Outline

DMP204

SCHEDULING,

TIMETABLING AND ROUTING

Lecture 12
Single Machine Models, Column Generation

Marco Chiarandini
Slides from David Pisinger's lectures at DIKU

Outline

1. Lagrangian Relaxation
2. Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition
Delayed Column Generation
3. Single Machine Models

1. Lagrangian Relaxation
2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column Generation
3. Single Machine Models

Relaxation

In branch and bound we find upper bounds by relaxing the problem
Relaxation

$$
\max _{s \in P} g(s) \geq\left\{\begin{array}{l}
\max _{s \in P} f(s) \\
\max _{s \in S} g(s)
\end{array}\right\} \geq \max _{s \in S} f(s)
$$

- P : candidate solutions;
- $S \subseteq P$ feasible solutions;
- $g(x) \geq f(x)$

Which constraints should be relaxed?

- Quality of bound (tightness of relaxation)
- Remaining problem can be solved efficiently
- Proper multipliers can be found efficiently
- Constraints difficult to formulate mathematically
- Constraints which are too expensive to write up

Tightness of relaxation

Different relaxations

- LP-relaxation
- Deleting constraint
- Lagrange relaxation
- Surrogate relaxation
- Semidefinite relaxation

Relaxations are often used in combination.

Relaxation strategies

Which constraints should be relaxed

- "the complicating ones"
- remaining problem is polynomially solvable (e.g. min spanning tree, assignment problem, linear programming)
- remaining problem is totally unimodular (e.g. network problems)
- remaining problem is NP-hard but good techniques exist (e.g. knapsack)
- constraints which cannot be expressed in MIP terms (e.g. cutting)
- constraints which are too extensive to express (e.g. subtour elimination in TSP)
$\max c x$

$$
\begin{array}{ll}
\text { s.t. } & A x \leq b \\
& D x \leq d \\
& x \in \mathbb{Z}_{+}^{n}
\end{array}
$$

LP-relaxation:

$$
\max \left\{c x: x \in \operatorname{conv}\left(A x \leq b, D x \leq d, x \in \mathbb{Z}_{+}\right)\right\}
$$

\rightsquigarrow Lagrangian Relaxation:

$$
\begin{aligned}
\max & z_{L R}(\lambda)=c x-\lambda(D x-d) \\
\text { s.t. } & A x \leq b \\
& x \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

LP-relaxation:

$$
\max \left\{c x: D x \leq d, x \in \operatorname{conv}\left(A x \leq b, x \in \mathbb{Z}_{+}\right)\right\}
$$

Subgradient optimization Lagrange multipliers

$$
\begin{aligned}
\max & z=c x \\
\text { s.t. } & A x \leq b \\
& D x \leq d \\
& x \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

Lagrange Relaxation, multipliers $\lambda \geq 0$
$\max z_{L R}(\lambda)=c x-\lambda(D x-d)$
s.t. $A x \leq b$

Lagrange Dual Problem

$$
z_{L D}=\min _{\lambda \geq 0} z_{L R}(\lambda)
$$

- We do not need best multipliers in $B \& B$ algorithm
- Subgradient optimization fast method
- Works well due to convexity
- Roots in nonlinear programming, Held and Karp (1971)

Subgradient optimization, motivation

Netwon-like method to minimize a function in one variable

Lagrange function $z_{L R}(\lambda)$ is piecewise linear and convex

Proposition Given a choice of nonnegative multipliers $\bar{\lambda}$. If x^{\prime} is an optimal solution to $z_{L R}(\lambda)$ then

$$
\gamma=d-D x^{\prime}
$$

is a subgradient of $z_{L R}(\lambda)$ at $\lambda=\bar{\lambda}$.
Proof We wish to prove that from the subgradient definition:

$$
\max _{A x \leq b}(c x=\lambda(D x-d)) \geq \gamma(\lambda-\bar{\lambda})+\max _{A x \leq b}(c x-\bar{\lambda}(D x-d))
$$

where x^{\prime} is an opt. solution to the right-most subproblem.
Inserting γ we get:

$$
\begin{aligned}
\max _{A x \leq b}(c x-\lambda(D x-d)) & \geq\left(d-D x^{\prime}\right)(\lambda-\bar{\lambda})+\left(c x^{\prime}-\bar{\lambda}\left(D x^{\prime}-d\right)\right) \\
& =c x^{\prime}-\lambda\left(D x^{\prime}-d\right)
\end{aligned}
$$

Subgradient

Generalization of gradients to non-differentiable functions.
Definition
An m-vector γ is subgradient of $f(\lambda)$ at $\lambda-\bar{\lambda}$ if

$$
f(\lambda) \geq f(\bar{\lambda})+\gamma(\lambda-\bar{\lambda})
$$

The inequality says that the hyperplane

$$
y=f(\bar{\lambda})+\gamma(\lambda-\bar{\lambda})
$$

is tangent to $y=f(\lambda)$ at $\lambda-\bar{\lambda}$ and supports $f(\lambda)$ from below

Intuition

Lagrange relaxation

$$
\begin{aligned}
\max & z_{L R}(\lambda)=c x-\lambda(D x-d) \\
\text { s.t. } & A x \leq b \\
& x \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

Gradient in x^{\prime} is

$$
\gamma=d-D x^{\prime}
$$

Subgradient Iteration

Recursion

$$
\lambda^{k+1}=\max \left\{\lambda^{k}-\theta \gamma^{k}, 0\right\}
$$

where $\theta>0$ is step-size
If $\gamma>0$ and θ is sufficiently small $z_{L R}(\lambda)$ will decrease.

- Small θ slow convergence
- Large θ unstable

Held and Karp

Initially

$$
\lambda^{(0)}=\{0, \ldots, 0\}
$$

compute the new multipliers by recursion

$$
\lambda_{i}^{(k+1)}:= \begin{cases}\lambda_{i}^{(k)} & \text { if }\left|\gamma_{i}\right| \leq \varepsilon \\ \max \left(\lambda_{i}^{(k)}-\theta \gamma_{i}, 0\right) & \text { if }\left|\gamma_{i}\right|>\varepsilon\end{cases}
$$

where γ is subgradient.
The step size θ is defined by

$$
\theta=\mu \frac{\bar{z}-\underline{z}}{\sum_{i} \gamma_{i}^{2}}
$$

where μ is an appropriate constant.
E.g. $\mu=1$ and halved if upper bound not decreased in 20 iterations

Lagrange relaxation and LP

For an LP-problem where we Lagrange relax all constraints

- Dual variables are best choice of Lagrange multipliers
- Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

- Iterative algorithms
- Polynomial algorithms

Dantzig-Wolfe Decomposition

Motivation

- split it up into smaller pieces a large or difficult problem

Applications

- Cutting Stock problems
- Multicommodity Flow problems
- Facility Location problems
- Capacitated Multi-item Lot-sizing problem
- Air-crew and Manpower Scheduling
- Vehicle Routing Problems
- Scheduling (current research)

Two currently most promising directions for MIP

- Branch-and-price
- Branch-and-cut

Motivation: Cutting stock problem

Dantzig-Wolfe Decomposition

The problem is split into a master problem and a subproblem

+ Tighter bounds
+ Better control of subproblem
- Model may become (very) large

Delayed column generation

Write up the decomposed model gradually as needed

- Generate a few solutions to the subproblems
- Solve the master problem to LP-optimality
- Use the dual information to find most promising solutions to the subproblem
- Extend the master problem with the new subproblem solutions.

Formulation 1

$$
\begin{array}{ll}
\operatorname{minimize} & u_{1}+u_{2}+u_{3}+u_{4}+u_{5} \\
\text { subject to } & 5 x_{11}+3 x_{12} \leq 22 u_{1} \\
& 5 x_{21}+3 x_{22} \leq 22 u_{2} \\
& 5 x_{31}+3 x_{32} \leq 22 u_{3} \\
& 5 x_{41}+3 x_{42} \leq 22 u_{4} \\
& 5 x_{51}+3 x_{52} \leq 22 u_{5} \\
& x_{11}+x_{21}+x_{31}+x_{41}+x_{51} \geq 7 \\
& x_{12}+x_{22}+x_{32}+x_{42}+x_{52} \geq 3 \\
& u_{j} \in\{0,1\} \\
& x_{i j} \in \mathbb{Z}_{+}
\end{array}
$$

LP-relaxation gives solution value $z=2$ with

$$
u_{1}=u_{2}=1, x_{11}=2.6, x_{12}=3, x_{21}=4.4
$$

Block structure

- Infinite number of raw stocks, having length L.
- Cut m piece types i, each having width w_{i} and demand b_{i}.
- Satisfy demands using least possible raw stocks.

Example:

- $w_{1}=5, b_{1}=7$
- $w_{2}=3, b_{2}=$

- Raw length $L=22$

Some possible cuts

Formulation 2

The matrix A contains all different cutting patterns All (undominated) patterns:

$$
A=\left(\begin{array}{lllll}
4 & 0 & 1 & 2 & 3 \\
0 & 7 & 5 & 4 & 2
\end{array}\right)
$$

Problem

$$
\begin{aligned}
\text { minimize } & \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5} \\
\text { subject to } & 4 \lambda_{1}+0 \lambda_{2}+1 \lambda_{3}+2 \lambda_{4}+3 \lambda_{5} \geq 7 \\
& 0 \lambda_{1}+7 \lambda_{2}+5 \lambda_{3}+4 \lambda_{4}+2 \lambda_{5} \geq 3 \\
& \lambda_{j} \in \mathbb{Z}_{+}
\end{aligned}
$$

LP-relaxation gives solution value $z=2.125$ with

$$
\lambda_{1}=1.375, \lambda_{4}=0.75
$$

Due to integer property a lower bound is $[2.125\rceil=3$ Optimal solution value is $z^{*}=3$.

Round up LP-solution getting heuristic solution $z_{H}=3$

Decomposition

$$
\begin{array}{lllllll}
\text { If model has "block" structure } \\
\begin{array}{cccccc}
\\
\max & c^{1} x^{1} & + & c^{2} x^{2} & +\ldots+ & c^{K} x^{K} \\
\text { s.t. } & A^{1} x^{1} & + & A^{2} x^{2} & +\ldots+ & \\
& D^{1} x^{1} & + & & & A^{K} x^{K}
\end{array} & =b \\
& & & D^{2} x^{2} & & & \leq d_{1} \\
& & & & & \leq & \\
& & & & & & \\
& & & D_{2}^{K} x^{K} & \leq d_{K}
\end{array}
$$

Lagrangian relaxation

Objective becomes

$$
\begin{aligned}
& c^{1} x^{1}+c^{2} x^{2}+\ldots+c^{K} x^{K} \\
& -\lambda\left(A^{1} x^{1}+A^{2} x^{2}+\ldots+A^{K} x^{K}-b\right)
\end{aligned}
$$

Decomposed into
$\max c^{1} x^{1}-\lambda A^{1} x^{1}+c^{2} x^{2}-\lambda A^{2} x^{2}+\ldots+c^{K} x^{K}-\lambda A^{K} x^{K}+b$

$$
x^{1} \in \mathbb{Z}_{+}^{n_{1}} \quad x^{2} \in \mathbb{Z}_{+}^{n_{2}} \quad \ldots \quad x^{K} \in \mathbb{Z}_{+}^{K} x^{K}
$$

Model is separable

Dantzig-Wolfe decomposition

Substituting X^{k} in original model getting Master Problem
$\max c^{1}\left(\sum_{t \in T_{1}} \lambda_{1, t} x^{1, t}\right)+c^{2}\left(\sum_{t \in T_{2}} \lambda_{2, t} x^{2, t}\right)+\ldots+c^{K}\left(\sum_{t \in T_{K}} \lambda_{K, t} x^{K, t}\right)$
s.t. $A^{1}\left(\sum_{t \in T_{1}} \lambda_{1, t} x^{1, t}\right)+A^{2}\left(\sum_{t \in T_{2}} \lambda_{2, t} x^{2, t}\right)+\ldots+A^{K}\left(\sum_{t \in T_{K}} \lambda_{K, t} x^{K, t}\right)=b$
$\sum_{t \in T_{k}} \lambda_{k, t}=1$
$k=1, \ldots, K$
$\lambda_{k, t} \in\{0,1\}$,
$t \in T_{k} k=1, \ldots, K$

Dantzig-Wolfe decomposition

If model has "block" structure

$$
\begin{array}{llllll}
\max & c^{1} x^{1} & +c^{2} x^{2} & +\ldots+ & c^{K} x^{K} & \\
\text { s.t. } & A^{1} x^{1} & +A^{2} x^{2} & +\ldots+ & A^{K} x^{K} & =b \\
& D^{1} x^{1} & + & & & \\
& & +D^{2} x^{2} & & & \leq d_{1} \\
& & & \ldots & & \leq d_{2} \\
& & & & & \\
& & & D^{K} x^{K} & \leq d_{K} \\
& x^{1} \in \mathbb{Z}_{+}^{n_{1}} \quad x^{2} \in \mathbb{Z}_{+}^{n_{2}} & \ldots & x^{K} \in \mathbb{Z}_{+}^{n_{K}}
\end{array}
$$

Describe each set $X^{k}, k=1, \ldots, K$

$$
\begin{aligned}
& \max c^{1} x^{1}+c^{2} x^{2}+\ldots+c^{K} x^{K} \\
& \text { s.t. } A^{1} x^{1}+A^{2} x^{2}+\ldots+A^{K} x^{K} \\
& x^{1} \in X^{1} \\
& x^{2} \in X^{2} \\
& \ldots \\
& x^{K} \in X^{K}
\end{aligned}=b
$$

$$
\text { where } X^{k}=\left\{x^{k} \in \mathbb{Z}_{+}^{n_{k}}: D^{k} x^{k} \leq d_{k}\right\}
$$

Assuming that X^{k} has finite number of points $\left\{x^{k, t}\right\} t \in T_{k}$

$$
X^{k}=\left\{\begin{aligned}
x^{k} \in \mathbb{R}^{n_{k}}: & x^{k}=\sum_{t \in T_{k}} \lambda_{k, t} x^{k, t}, \\
& \sum_{t \in T_{k}} \lambda_{k, t}=1, \\
& \lambda_{k, t} \in\{0,1\}, t \in T_{k}
\end{aligned}\right\}
$$

Strength of linear master model

Solving LP-relaxation of master problem, is equivalent to (Wolsey Prop 11.1)

$$
\begin{aligned}
& \max \\
& \text { s.t. } \\
& c^{1} x^{1}+c^{2} x^{2}+\ldots+\underset{A^{1} x^{1}}{+}+\underset{A^{2} x^{2}}{+\ldots+}+\underset{x^{k} x^{k}}{A^{1} \in \operatorname{conv}\left(X^{1}\right)}+\underset{x^{2} \in \operatorname{conv}\left(X^{2}\right)}{\ldots} x^{k} \in \operatorname{conv}\left(X^{k}\right)
\end{aligned}=b
$$

Proof: Consider LP-relaxation

$$
\begin{aligned}
& \begin{array}{l}
\max c^{1}\left(\sum_{t \in T_{1}} \lambda_{1, t} x^{1, t}\right)+c^{2}\left(\sum_{t \in T_{2}} \lambda_{2, t} x^{2, t}\right)+\ldots+c^{K}\left(\sum_{t \in T_{K}} \lambda_{K, t} x^{K, t}\right) \\
\text { s.t. } A^{1}\left(\sum_{t \in T_{1}} \lambda_{1, t} x^{1, t}\right)+A^{2}\left(\sum_{t \in T_{2}} \lambda_{2, t} x^{2, t}\right)+\ldots+A^{K}\left(\sum_{t \in T_{K}} \lambda_{K, t} x^{K, t}\right)=b \\
\sum_{t \in T_{k}} \lambda_{k, t}=1 \\
\quad k=1, \ldots, K \\
\lambda_{k, t} \geq 0, \quad t \in T_{k} \quad k=1, \ldots, K
\end{array}
\end{aligned}
$$

Informally speaking we have

- joint constraint is solved to LP-optimality
- block constraints are solved to IP-optimality

Strength of Lagrangian relaxation

- $z^{L P M}$ be LP-solution value of master problem
- $z^{L D}$ be solution value of lagrangian dual problem
(Theorem 11.2)

$$
z^{L P M}=z^{L D}
$$

Proof: Lagrangian relaxing joint constraint in

Using result next page

Delayed Column Generation

Delayed column generation, linear master

- Master problem can (and will) contain many columns
- To find bound, solve LP-relaxation of master
- Delayed column generation gradually writes up master

Strength of Lagrangian Relaxation (section 10.2)

Integer Programming Problem

$$
\operatorname{maximize} c x
$$

$$
\text { subject to } A x \leq b
$$

$$
D x \leq d
$$

$$
x_{j} \in \mathbb{Z}_{+}, \quad j=1, \ldots, n
$$

Lagrange Relaxation, multipliers $\lambda \geq 0$

$$
\begin{array}{ll}
\operatorname{maximize} & z_{L R}(\lambda)=c x-\lambda(D x-d) \\
\text { subject to } & A x \leq b \\
& x_{j} \in \mathbb{Z}_{+}, \quad j=1, \ldots, n
\end{array}
$$

for best multiplier $\lambda \geq 0$

$$
\max \left\{c x: D x \leq d, x \in \operatorname{conv}\left(A x \leq b, x \in \mathbb{Z}_{+}\right)\right\}
$$

Delayed column generation, linear master

- $w_{1}=5, b_{1}=7$
- $w_{2}=3, b_{2}=3$
\square
- Raw length $L=22$

Some possible cuts

In matrix form

$$
A=\left(\begin{array}{cccccc}
4 & 0 & 1 & 2 & 3 & \cdots \\
0 & 7 & 5 & 4 & 2 & \cdots
\end{array}\right)
$$

LP-problem

$$
\begin{array}{ll}
\min & c x \\
\text { s.t. } & A x=b
\end{array}
$$

where

- $b=(7,3)$,
- $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \cdots\right)$
- $c=(1,1,1,1,1, \cdots)$.

Reduced Costs

Simplex in matrix form

$$
\min \{c x \mid A x=b, x \geq\}
$$

In matrix form:

$$
\left[\begin{array}{cc}
0 & A \\
-1 & c
\end{array}\right]\left[\begin{array}{l}
z \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

- $\mathcal{B}=\{1,2, \ldots, p\}$ basic variables
- $\mathcal{L}=\{1,2, \ldots, q\}$ non-basis variables (will be set to lower bound $=0$)
- $(\mathcal{B}, \mathcal{L})$ basis structure
- $x_{\mathcal{B}}, x_{\mathcal{L}}, c_{\mathcal{B}}, c_{\mathcal{L}}$,
- $B=\left[A_{1}, A_{2}, \ldots, A_{p}\right], L=\left[A_{p+1}, A_{p+2}, \ldots, A_{p+q}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & B & L \\
-1 & c_{\mathcal{B}} & c_{\mathcal{L}}
\end{array}\right]\left[\begin{array}{c}
z \\
x_{\mathcal{B}} \\
x_{\mathcal{L}}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right] } \\
& B x_{\mathcal{B}}+L x_{\mathcal{L}}=b \quad \Rightarrow \quad x_{\mathcal{B}}+B^{-1} L x_{\mathcal{L}}=B^{-1} b \quad \Rightarrow \quad\left[\begin{array}{l}
x_{\mathcal{L}}=0 \\
x_{\mathcal{B}}=B^{-1} b
\end{array}\right.
\end{aligned}
$$

Delayed column generation (example)

- $w_{1}=5, b_{1}=7$

- $w_{2}=3, b_{2}=3$
- Raw length $L=22$

Initially we choose only the trivial cutting patterns

$$
A=\left(\begin{array}{ll}
4 & 0 \\
0 & 7
\end{array}\right)
$$

Solve LP-problem

$$
\begin{array}{ll}
\min & c x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

i.e.

$$
\left(\begin{array}{ll}
4 & 0 \\
0 & 7
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{3}
$$

with solution $x_{1}=\frac{7}{4}$ and $x_{2}=\frac{3}{7}$.
The dual variables are $y=c_{B} A_{B}^{-1}$ i.e.

$$
\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{4} & 0 \\
0 & \frac{1}{7}
\end{array}\right)=\binom{\frac{1}{4}}{\frac{1}{7}}
$$

$$
\left[\begin{array}{ccc}
0 & B & L \\
-1 & c_{\mathcal{B}} & c_{\mathcal{L}}
\end{array}\right]\left[\begin{array}{c}
z \\
x_{\mathcal{B}} \\
x_{\mathcal{L}}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

Simplex algorithm sets $x_{\mathcal{L}}=0$ and $x_{\mathcal{B}}=B^{-1} b$ B invertible, hence rows linearly independent

The objective function is obtained by multiplying and subtracting constraints by means of multipliers π (the dual variables)

$$
z=\sum_{j=1}^{p}\left[c_{j}-\sum_{i=1}^{p} \pi_{i} a_{i j}\right]+\sum_{j=1}^{q}\left[c_{j}-\sum_{i=1}^{p} \pi_{i} a_{i j}\right]+\sum_{i=1}^{p} \pi_{i} b_{i}
$$

Each basic variable has cost null in the objective function

$$
c_{j}-\sum_{i=1}^{p} \pi_{i} a_{i j}=0 \quad \Longrightarrow \quad \pi=B^{-1} c_{\mathcal{B}}
$$

Reduced costs of non-basic variables:

$$
c_{j}-\sum_{i=1}^{p} \pi_{i} a_{i j}
$$

Small example (continued)

Find entering variable
$\left.\begin{array}{lll}A & =\left(\begin{array}{cccc}1 & 2 & 3 & \cdots \\ 5 & 4 & 2 & \cdots\end{array}\right) & \frac{1}{4} \leftarrow y_{1} \\ c_{N}-y A_{N} & =\left(\begin{array}{ll}1-\frac{27}{28} & 1-\frac{30}{28} \\ \hline\end{array} 1-\frac{29}{28} \cdots\right.\end{array}\right)$
We could also solve optimization problem

$$
\begin{array}{ll}
\min & 1-\frac{1}{4} x_{1}-\frac{1}{7} x_{2} \\
\text { s.t. } & 5 x_{1}+3 x_{2} \leq 22 \\
& x \geq 0, \text { integer }
\end{array}
$$

which is equivalent to knapsack problem

$$
\begin{array}{ll}
\max & \frac{1}{4} x_{1}+\frac{1}{7} x_{2} \\
\text { s.t. } & 5 x_{1}+3 x_{2} \leq 22 \\
& x \geq 0, \text { integer }
\end{array}
$$

This problem has optimal solution $x_{1}=2, x_{2}=4$ Reduced cost of entering variable

$$
1-2 \frac{1}{4}-4 \frac{1}{7}=1-\frac{30}{28}=-\frac{1}{14}<0
$$

Add new cutting pattern to A getting

$$
A=\left(\begin{array}{lll}
4 & 0 & 3 \\
0 & 7 & 2
\end{array}\right)
$$

Solve problem to LP-optimality, getting primal solution

$$
x_{1}=\frac{5}{8}, x_{3}=\frac{3}{2}
$$

and dual variables

$$
y_{1}=\frac{1}{4}, y_{2}=\frac{1}{8}
$$

Note, we do not need to care about "leaving variable" To find entering variable, solve

$$
\begin{array}{ll}
\max & \frac{1}{4} x_{1}+\frac{1}{8} x_{2} \\
\text { s.t. } & 5 x_{1}+3 x_{2} \leq 22 \\
& x \geq 0, \text { integer }
\end{array}
$$

This problem has optimal solution $x_{1}=4, x_{2}=0$. Reduced cost of entering variable

$$
\begin{gathered}
1-4 \frac{1}{4}-0 \frac{1}{7}=0 \\
\text { Terminate with } x_{1}=\frac{5}{8}, x_{3}=\frac{3}{2} \text {, and } z_{L P}=\frac{17}{8}=2.125 .
\end{gathered}
$$

Outline

1. Lagrangian Relaxation
2. Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition
Delayed Column Generation
3. Single Machine Models

Questions

- Will the process terminate?

Always improving objective value. Only a finite number of basis solutions.

- Can we repeat the same pattern?

No, since the objective functions is improved. We know the best solution among existing columns. If we generate an already existing column, then we will not improve the objective.

Scheduling

$1 \mid$ prec $\mid \sum w_{j} C_{j}$
Sequencing (linear ordering) variables

$$
\begin{array}{ll}
\min & \sum_{j=1}^{n} \sum_{k=1}^{n} w_{j} p_{k} x_{k j}+\sum_{j=1}^{n} w_{j} p_{j} \\
\text { s.t. } & x_{k j}+x_{l k}+x_{j l} \geq 1 \quad j, k, l=1, \ldots, n j \neq k, k \neq l \\
& x_{k j}+x_{j k}=1 \quad \forall j, k=1, \ldots, n, j \neq k \\
& x_{j k} \in\{0,1\} \quad j, k=1, \ldots, n \\
& x_{j j}=0 \quad \forall j=1, \ldots, n
\end{array}
$$

Scheduling

Scheduling

$1\left|\mid \sum h_{j}\left(C_{j}\right)\right.$
Time indexed variables
$1 \mid$ prec $\mid C_{\max }$
Completion time variables

$$
\begin{array}{ll}
\min & \sum_{j=1}^{n} w_{j} z_{j} \\
\text { s.t. } & z_{k}-z_{j} \geq p_{k} \quad \text { for } j \rightarrow k \in A \\
& z_{j} \geq p_{j}, \quad \text { for } j=1, \ldots, n \\
& z_{k}-z_{j} \geq p_{k} \quad \text { or } \quad z_{j}-z_{k} \geq p_{j}, \quad \text { for }(i, j) \in I \\
& z_{j} \in \mathbf{R}, \quad j=1, \ldots, n
\end{array}
$$

$\min \sum_{j=1}^{n} \sum_{t=1}^{T-p_{j}+1} h_{j}\left(t+p_{j}\right) x_{j t}$
s.t. $\quad \sum_{t=1}^{T-p_{j}+1} x_{j t}=1, \quad$ for all $j=1, \ldots, n$
$\sum_{j=1}^{n} \sum_{s=t-p_{j}+1}^{t} x_{j s} \leq 1, \quad$ for each $t=1, \ldots, T$

$$
x_{j t} \in\{0,1\}, \quad \text { for each } j=1, \ldots, n ; t=1, \ldots, T-p_{j}+1
$$

+ This formulation gives better bounds than the two preceding
- pseudo-polynomial number of variables

Dantzig-Wolfe decomposition

Substituting X in original model getting master problem

$$
\begin{aligned}
& \min \\
& \pi \quad \sum_{j=1}^{n} \sum_{t=1}^{T-p_{j}+1} h_{j}\left(t+p_{j}\right)\left(\sum_{l=1}^{L} \lambda_{l} x^{l}\right) \\
& \pi \quad \text { s.t. } \sum_{t=1}^{T-p_{j}+1} \sum_{l=1}^{L} \lambda_{l} x_{j t}^{l}=1, \quad \text { for all } j=1, \ldots, n \Longleftarrow \sum_{l=1}^{L} \lambda_{l} n_{j}^{l}=1 \\
& \alpha \quad \sum_{l=1}^{L} \lambda_{l}=1, \\
& \lambda_{l} \in\{0,1\} \Longleftarrow \lambda_{l} \geq 0 \text { LP-relaxation }
\end{aligned}
$$

- solve LP-relaxation by column generation on pseudo-schedules x^{l}
- reduced cost of λ_{k} is $\bar{c}_{k}=\sum_{j=1}^{n} \sum_{t=1}^{T-p_{j}+1}\left(c_{j t}-\pi_{j}\right) x_{j t}^{k}-\alpha$
- The subproblem can be solved by finding shortest path in a network N with
- $1,2, \ldots, T+1$ nodes corresponding to time periods
- process arcs, for all $j, t, t \rightarrow t+p_{j}$ and cost $c_{j t}-\pi_{j}$
- idle time arcs, for all $t, t \rightarrow t+1$ and cost 0
- a path in this network corrsponds to a pseudo-schedule in which a job may be started more than once or not processed.
- the lower bound on the master problem produced by the LP-relaxation of the restricted master problem can be tighten by inequalities
[Pessoa, Uchoa, Poggi de Aragão, Rodrigues, 2008], propose another time index formulation that dominates this one.
They can solve consistently instances up to 100 jobs.

