
DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 11

Single Machine Models, Branch and Bound

Marco Chiarandini

Single Machine ModelsOutline

1. Single Machine Models
Branch and Bound
1 | sjk |Cmax

2

Single Machine Models Branch and Bound
1 | sjk |CmaxOutline

1. Single Machine Models
Branch and Bound
1 | sjk |Cmax

3

Single Machine Models Branch and Bound
1 | sjk |Cmax1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is
optimal

5

Single Machine Models Branch and Bound
1 | sjk |Cmax

Branch and Bound
S root of the branching tree

1 LIST := {S};
2 U:=value of some heuristic solution;
3 current_best := heuristic solution;
4 while LIST 6= ∅
5 Choose a branching node k from LIST;
6 Remove k from LIST;
7 Generate children child(i), i = 1, . . . , nk, and calculate corresponding lower

bounds LBi;
8 for i:=1 to nk

9 if LBi < U then
10 if child(i) consists of a single solution then
11 U :=LBi;
12 current_best:=solution corresponding to child(i)
13 else add child(i) to LIST

6

Single Machine Models Branch and Bound
1 | sjk |CmaxBranch and Bound

[Jens Clausen (1999). Branch and Bound Algorithms
- Principles and Examples.]

Eager Strategy:
1. select a node
2. branch
3. for each subproblem compute bounds and compare with

incumbent solution
4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

Lazy Strategy:
1. select a node
2. compute bound
3. branch
4. store the new nodes together with the bound of the processed

node

(often used when selection criterion for next node is max depth)
7

Single Machine Models Branch and Bound
1 | sjk |Cmax

Components

- Initial feasible solution (heuristic) – might be crucial!
1. Bounding function
2. Strategy for selecting
3. Branching
- Fathmoing (dominance test)

8

Single Machine Models Branch and Bound
1 | sjk |Cmax

Bounding

min
s∈P

g(s) ≤
{

mins∈P f(s)
mins∈S g(s)

}
≤ min

s∈S
f(s)

P : candidate solutions; S ⊆ P feasible solutions

relaxation: mins∈P f(s)
solve (to optimality) in P but with g

Lagrangian relaxation combines the two

should be polytime and strong (trade off)

9

Single Machine Models Branch and Bound
1 | sjk |Cmax

Strategy for selecting next subproblem

best first
(combined with eager strategy but also with lazy)

breadth first
(memory problems)

depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds
combined with branching on the node with the largest difference in
bound between the children)
(it seems to perform best)

10

Single Machine Models Branch and Bound
1 | sjk |Cmax

Branching

dichotomic

polytomic

Overall guidelines

finding good initial solutions is important

if initial solution is close to optimum then the selection strategy
makes little difference

Parallel B&B: distributed control or a combination are better than
centralized control

parallelization might be used also to compute bounds if few nodes
alive

parallelization with static work load distribution is appealing with
large search trees

11

Single Machine Models Branch and Bound
1 | sjk |Cmax

Branch and bound vs backtracking

= a state space tree is used to solve a problem.

6= branch and bound does not limit us to any particular way of
traversing the tree (backtracking is depth-first)

6= branch and bound is used only for optimization problems.

Branch and bound vs A∗

= In A∗ the admissible heuristic mimics bounding

6= In A∗ there is no branching. It is a search algorithm.

6= A∗ is best first

12

Single Machine Models Branch and Bound
1 | sjk |Cmax1 | | ∑wjTj1 | | ∑wjTj1 | | ∑wjTj

Branching:
work backward in time

elimination criterion:
if pj ≤ pk and dj ≤ dk and wj ≥ wk then there is an optimal
schedule with j before k

Lower Bounding:
relaxation to preemptive case
transportation problem

min
n∑
j=1

Cmax∑
t=1

cjtxjt

s.t.
Cmax∑
t=1

xjt = pj , ∀j = 1, . . . , n

n∑
j=1

xjt ≤ 1, ∀t = 1, . . . , Cmax

xjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax
13

Single Machine Models Branch and Bound
1 | sjk |Cmax

[Pan and Shi, 2007]’s lower bounding through time indexed
Stronger but computationally more expensive

min
n∑
j=1

T−1∑
t=1

cjtyjt

s.t.
T−pj∑
t=1

cjt ≤ hj(t+ pj)

T−pj∑
t=1

yjt = 1, ∀j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

yjt ≤ 1, ∀t = 1, . . . , Cmax

yjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax

14

Single Machine Models Branch and Bound
1 | sjk |Cmax1 | sjk | Cmax1 | sjk | Cmax1 | sjk | Cmax

[Makespan with sequence-dependent setup times]

general case is NP-hard (traveling salesman reduction).

special case:

parameters for job j:
aj initial state

bj final state

such that:

sjk ∝ |ak − bj |

[Gilmore and Gomory, 1964] give an O(n2) algorithm

16

Single Machine Models Branch and Bound
1 | sjk |Cmax

assume b0 ≤ b1 ≤ . . . ≤ bn (k > j and bk ≥ bj)

one-to-one correspondence with solution of
TSP with n+ 1 cities
city 0 has a0, b0
start at b0 finish at a0

tour representation φ : {0, 1, . . . , n} 7→ {0, 1, . . . , n}
(permutation map, single linked array)

Hence,

min c(φ) =
n∑
i=1

ci,φ(i) (1)

φ(S) 6= S ∀S ⊂ V (2)

find φ∗ by ignoring (2)
make φ∗ a tour by interchanges chosen solving a min spanning tree
and applied in a certain order

17

Single Machine Models Branch and Bound
1 | sjk |Cmax

Interchange δjk

δjk(φ) = {φ′ |φ′(j) = φ(k), φ(k) = φ(j), φ′(l) = φ(l), ∀l 6= j, k}

Cost

cφ(δjk) = c(δjk(φ))− c(φ)
= ‖ [bj , bk] ∩ [aφ(j), aφ(k)] ‖

Theorem: Let φ∗ be a permutation that ranks the a that is k > j
implies aφ(k) ≥ aφ(j) then

c(φ∗) = min
φ
c(φ).

Lemma: If φ is a permutation consisting of cycles C1, . . . , Cp and
δjk is an interchange with j ∈ Cr and k ∈ Cs, r 6= s, then δjk(φ)
contains the same cycles except that Cr and Cs have been replaced
by a single cycle containing all their nodes.

18

Single Machine Models Branch and Bound
1 | sjk |Cmax

Theorem: Let δj1k1 , δj2k2 , . . . , δjpkp be the interchanges
corresponding to the arcs of a spanning tree of Gφ∗ . The arcs may
be taken in any order. Then φ′,

φ′ = δj1k1 ◦ δj2k2 ◦ . . . ◦ δjpkp(φ∗)

is a tour.

The p− 1 interchanges can be found by greedy algorithm
(similarity to Kruskal for min spanning tree)

Lemma: There is a minimum spanning tree in Gφ∗ that contains
only arcs δj,j+1.

Generally, c(φ′) 6= c(δj1k1) + c(δj2k2) + . . .+ c(δjpkp).

19

Single Machine Models Branch and Bound
1 | sjk |Cmax

node j in φ is of

{
Type I, if bj ≤ aφ(j)

Type II, otherwise

interchange jk is of

{
Type I, if lower node of type I
Type II, if lower node of type II

Order:
interchanges in Type I in decreasing order
interchanges in Type II in increasing order

Apply to φ∗ interchanges of Type I and Type II in that order.

Theorem: The tour found is a minimal cost tour.

20

Single Machine Models Branch and Bound
1 | sjk |Cmax

Resuming the final algorithm [Gilmore and Gomory, 1964]:

Step 1: Arrange bj in order of size and renumber jobs so that
bj ≤ bj+1, j = 1, . . . , n.

Step 2: Arrange aj in order of size.

Step 3: Define φ by φ(j) = k where k is the j + 1-smallest of the
aj .

Step 4: Compute the interchange costs cδj,j+1 , j = 0, . . . , n− 1

cδj,j+1 = ‖ [bj , bj+1] ∩ [aφ(j), aφ(i)] ‖

Step 5: While G has not one single component, Add to Gφ the arc
of minimum cost c(δj,j+1) such that j and j + 1 are in
two different components.

Step 6: Divide the arcs selected in Step 5 in Type I and II.
Sort Type I in decreasing and Type II increasing order of
index.
Apply the relative interchanges in the order.

21

Single Machine Models Branch and Bound
1 | sjk |CmaxSummary

1 | | ∑wjCj : weighted shortest processing time first is optimal

1 | | ∑j Uj : Moore’s algorithm

1 | prec| Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | | ∑hj(Cj) : dynamic programming in O(2n)

1 | | ∑wjTj : local search and dynasearch

1 | rj , (prec) | Lmax : branch and bound

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

1 | | ∑wjTj : column generation approaches

Multiobjective: Multicriteria Optimization 23

Single Machine Models Branch and Bound
1 | sjk |CmaxComplexity resume

Single machine, single criterion problems 1 | | γ1 | | γ1 | | γ:
Cmax P
Tmax P
Lmax P
hmax P∑
Cj P∑
wjCj P∑
U P∑
wjUj weakly NP-hard∑
T weakly NP-hard∑
wjTj strongly NP-hard∑
hj(Cj) strongly NP-hard

24

