer i

8

A Uniform Model
Other Variants of VRPMultiple Depots VRP

Further Input from CVRP:
multiple depots to which customers can be assigned
a fleet of vehicles at each depot

Task:
Find a collection of K simple circuits for each depot with minimum costs,
such that:

each circuit visit the depot vertex
each customer vertex is visited by exactly one circuit; and
the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

vehicles start and return to the depots they belong
Vertex set V = {1, 2, . . . , n} and V0 = {n + 1, . . . , n + m}

Route i defined by Ri = {l, 1, . . . , l}

9

A Uniform Model
Other Variants of VRPPeriodic VRP

Further Input from CVRP:
planning period of M days

Task:
Find a collection of K simple circuits with minimum costs, such that:

each circuit visit the depot vertex
each customer vertex is visited by exactly one circuit; and
the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

A vehicle may not return to the depot in the same day it departs.
Over the M-day period, each customer must be visited l times,
where 1 ≤ l ≤ M.

10

A Uniform Model
Other Variants of VRP

Three phase approach:
1. Generate feasible alternatives for each customer.

Example, M = 3 days {d1, d2, d3} then the possible combinations
are: 0 → 000; 1 → 001; 2 → 010; 3 → 011; 4 → 100; 5 → 101;
6 → 110; 7 → 111.
Customer Diary De-

mand
Number of
Visits

Number of
Combina-
tions

Possible
Combina-
tions

1 30 1 3 1,2,4
2 20 2 3 3,4,6
3 20 2 3 3,4,6
4 30 2 3 1,2,4
5 10 3 1 7

2. Select one of the alternatives for each customer, so that the daily
constraints are satisfied. Thus, select the customers to be visited in
each day.

3. Solve the vehicle routing problem for each day.

11

A Uniform Model
Other Variants of VRPSplit Delivery VRP

Constraint Relaxation: it is allowed to serve the same customer by
different vehicles. (necessary if di > Q)

Task:
Find a collection of K simple circuits with minimum costs, such that:

each circuit visit the depot vertex
the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

Note: a SDVRP can be transformed into a VRP by splitting each
customer order into a number of smaller indivisible orders [Burrows 1988].

12

A Uniform Model
Other Variants of VRPInventory VRP

Input:
a facility, a set of customers and a planning horizon T

ri product consumption rate of customer i (volume per day)

Ci maximum local inventory of the product for customer i

a fleet of M homogeneous vehicles with capacity Q

Task:
Find a collection of K daily circuits to run over the planing horizon with
minimum costs and such that:

each circuit visit the depot vertex
no customer goes in stock-out during the planning horizon
the current load of the vehicle along the circuit must be
non-negative and may never exceed Q

13

A Uniform Model
Other Variants of VRPOther VRPs

VRP with Satellite Facilities (VRPSF)

Possible use of satellite facilities to replenish vehicles during a route.

Open VRP (OVRP)

The vehicles do not need to return at the depot, hence routes are not
circuits but paths

Dial-a-ride VRP (DARP)

It generalizes the VRPTW and VRP with Pick-up and Delivery by
incorporating time windows and maximum ride time constraints

It has a human perspective

Vehicle capacity is normally constraining in the DARP whereas it is
often redundant in PDVRP applications (collection and delivery of
letters and small parcels)

14

