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Relaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

max
s∈P

g(s) ≥
{

maxs∈P f(s)
maxs∈S g(s)

}
≥ max

s∈S
f(s)

P : candidate solutions;
S ⊆ P feasible solutions;
g(x) ≥ f(x)

Which constraints should be relaxed?

Quality of bound (tightness of relaxation)

Remaining problem can be solved efficiently

Proper multipliers can be found efficiently

Constraints difficult to formulate mathematically

Constraints which are too expensive to write up
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Different relaxations

LP-relaxation

Deleting constraint

Lagrange relaxation

Surrogate relaxation

Semidefinite relaxation

Best Lagrangian 

relaxation

relaxation

Best surrogate

LP relaxation

Tighter

Relaxations are often used in combination.
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Tightness of relaxation

max cx
s.t. Ax ≤ b

Dx ≤ d
x ∈ Zn+

LP-relaxation:

max {cx : x ∈ conv(Ax ≤ b,Dx ≤ d, x ∈ Z+)}
 Lagrangian Relaxation:

max zLR(λ) = cx− λ(Dx− d)
s.t. Ax ≤ b

x ∈ Zn+

LP-relaxation:

max {cx : Dx ≤ d, x ∈ conv(Ax ≤ b, x ∈ Z+)}
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Relaxation strategies

Which constraints should be relaxed

"the complicating ones"

remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)

remaining problem is totally unimodular
(e.g. network problems)

remaining problem is NP-hard but good techniques exist
(e.g. knapsack)

constraints which cannot be expressed in MIP terms
(e.g. cutting)

constraints which are too extensive to express
(e.g. subtour elimination in TSP)
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Subgradient optimization Lagrange multipliers

max z = cx

s. t. Ax ≤ b
Dx ≤ d
x ∈ Zn+

Lagrange Relaxation, multipliers λ ≥ 0

max zLR(λ) = cx− λ(Dx− d)
s. t. Ax ≤ b

x ∈ Zn+
Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

We do not need best multipliers in B&B algorithm

Subgradient optimization fast method

Works well due to convexity

Roots in nonlinear programming, Held and Karp (1971)
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Subgradient optimization, motivation

Netwon-like method to minimize a
function in one variable

Lagrange function zLR(λ) is
piecewise linear and convex
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Subgradient
Generalization of gradients to non-differentiable functions.

Definition

An m-vector γ is subgradient of f(λ) at λ− λ̄ if

f(λ) ≥ f(λ̄) + γ(λ− λ̄)

The inequality says that the hyperplane

y = f(λ̄) + γ(λ− λ̄)

is tangent to y = f(λ) at λ− λ̄ and supports f(λ) from below
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Proposition Given a choice of nonnegative multipliers λ̄. If x′ is an
optimal solution to zLR(λ) then

γ = d−Dx′

is a subgradient of zLR(λ) at λ = λ̄.

Proof We wish to prove that from the subgradient definition:

max
Ax≤b

(cx = λ(Dx− d)) ≥ γ(λ− λ̄) + max
Ax≤b

(
cx− λ̄(Dx− d)

)
where x′ is an opt. solution to the right-most subproblem.
Inserting γ we get:

max
Ax≤b

(cx− λ(Dx− d)) ≥ (d−Dx′)(λ− λ̄) + (cx′ − λ̄(Dx′ − d))

= cx′ − λ(Dx′ − d)
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Intuition
Lagrange relaxation

max zLR(λ) = cx− λ(Dx− d)
s.t. Ax ≤ b

x ∈ Zn+

Gradient in x′ is
γ = d−Dx′

Subgradient Iteration
Recursion

λk+1 = max
{
λk − θγk, 0}

where θ > 0 is step-size

If γ > 0 and θ is sufficiently small zLR(λ) will decrease.

Small θ slow convergence

Large θ unstable
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Lagrange relaxation and LP
For an LP-problem where we Lagrange relax all constraints

Dual variables are best choice of Lagrange multipliers

Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

Iterative algorithms

Polynomial algorithms
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Dantzig-Wolfe Decomposition

Motivation
split it up into smaller pieces a large or difficult problem

Applications
Cutting Stock problems

Multicommodity Flow problems

Facility Location problems

Capacitated Multi-item Lot-sizing problem

Air-crew and Manpower Scheduling

Vehicle Routing Problems

Scheduling (current research)

Two currently most promising directions for MIP:
Branch-and-price

Branch-and-cut
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Dantzig-Wolfe Decomposition
The problem is split into a master problem and a subproblem

+ Tighter bounds

+ Better control of subproblem

− Model may become (very) large

Delayed column generation
Write up the decomposed model gradually as needed

Generate a few solutions to the subproblems

Solve the master problem to LP-optimality

Use the dual information to find most promising solutions to the
subproblem

Extend the master problem with the new subproblem solutions.
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Delayed Column Generation

Delayed column generation, linear master

Master problem can (and will) contain many columns

To find bound, solve LP-relaxation of master

Delayed column generation gradually writes up master
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Reduced Costs
Simplex in matrix form

min {cx |Ax = b, x ≥}
In matrix form: [

0 A
−1 c

] [
z
x

]
=
[
b
0

]
B = {1, 2, . . . , p} basic variables

L = {1, 2, . . . , q} non-basis variables (will be set to lower bound = 0)

(B,L) basis structure

xB, xL, cB, cL,

B = [A1, A2, . . . , Ap], L = [Ap+1, Ap+2, . . . , Ap+q]

[
0 B L
−1 cB cL

] zxB
xL

 =
[
b
0

]

BxB + LxL = b ⇒ xB +B−1LxL = B−1b ⇒
[
xL = 0
xB = B−1b 31

[
0 B L
−1 cB cL

] zxB
xL

 =
[
b
0

]
Simplex algorithm sets xL = 0 and xB = B−1b
B invertible, hence rows linearly independent

The objective function is obtained by multiplying and subtracting
constraints by means of multipliers π (the dual variables)

z =
p∑
j=1

[
cj −

p∑
i=1

πiaij

]
+

q∑
j=1

[
cj −

p∑
i=1

πiaij

]
+

p∑
i=1

πibi

Each basic variable has cost null in the objective function

cj −
p∑
i=1

πiaij = 0 =⇒ π = B−1cB

Reduced costs of non-basic variables:

cj −
p∑
i=1

πiaij
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Questions

Will the process terminate?

Always improving objective value. Only a finite number of basis
solutions.

Can we repeat the same pattern?

No, since the objective functions is improved. We know the best
solution among existing columns. If we generate an already existing
column, then we will not improve the objective.
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Scheduling

1|prec|PwjCj

Sequencing (linear ordering) variables

min
n∑
j=1

n∑
k=1

wjpkxkj +
n∑
j=1

wjpj

s.t. xkj + xlk + xjl ≥ 1 j, k, l = 1, . . . , nj 6= k, k 6= l

xkj + xjk = 1 ∀j, k = 1, . . . , n, j 6= k

xjk ∈ {0, 1} j, k = 1, . . . , n
xjj = 0 ∀j = 1, . . . , n
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Scheduling

1|prec|Cmax

Completion time variables

min
n∑
j=1

wjzj

s.t. zk − zj ≥ pk for j → k ∈ A
zj ≥ pj , for j = 1, . . . , n
zk − zj ≥ pk or zj − zk ≥ pj , for (i, j) ∈ I
zj ∈ R, j = 1, . . . , n
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Scheduling

1||Phj(Cj)

Time indexed variables

min
n∑
j=1

T−pj+1∑
t=1

hj(t+ pj)xjt

s.t.
T−pj+1∑
t=1

xjt = 1, for all j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

xjs ≤ 1, for each t = 1, . . . , T

xjt ∈ {0, 1}, for each j = 1, . . . , n; t = 1, . . . , T − pj + 1

+ This formulation gives better bounds than the two preceding

− pseudo-polynomial number of variables
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Dantzig-Wolfe decomposition
Reformulation:

min
n∑
j=1

T−pj+1∑
t=1

hj(t+ pj)xjt

s.t.
T−pj+1∑
t=1

xjt = 1, for all j = 1, . . . , n

xjt ∈ X for each j = 1, . . . , n; t = 1, . . . , T − pj + 1

where X =

x ∈ {0, 1} :
n∑
j=1

t∑
s=t−pj+1

xjs ≤ 1, for each t = 1, . . . , T


xl, l = 1, . . . , L extreme points of X.

X =

 x ∈ {0, 1} : x =
∑L
l=1 λlx

l∑L
l=1 λl = 1,

λl ∈ {0, 1}


matrix of X is interval matrix

extreme points are integral

they are pseudo-schedules
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Dantzig-Wolfe decomposition
Substituting X in original model getting master problem

min
n∑
j=1

T−pj+1∑
t=1

hj(t+ pj)(
L∑
l=1

λlx
l)

π s.t.
T−pj+1∑
t=1

L∑
l=1

λlx
l
jt = 1, for all j = 1, . . . , n⇐=

L∑
l=1

λln
l
j = 1

α

L∑
l=1

λl = 1,

λl ∈ {0, 1} ⇐= λl ≥ 0 LP-relaxation

solve LP-relaxation by column generation on pseudo-schedules xl

reduced cost of λk is c̄k =
n∑
j=1

T−pj+1∑
t=1

(cjt − πj)xkjt − α
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The subproblem can be solved by finding shortest path in a network N
with

1, 2, . . . , T + 1 nodes corresponding to time periods

process arcs, for all j, t, t→ t+ pj and cost cjt − πj

idle time arcs, for all t, t→ t+ 1 and cost 0

a path in this network corrsponds to a pseudo-schedule in which a job
may be started more than once or not processed.

the lower bound on the master problem produced by the LP-relaxation
of the restricted master problem can be tighten by inequalities

[Pessoa, Uchoa, Poggi de Aragão, Rodrigues, 2008], propose another time
index formulation that dominates this one.
They can solve consistently instances up to 100 jobs.
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